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ABSTRACT Data driven fuzzy neural networks have some disadvantages, such as high dimensions and
complex learning process. Also, the obtained models are difficult to interpret. In this paper, we propose a
novel simple fuzzy system, which uses fuzzy adaptive neurons. This novel model takes the advantages of
the interpretability of the fuzzy system and good approximation ability of the neural networks. We propose
a simple learning algorithm for the novel fuzzy system. The stability analysis is given. We successfully
apply this fuzzy model for the earthquake modeling. Comparisons with the popular fuzzy neural model are

proposed.

INDEX TERMS Fuzzy system, neural networks, earthquake modeling, stability.

I. INTRODUCTION

The model of a system is the representation of the structure,
properties, of the system. The choice in which model is devel-
oped depends on what is expected to represent it. Obtaining
models can be done in different ways, such as through phys-
ical laws, mathematical modeling. It is the most common
form, but this type of technique needs knowing exactly the
environment in which the system operates, as well as making
the biggest amount of theoretical considerations as possible.
Another way to obtain models is to include measurements
of the aspects of interest, together with some equations that
describe the system behavior, achieving high robustness and
adaptability. Neural networks (NNs) and fuzzy systems are
very common to use as gray box models [1]-[6]. The use of
neural networks and fuzzy systems can generate models with
the characteristics, either for system modeling or adaptive
control.

Fuzzy systems use fuzzy rules of the IF-THEN type to
model systems. There are two main types of fuzzy systems:
Mamdani fuzzy systems and Takagi-Sugeno (TS) fuzzy sys-
tems. Several comparisons between them are made [7]-[10].
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Fuzzy systems represent expert’s knowledge but can be
constructed in such a way that they emulate an expert, through
learning processes, like neural networks (NNs) [11], [12]. Itis
the famous ANFIS (adaptive network based fuzzy inference
system), which is based on a TS fuzzy system and transform
fuzzy systems into something similar to NNs. If the conse-
quences are taken as nonlinear functions, it is possible to
obtain better results in the general performance. The inclusion
of NNs of different types in ANFIS systems was introduced
and discussed in many works, such as [12]-[14]. More recent
works on this topic use RBFNN (radial basis function neural
networks) [15], DNN (delayed neural networks) [16] and
RNNs (recurrent neural networks) [3], to estimate the conse-
quences in fuzzy systems. For example, the wavelet network
(WN) is used in [17]. In [18]-[20], different types of fuzzy
systems are applied, which are structured with FNNs (fuzzy
neural networks) and conventional representations.

Fuzzy systems require proper membership functions for
systems identification [21]. Usually, fuzzy data-based models
include fuzzy inference rules and neural network learning
methods. The fuzzy neural networks required to successfully
solve the precision problems in fuzzy identification of the
system, which need good learning algorithms and mathemat-
ical models [8], [22]-[28]. However, for many engineering
applications [5], [9], [29], [30], they could be very complex.
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Membership functions with different shapes, such as trian-
gular, trapezoidal, sigmoidal, bell, Gaussian, among others,
have been developed. The Gaussian membership function is
the most popular [21]. The sigmoid activation function is
configured in series [31], [32].

In order to create a system that reacts with better approxi-
mation, the fuzzy adaptive neuron (FAN) method is employed
inside the structure of the fuzzy system, instead of fuzzy
neural networks. We have the following contributions in this
paper

1) We propose the FAN based fuzzy model, which is
simpler than the TS structure. This model is established by
the fuzzy system and benefited by the neural network.

2) A learning process for this fuzzy network is proposed, it
performs simple learning and it is feasible. The stability of the
proposed model considering the training algorithm is proved.

To show the advantages of the novel fuzzy system, we
use three different activation functions: Gaussian, parabola
and sigmoid. The proposed method is compared with fuzzy
RBFNN by using the seismic accelerograms of six Mexican
seismological stations for the earthquake modeling.

The paper is organized as follows. After the introduction,
we show how to use adaptive neurons in fuzzy system in
Section II. In Section III, we give the training method of the
proposed fuzzy system. The stability analysis of the modeling
process is given in Section IV. In Section V, we apply the
proposed fuzzy system to the earthquake modeling. Finally,
we conclude this paper.

