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ABSTRACT Brain cancer is one of the most dominant causes of cancer death; the best way to diagnose
and treat brain tumors is to screen early. Magnetic Resonance Imaging (MRI) is commonly used for brain
tumor diagnosis; however, it is a challenging problem to achieve higher accuracy and performance, which is
a vital problem in most of the previously presented automated medical diagnosis. In this paper, we propose a
Hybrid Two-Track U-Net(HTTU-Net) architecture for brain tumor segmentation. This architecture leverages
the use of Leaky Relu activation and batch normalization. It includes two tracks; each one has a different
number of layers and utilizes a different kernel size. Then, we merge these two tracks to generate the final
segmentation. We use the focal loss, and generalized Dice (GDL), loss functions to address the problem of
class imbalance. The proposed segmentation method was evaluated on the BraTS’2018 datasets and obtained
a mean Dice similarity coefficient of 0.865 for the whole tumor region, 0.808 for the core region and 0.745
for the enhancement region and a median Dice similarity coefficient of 0.883, 0.895, and 0.815 for the
whole tumor, core and enhancing region, respectively. The proposed HTTU-Net architecture is sufficient
for the segmentation of brain tumors and achieves highly accurate results. Other quantitative and qualitative
evaluations are discussed, along with the paper. It confirms that our results are very comparable expert
human-level performance and could help experts to decrease the time of diagnostic.

INDEX TERMS Brain tumor segmentation, deep neural networks, U-net, fully convolutional network,
BraTS’2018 challenge.

I. INTRODUCTION
Brain tumor segmentation plays a crucial role in the diagnosis
and planning of cancer treatment. Gliomas are the most gen-
eral principle for brain tumors. It can be classified as Low-
Grade (LGG) and High-Grade Gliomas (HGG). LGG tumors
are less aggressive, while HGG tumors are malignant, grow-
ing, and rapidly invading surrounding tissues [1]. Patients
with high-grade gliomas, even under treatment, do not live
on average for more than 14 months after diagnosis [2].
Possible treatments include surgery, followed by or combined
with chemotherapy and radiotherapy [3]. Specialists can use
ultrasound, computed tomography (CT), or MRI for patient
screening. MRI is especially helpful for Gliomas assessment
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as extra information can be extracted. Common stages
of MRI screening are fluid-attenuated reversal (FLAIR),
T1-weighted (T1), T1-weighted contrast-enhanced (T1c),
and T2-weighted (T2).

Manual segmentation requires a great deal of time and
effort, and it is a subjective process. Automatic or semi-
automatic methods are therefore necessary [4]. The main
challenges of brain tumor segmentation are that it can occur
in almost any form and size anywhere in the brain, and
the tumor has a low contrast to the surrounding tissue.
Deep learning-based techniques have outperformed tradi-
tional methods. One of the most common effective segmenta-
tionmethods is the fully convolutional neural network (FCN).
Zhao et al. proposed in [5] a technique for the segmentation
of the brain tumors by integrating FCN and Conditional
Random Fields(CRF’s). Badrinarayanan et al. [6], presented
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SegNet, a deep convolutional model for semantic segmen-
tation presented SegNet, a deep convolutional model for
semantic segmentation consists of an encoder network and
a corresponding decoder network followed by a pixel-wise
classification layer. Recently, in the field of image segmenta-
tion, convolutional neural networks (CNNs) based algorithms
have accomplished excellent success [7]. In this area, in
particular, U-Net-based models [8] are used extensively. The
U-Net architecture is a fully convolutional model consisting
of encoding and decoding parts. The U-Net model offers
several advantages [9] for the segmentation process, such as
its capacity to simultaneously use the context and global place
needed to generate a good segmentationmap and can use very
few training samples and provide better segmentation results.
The contributions of this paper can be summarized as follows.

• We propose HTTU-Net architecture to address chal-
lenges of brain tumor segmentation which occur in
almost any form and size anywhere in the brain; also
tumor has a low contrast to the surrounding tissue
and address class imbalance problem. HTTU-Net not
only extracts more semantic information but also gives
more consideration to the information of small-scale
brain tumors, which improves the segmentation of brain
tumors.

• HTTU-Net is based on the excellent achievement of U-
Net based architectures. Our technique is trained using
multimodal image patches. It also updates the U-Net
network by adding batch normalization at the end of
each block to reduce the mean and variance problems
and stable the layers. Our architecture, the first track,
focuses on the tumor’s form and size while the second
track captures the contextual information. Each track
consists of a different number of convolution blocks and
uses a different kernel size to handle the different tumor
sizes.