Il. FUZZY SYSTEM WITH ADAPTIVE NEURONS FOR
NONLINEAR SYSTEM MODELING

The unknown nonlinear system in discrete time can be repre-
sented as:

yky=oyk -1,y —=2),...,uk—1),

uk —2),...1 (@)
where @ (-) is an unknown nonlinear difference equation, the
plant dynamics, u (k) and y (k) are the input and output of

the system. This is the NARMA (nonlinear autoregressive-
moving average) model. In multivariable NARMA form [13],

Y (k) = ®[H (k)] @)
where
Hky=[Yk-=1,....,.U*k=4dy),..]".
Uk)=[uk),uk+1,....,utk+n-=2),...1"
Yo =D& ,yk+1,....yk+n—1),...]"
To model the system (1) and avoid some problems, such as
slow convergence and difficult to design hyper-parameters. In
this paper, we use the FANS for the fuzzy system.
We consider the following two types of fuzzy systems:
A) If we normalize the input and output of the unknown

system (1) into [0,1], then we use the following fuzzy IF-
THEN rules for the unipolar system,

R': IFh) >1orhy >1or ---h; > 1
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THEN iy = hy -re, o =hy - 1o, -y = hy - 10 (3)

where r, € R. We use the synaptic operation, somatic Gupta-
type aggregation, and the fuzzy integrator operation.
Because the fuzzy unipolar system is in the interval [0,1],
the following synaptic operation, aggregation operation, and
nonlinear operation are also the somatic operations,

Vininj (K) = min (zinj (k) , winj (5)) @
Vinax () = MAX L Vininj (K) )

Vour ®) = max (Vonar (0, Vitreshona ©))  (©)
1

Vsar (k) = - @)
- e(—min(y,Vou,(k))<a+h>
e (k) = Ysarrer (k) — ysar (k) (8)
where:
a, b, c real numbers.

k time variable

Zinj (k) dendrite inputs.

Winj (k) synaptic weights.

Vinreshola (k)  threshold.

y (k) learning factor, 0 < y < 1.

ysar (k) sigmoid activation function (SAF).
e (k) modeling error.

B) If we normalize the input and output of the unknown
system (1) in the interval [-1,1], then the following synaptic
operation, aggregation operation, and nonlinear operation
with threshold are also the somatic operations,

Vinin j (k) = min (Zinj (k) , winj (k) ©9)
Vinax (&) = MAX L Vinin j (K) (10)
Vout (k) = max (Vmax (k) s Vihreshold (k)> (11)
2
ysar (k) = —— - (12)
1+ e(—mm(y,%,,,(k))-c)
e (k) = Ysarrer (k) — ysar (k) (13)

Based on the above operations, the unknown nonlinear
system can be expressed by the following fuzzy system

Y (k) = Wi (k) - @ [H (k), W ()] - v (K) (14)

where y (k) is a scalar,

Wi W
Wi (k) = e pmx!
Wml1 Wl
Yk)y € Rt o e RXLw, e R Whk) €

RIXV H(k) € RX! &(-) is the nonlinear function corre-
sponding to the membership functions of the fuzzy system.
In this paper, we will use three types of functions for ®(.),
Gaussian function, parabola function and sigmoid function.
We fix Wh(k), and only train Wy(k). Wh(k) are selected
randomly in (0,1)
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FIGURE 1. Three types of membership functions.

The three types of membership functions, Gaussian func-
tion, parabola function and sigmoid function, are shown in
Fig. 1.

The parabola membership function is,

(Vou ) =3 )’
o (k)

Year (k) = min | y, (15)

where,

8 (k) delay,0 <é(k) < 1.
o(k) real number, 0 < o (k).

For bipolar fuzzy systems [—1,1], the membership function
is expressed in (16),

(Vou 0y 5 0))”
o (k)

year (k) = min | y, 2—1 (16)
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The novel Gaussian function is,

min(y,(Vnut(k)*5(k))2)
Joar (k) =e 2@ an

where,

8 (k) delay, 0 <§(k) < 1.
o(k) compressive factor, 0 < o (k).

For bipolar fuzzy systems [—1,1], the membership function
is,
min (y, (Vour (k)—a(k))2>
Yoar (k) =2-e 2067 —1 (18)
These three membership functions have similar thresholds
and the shapes. We will use the same learning algorithm to
train all the weights of the fuzzy system, FAN-RBFNN.
The fuzzy Gupta integrator is Viay (k), the somatic mem-

bership function is ¢ (-) with the threshold Vipeshoia (k). The
output system is y (k).

Vinax (k) = MAX'_, (min (w; (k) , hy; (k)))
5’ k) = @ Vinax (k) , Vinreshota (k) , 14 (k)) 19)

where y (k) is the learning factor.
The scheme of the proposed fuzzy system is shown in
Fig.2.