• We have introduced a new hybrid loss feature, combin-
ing Focal Loss and Generalized Dice Loss functions, to
mitigate the class imbalance.

• We demonstrate that the proposed strategy improves the
precision of the initial U-Net and also alleviates the issue
of overfitting. We experiment with Brats 2018 dataset,
and our architecture shows superior performance.

Section II presents a brief survey of the related work. In
Section III, we describe the material and methods. Section IV
shows the experimental results, and the discussion will show
in Section V Finally, conclusion and future work are provided
in Section VI.

II. RELATED WORK
Several CNN-based approaches for brain tumor segmenta-
tion have been suggested in the literature, and significant
progress has been made [10]. Pereira et al. [11] proposed a
2D CNN network with a small kernel size (i.e., 3 × 3). They
trained two distinct models, one for HGG and another one
for LGG. They also used a max-pooling layer of stride two

and applied a dropout to the dense layers only. The model
utilizes the activation function of Leaky rectified linear units
(LeakyReLU) [12]. A two-stage cascade network was also
implemented by Havaei et al. [13] that contains a local path
and a global path. This architecture can encode contextual
characteristics, both locally and globally. Zhao and Jia [14]
presented a multiscale CNNs model, through which not only
local and global features are learnt, but also complementary
information from various MRI image modality is combined.

Le and Pham [15], suggested full-convolution U-Net net-
works acquire features from a multimodal MRI training
dataset and then apply Extremely Randomized Trees (Extra-
Trees) to segment the abnormal tumor cells. Wang et al. [16]
used three binary classifiers, one for each task, to develop a
triple-cascaded brain tumor segmentation architecture. Con-
sequently, they can decrease over-fitting and make it simple
to train. However, one limitation of the cascade architec-
ture is that it is not end-to-end, and it takes a long time to
train. Dong et al. [17], established a deep convolution net-
work based on U-Net for automatic tumor segmentation,
which was evaluated using data set from BRATS’ 2015. This
approach uses the Dice loss function. In [18], Chen proposed
a separable 3D U-Net architecture using the prevalent U-Net
structure, dividing each 3D convolution into three branches
in a parallel. He and Fang [19] proposed three pathways
U-Net structure to segment the brain tumor; each modality
is processed in a single pathway. Table 1 summarizes the
datasets, methods, and results of the most similar related
works on brain tumor segmentation based on deep learning
methods with our work where Enhancing Tumor (ET),Whole
Tumor (WT) and Tumor Core (TC).

III. MATERIAL AND METHODS
A. DATASET AND DATA PREPARATION
1) DATASET
The BraTS’ 2018 [20] contest provides a large training set
of 210 HGG MRI scans and 75 LGG MRI scans. The size
of each MRI scan is 240 × 240 × 155, and each case
has FLAIR, T1, T1-enhanced, and T2 volumes. The dataset
is co-registered, re-sampled to 1 mm3, and skull-stripped.
Fig 1 shows an example of the data as well as the ground
truth.Segment brain tumors, including necrosis, edema, non-
enhancing, and enhancing tumor

2) DATA PREPARATION
The N4ITK bias correction method [21] is applied to MRI
volumes to alleviate non-homogeneity and intensity varia-
tions. Each slice is then normalized using the slice’s mean
and standard deviation. In this work, to reduce the impact of
the class imbalance issue, we perform data augmentation that
comprises rotation, translation, horizontal and vertical flip-
ping [22]. During the training, 2D patches of 128 × 128 × 4
size are sampled randomly to decrease computational time,
and all zero-intensity patches from the training set will be
removed [13].
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TABLE 1. Comparison of our paper with reviewed brain tumor segmentation methods.

FIGURE 1. Sample MRI images and ground truth labels, from left to right, T1, T2, T1-enhanced, and the label images; Green: edema,
yellow: enhancing tumor, red: necrosis and non-enhancing.

B. METHODS
1) U-NET BASED DEEP CONVOLUTIONAL NETWORKS
We will briefly explain the original U-Net framework in this
subsection. The U-Net architecture can be regarded as an
auto-encoder where there are several contraction blocks in the
contraction part. Each block includes two 3× 3 convolutional
layers followed by a 2 × 2 pooling layer, and it uses the
rectified linear unit (ReLU) activation function. It doubles
the number of feature maps from one block to the next to
be able to effectively learn the complex structures, increasing
the number of feature maps from 1 to 1024. Each block in
the expanding part consists of two 3× 3 convolutional layers
followed by a 2 × 2 up-sampling layer. In order to maintain
symmetry, the number of featuremaps is reduced by half from
each block to the next. There is a collection of stacked con-
volution/pooling layers in the contracting or downsampling
part, whereas the expansion part consists of up/transposed
convolutional layers. Skip connections are used in U-Net to
append the feature maps of the corresponding contraction
layer at the end of each expansion block. These connections
guarantee that the contracting part features will be used in
image reconstruction, and the final layer is a 1 × 1 convolu-
tional layer to produce the segmentation results.