Memebership functions

Adaptive neurons

FIGURE 2. The block diagram of the proposed fuzzy system.

IIl. FUZZY SYSTEM TRAINING
The novel fuzzy model (14) is a multi-input, single-output
system, its inputs are H (k) = [h11 (k), ..., hy (k)], the
weights are W1 (k) and W> (k).

This fuzzy mode allows us to approximate the output y (k)
with ¥ (k). The input the to the plant and the model is the
same, H (k).

The main idea of fuzzy neural modeling is to find the
values of Wy (k) and W, (k), such that the output Y (k) of the
proposed model (14), can follow Y (k) output of the nonlinear
plant. The identification error between (2) and (14), e (k) €
Rm*1 g defined as,

e(k) =Y (k) — Y (k) (20)
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The modeling error e (k) is used to train the FANs online so
that (14), can approximate Y (k).

We only consider to train Wy (k). We define Wgay (k) as
unit weights. For our novel fuzzy model (14), we use the
following stable training algorithm. In next section, we will
prove the stability of this training method. In matrix form,

Wk+1)=W(k)+T (k) -EKk)-H k) 2D

Ck+1) =T k&) +T(k)-EKk) HKk)
0<Tk)<1,0<W(k) <1

y (k+1) =y k) +y k) - hin (k) - e (k) (22)

where w(k+1) = wk) + Aw(k), y(k+1) = y (k) +
Ay (k).

Because we use the adaptive neurons as in (4)-(7) and (9)-
(12), the training algorithm (21) and (22) is simpler than the
gradient based ANFIS [13], [14].

IV. STABILITY ANALYSIS
The fuzzy modeling can be represented by

Plant: y = W* . ® [H (k)] + d(¢) (23)
Fuzzy model : y = W (k) - ® [H (k)] 24)
Training error : y — y=(W* — W (k)) - ® [H (k)] (25)

where @ [-] is a function of H (k). In matrix form,
Y (k) = W*® [H (k)] + W;® [Hy (k)] +d(1)  (26)

where W* are the unknown weights to minimize unmodeled
dynamic W; @ [H,; (k)], d(t) is the unmodeled dynamic.

So the identification error can be reformed by
(20) and (21),

e(k)y =W*- ®[H (k)] + W ®[Hy (k)]
—W (k) - ®[H (k)]
e(k) =W (k) - ®[H (k)] + W - ®[Hy (k)]
e(k) =W (k) ®[H ()] + pa (k) (27)

where,

W(k)y=W*"—W k), andpug (k)= WJ-®[Hy (k)].

We are interested in open-loop systems identification, we
assume plant (1), is bounded-input-bounded-output (BIBO)
stable, i.e.y (k) and u (k) in (1) are bounded. The membership
function @ (-) is bounded. The following theorem provides
the stability analysis for nonlinear system modeling with the
novel fuzzy system.

Theorem :. If the unknown nonlinear system (2) is mod-
eled by the fuzzy system (14), the membership functions are
updated by (21) and (22), then the modeling error e (k) is
uniformly ultimately bounded (UUB). And the normalized
identification error,

Wy (k+ 1) — Wy (k)

O = W H® .
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satisfies the following average performance:

T
. 1
Jim sup - ; 1Ex (1> = maxi | Wi 1Ha (1))

. 1 7 2 _ -
Jim sup— >0 NEN (O < g (29)

Proof: For unipolar systems with values in [0,1], the con-
ditions for W (k + 1) and I" (k + 1) are

IFW(k+1)>1THEN Wy (k + 1) = 1.
IFW (k+1) < OTHEN Wy (k + 1) = 0.
ELSE Wy (k + 1) = Wy (k) + AWy (k).
IFT (k+1)> I THEN Ty (k + 1) = 1.
IFT (k+1) <OTHENTy (k+ 1) =n
ELSE 'y (k + 1) = Ty (k) + ATy (k).

where, 0 <n <1
Therefore,

'ntk+1)=TnKk)+Tn (k) -Ek)-H (k) (30)
Wy (k+1) = Wy (k) + Ty (k) - E (k) - H (k)  (31)

We selected a positive defined scalar Ly as,
- 2
L= W | (32)

where ||| denotes the Euclidean norm.
By the updating law (29), we have,

Wk+1)=W@k) +T (k) -EKk) -HEK" (33
Using the inequalities,
lg+ril < gl +1irll,  lig-ril=lgll -