2) TWO-TRACK U-NET ARCHITECTURE
Severe class imbalance is one of the main problems of brain
tumor segmentation, with healthy vowels accounting for
98% of the total vowels, necrosis, edema, and non-enhanced

represent 0.18% 1.1% and 0.38% respectively. We designed
and improved U-Net architecture in this article to solve the
problem, consisting of two distinct tracks. These two tracks
use small and large convolutional kernels and follow the
same encoder/decoder structure. These tracks are defined as
the first track and the second track. The receptive field size
of the first route is 3 × 3, and it has five convolutional
blocks, while the second track uses a 5 × 5 convolutional
kernels and four convolutional blocks. The proposed two-
tracks architecture improves the original U-Net architecture.
We apply a batch normalization after each convolution block
to preserve regulated gradient levels, accelerate convergence,
and minimize the effect of inner shift covariates so that
the network parameters do not alter rapidly during back-
propagation. The Leaky Rectified Linear Unit (LeakyReLU)
activation function with 0.1 leakage factor is used in this
architecture. Fig 2 shows the suggested architecture. In the
following subsections, the details of the two tracks will be
described, and their parameters will be shown in Table 1.
The motivation behind the design of this model is to improve
the efficiency of the original U-Net model, process different
tumor sizes, and reduce the issue of class imbalance. The
details of each track are explained in the remainder part of
this section.

a: THE FIRST TRACK
The first track’s contracting part consists of 5 convolutional
blocks. Every block has two convolutional layers. We use the
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FIGURE 2. The proposed HTTU-Net architecture. The first and second tracks are shown respectively in the colors blue and red.

TABLE 2. Two-Track U-Net parameters setup.

LeakyReLU activation function in the proposed architecture
and carry out batch normalization at the end of each block.
For all convolutional layers, this track utilizes a 3× 3 kernel.
The amount of filters for the first, second, third, fourth, and
fifth blocks is 64, 128, 256, 512, and 1024. At the end of
each block, a max-pooling layer is used to reduce the size by
half. Similarly, the expanding part consists of 5 blocks each
block starts with a deconvolutional layer with a kernel size
of 3 × 3 and a stride of 2, doubling the size of feature maps,
thus increasing the size of feature maps from 8 × 8 to 128 ×
128. Table 2 shows the parameters for each layer.

b: THE SECOND TRACK
The second track’s contracting part consists of 4 convolu-
tional blocks. Each block has two convolutional layers and
followed by batch normalization (BN). We use the Leaky
ReLU activation function and 5 × 5 kernel for all layers in
this track. The amount of filters for the four blocks is 64,
128, 256, and 512. Similarly, the expanding part includes 4
convolutional blocks of convolutions, and each block begins
with a deconvolutional layer of 5× 5 kernel size with a stride
of 2 and doubling the size of feature maps. The size of feature
maps increases from 16 × 16 to 128 × 128.
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FIGURE 3. Sample segmentation results of four HGG cases from the BraTs’2018 training dataset. Labels are shown in
different colors; Green for edema, yellow for enhancing tumor, red for necrosis and non-enhancing.

Finally, we concatenate the output of the first track with
the output of the second track, and this concatenation is
convolved and then followed by a soft-max function.

C. MODEL TRAINING
Multimodal image batches of size 128× 128× 4 are used to
train the proposed model. A batch of size 4 is used, and the
stochastic gradient-based (SGD) [23] optimization algorithm
is used for parameter optimization.

We set the momentum = 0.8. The initial learning rate
= 0.0001 is decayed exponentially with decay factor 0.1.
We trained the model for 60 epochs because the validation
loss has not improved after that. Because the loss functions
play an essential role in improving the model accuracy, we
implemented a hybrid function as described in the following
section.

1) HYBRID LOSS
Ultimately this work illustrates how important the choice of
the loss function can be in a deep learning system, mainly

when dealing with highly unbalanced problems. The selec-
tion of loss functions is also improved model accuracy.
Accordingly, we use a hybrid loss function that combines the
focal loss function and theGeneralizedDice Loss (GDL). The
most robust reliability across setups was observedwhen using
GDL. The focal loss function is a modified version of binary
cross-entropy and is aimed toward low-confidence labels also
achieves state-of-the-art accuracy and speed.

a: THE GENERALIZED DICE SCORE (GDS)
Reference [24] proposed as a multi-class segmentation esti-
mation method. As shown in equation (1);

GDL = 1− 2

(
L∑
i

Wi

∑
i

gik pik )

(
L∑
i

Wi

∑
i

gik + pik )

(1)

where L is the total number of labels, k denotes the batch size,
Wi represent the weight assigned to the ith label. As proposed
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FIGURE 4. Sample segmentation results of four LGG cases from the BraTS’2018 dataset. Labels are shown in different
colors; Green for edema, yellow for enhancing tumor, red for necrosis, and non-enhancing.

in [21], we set Wi =
1∑
k gik

. pik and gik representing the

value of the ( ith, k th) pixel of the segmented binary image
and image of binary ground truth.

b: THE FOCAL LOSS
For the segmentation task, we select a multiclass focal loss
[25] as shown in equation (2) :

Focal(p, q)=

∑
x,y,z

∑
k

pkx,y,z(1−q
k
x,y,z)

γ log(qkx,y,z)∑
k

pkx,y,z
(2)

where (1 − qkx,y,z)
γ is a modulating factor, The focusing

parameter γ smoothly adjusts the rate at which easy examples
are down-weighted. The setting of γ>0 can reduce the relative
loss for well-classified samples and putting a focus on hard
and misclassified samples. In contrast, the focal loss is equal
to the original cross-entropy loss when γ = 0 (we found
γ = 2 to work best in our experiments). And p is the model’s
estimated probability for the class. The proposed hybrid loss
HL function is shown in equation (3):

HL = GDL + FL (3)

IV. EXPERIMENTAL RESULTS
A. EVALUATION METRICS
We evaluate the segmentation results using four metrics;
Dice similarity coefficient (DSC), Hausdorff distance (HD),
Sensitivity, and Specificity. The Dice similarity score mea-
sures the similarity between the ground truth and the resulted
segmentation mask. It is defined in Equation (4):

DSC =
2TP

(FP+ 2TP+ FN )
(4)

where TP, FP, and FN are the number of true positive, false
positive, and false negatives, respectively. Sensitivity is also
defined as a true positive rate as in equation (5). Specificity is
also used to calculate the true negative rate as in equation (6).

Sensitivity =
TP

TP+ FN
(5)

Specificity =
TP

TP+ FP
(6)

Hausdorff Distance indicates the tumor border segmentation
quality. It calculates the maximum distance between any two
surfaces, A and B, as in equation (7).

h(A,B) = maxa∈Aminb∈Bd(a, b) (7)
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TABLE 3. Quantitative result of segmentation of BraTS’2018 training
dataset using Dice and Sensitivity metrics.

TABLE 4. Quantitative result of segmentation of BraTS’2018 training
dataset using Specificity and Hausdorff distance metrics.

where a and b are the set of points in A and B, respectively.
And, d(a,b) is Euclidean metric between these points [26].

B. PERFORMANCE ON BraTs’2018 TRAINING DATASET
In our experiments, 160 subjects fromBrats training dataset is
used for training and 40 subjects for validation purposes. We
extract 25,000 multimodal patches from each case to form the
4,000,000 patches training set. We carry out our experiments
using Keras framework TensorFlow backend [27]. The train-
ing was carried out on an Intel Corei7 3.5GHz machine using
NVIDIA GeForce GTX 1070. The segmentation results for
eight cases are shown in Figures 3 and 4.

Fig 3 shows the results of four HGG tumor samples,
while Fig 4 shows the results of four LGG tumor sam-
ples. In these figures, columns one to four display one axial
slide from Flair, T1c, T2, and T1 modalities, respectively.
The fifth column shows the ground truth (GT) labels, and
sixth columns display the segmentation results, where intra-
tumor areas can be distinguished by color code: yellow for
enhancing tumor, green for edema and necrotic, and red
for non-enhancing. Tables 3 and 4 presents the quantitative
evaluation of segmentation results where Tumor core (TC) is
the union of necrosis & non-enhancing tumor and enhancing
tumor (ET). A whole tumor (WT) is the union of necrosis &
non-enhancing tumor, edema, and enhancing tumor. Mean,
standard deviation, median, and 25th and 75th percentile are
given for Dice and Sensitivity metrics in Table 3 and Speci-
ficity, and Hausdorff distance in Table 4.The quantitative
results presented in this section indicate that the proposed
HTTU-Net model produces accurate segmentation results. It
achieved a Dice similarity coefficient of 0.852, 0.812, and
0.741 for the segmentation of the whole tumor, core tumor,
and enhancing tumor, respectively.

C. PERFORMANCE ON BraTS’2018 TESTING
60 subjects from BraTs 2018 dataset are used for testing pur-
poses. We present the Dice similarity and Sensitivity metrics
for these cases in Table 5 and the Specificity and Hausdorff
distance in Table 6. In Table 5, the method obtained a mean

FIGURE 5. Sample segmentation of cases from the BraTS 2018 validation:
the 74th, 10th, and 111thslices from the subject Brats18_TCIA02_230_1,
Brats18_CBICA_BLK_1, Brats18_TCIA07_601_1. Labels are shown in
different colors; Green for edema, yellow for enhancing tumor, red for
necrosis and non-enhancing.

TABLE 5. Quantitative segmentation results for testing on BraTS 2018
training Set using Dice and Sensitivity metrics.

TABLE 6. Quantitative segmentation results for testing on BraTS 2018
training Set using Specificity and Hausdorf distance metrics.

ET, WT, and TC dice score of 0. 745, 0.865, and 0.808,
respectively.

In Table 6, average HD scores of 4.43, 7.53and 8.81 for
ET, WT, and TC, respectively, were obtained. The evaluation
of our algorithm’s performance on the Brat’s 2018 valida-
tion is presented in Fig 5. We can observe that performance
is consistent in both training and testing cases, indicating
that this model is well generalized to invisible examples.
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FIGURE 6. Boxplots of DSC and Sensitivity obtained from BraTS’2018. The ‘x’ marks the mean score, ‘’ marks outliers.

FIGURE 7. Boxplots of Specificity and Hausdorff obtained from BraTS’2018. The ‘x’ marks the mean score, ‘’ marks outliers.

Table.7 shows a comparison between the performance of the
proposed HTTU-Net model, the original U-net architecture,
the first track, and second track models. Boxplots of Dice
dispersion and Sensitivity are shown in Fig 6 and Specificity,
and HD scores dispersion boxplots are shown in Fig 7. The
boxplots plots report the minimum, lower quartile, median,
upper quartile and maximum. Points that fall outside the
interquartile range are considered outliers. It is evident from
the boxplots that in most cases our algorithm produces sig-
nificantly good segmentation accuracy.

V. DISCUSSION
The precise segmentation of gliomas has drawn considerable
interest from medical doctors and researchers as a critical
component of tumor detection, treatment preparation. Since
manual segmentation of tumor regions is exhausting, and
time ravage, it is important to develop effective compu-
tational methods for the segmentation of automatic brain
tumor. So, most deep learning methods are proposed for
brain tumor segmentation to solve the class imbalance prob-
lem. The suggested method provides more reliable output
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TABLE 7. Comparison of our proposed model with one –track model.

in segmentation than most previous methods. Accordingly,
the results Fig. 3, and Fig. 4 indicate that the size, shape,
location, and intensity of tumors in these eight samples are
different, and also enhance the segmentation performance for
small tumor regions. Generally, the results of the proposed
segmentation architecture are comparable to those acquired
by the experts (GT). In Table 5, Table 6. It is also observed
that the small enhancements on the testing based on Brats
2018 training set are due to the reality that it contains more
HGG tumor samples than LGG tumor samples. In Table 7.
we use two tracks with small and large convolutional kernels
sizes to investigate the impact of different parameters; the
result reveals that the HTTU-Net model has achieved the
best performance among all compared models. It increases
0.055 for ET, 0.013 for WT, and 0.014 for TC values over
the original U-Net, it also increases 0.006for ET, 0.015 for
WT, and 0.008 for TC values over the first track model and
increases 0.013 for ET, 0.006 forWT, and 0.016 for TC values
over the second trackmodel. Due to themulti-modality nature
ofMRI andmemory limitations of the current GPU,it is worth
mentioning that in the proposed method, the training stage is
time-consuming, which could be considered as a limitation.
The training time for one epoch is around 10 min, but also the
prediction phase rapidly processes the testing dataset.

VI. CONCLUSION AND FUTURE WORK
In this paper, we introduced an automatic approach for brain
tumor segmentation using 2D HTTU-Net architecture. The
proposed technique has been quantitatively evaluated using
the BraTS’2018 dataset. It contains two tracks; each one
consists of a different number of convolution blocks and uses
a different kernel size to handle the different tumor sizes.
We also developed a new hybrid loss function to alleviate
the class imbalance problem by combining the focal loss
and Generalized Dice Loss functions. Higher performance is
achieved through HTTU-Net architecture, which solves brain
tumors segmentation problems that can happen anywhere
in the brain, in almost any type and size. The evaluation
of the proposed approach verifies that our results are very
comparable to those obtainedmanually by experts. In the end,
a future work possibility may concentrate on 3D HTTU-Net.
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