For any “¢” and “r”. By using (33) and 0 < Iy (k) <
I' (k) <1, we have,

ALp = Lyyy — Ly
~ 2 T, 2
:HW(k)Jrr(k).E(k).H(k)TH —HW(k)H
- 2HF(k)-E(k)-H(k)T-VV(k)H
n HF(k)-E(k)~H(k)TH2
— TGP - B [# @ |

E (k)+W;®[Hy (k)] H
@ [H (k)]

+2”F(k) “E(k)-H (k)T -

2
= ID @I [E @I |H & |
2T &) - IE &I - |H &)

@ [H ()]l
N 200 @l - IE ® - | H @ - |[Wi e Ha (1]
I® [H (k)
ALy < ¢ (k) - IE R +8 (k) - |Wi @ [Ha (0]
ALy < ¢ (k) - [E®I*+8K) - IE) - lluall (34)
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where ¢ (k) and § (k) are defined as,
20T Wl - [H &
1P [H ()1l

k) = IT I HH(k)T”2+

20T 0l - [H &

8 (k) =
© 1@ [H (O]l

Because,

i i

nmin <W~2> < Lj < nmax (fvz>
where 7 min (w7) and nmax (W}) are Ko — functions, and
c (k) - |E (k)||% is a Koo — function, 8 (k) - ||uqll is a K —
function. So, Ly admits an ISS (input-state stability) Lya-
punov function [10], the dynamic of the identification error
is input-to-state stable.

From (26) and (32) we know Ly is the function of E (k)
and WjCID [Hg (k)]. The “INPUT” and the “STATE” corre-
spond to both terms of (34). However, usually, ® [H; (k)] K
D [H (k)].

Because the “INPUT” is bounded and the dynamic is ISS,
therefore the “STATE” E (k) is bounded.

Applying the bounded conditions for Wy (k + 1) and
'y (k + 1), equation (34), from 1 up to T and using 0 < Lt
and L is a constant, we obtain,

T T
on (k) - (Z IEN (k)||2> + 8y (k) - (Z IEy (k>||)
k=1

k=1
-fg< Ly — Ly
2Ty O - [H ®T
I® [H (k)]

ov () = Ty (O HH(k)TH2 +

2ITn K- | H )T

N = e W

T
o (k) - (Z |Ex <k>||2> <Ly —Li — 8y (k)

k=1

T
: (Z IEN (k)n) : fia
k=1

(29) is established.

Remark 1: Tt is not easy to obtain high modeling accuracy
for the classical fuzzy neural networks, because the hyper-
parameters of the fuzzy neural systems are difficult to be
decided. But our fuzzy system with adaptive neurons has
less hyper-parameters to be chosen. And we prove that the
modeling error converges to the zone fi4.

Remark 2: If the fuzzy system (2) could match the non-
linear plant (1) exactly (ug (k) = 0), i.e., we could find
the best membership function py and W* such that the
nonlinear system could be written as Y (k) = W*® [ug], the
thee same learning law makes the identified error |E (k)|
asymptotically stable

lim ||E&)|| =0 (35)
K—o0

Remark 3: The normalization of the learning rates in (26)
and (27), are time-varying in order to insure the stability of
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identification error. The learning rates are easier to be reached
than [10], [11], where they select y = 1. Because the initial
condition does not need any previous information, the time-
varying learning rates usually are robust.

V. FUZZY SYSTEM FOR EARTHQUAKE MODELING

The experimental data of the seismological accelerograms
[32], [35], are provided by the NSS-IG-UNAM (National
Seismological System of the Institute of Geophysics of
the National Autonomous University of Mexico). The data
come from seven seismological stations, located in the
southeast of the Mexican Republic. They are in Huatulco,
Oaxaca (HUIG), Yosondda, Oaxaca (YOIG), Fresnillo de
Trujano, Huajuapan,Tehuacan, Puebla (TPIG), Yautepec,
Morelos (YAIG), to Popocatépet]l station, Mexico State
(PPIG).

We will compare our fuzzy model, named “AN fuzzy”,
with the pouplar ANFIS model [13], [14].

To perform the modeling of the earthquake registered on
September 8, 2017, for the seismic accelerograms of the east-
west, north-south, up-down components, a second order filter
with a cutoff frequency of 30 KHz was designed, after the
resulting vectors were obtained, which are the inputs and
outputs to the fuzzy system.

CRISP ;
FANs with AGGREGATION
INPUTS FUZZIFICATION — DELAY SAFPAFIGAF RBFAN }——EEFUZZFICATIO% ymodel

FIGURE 3. Fuzzy system for earthquake modeling.

The input-output mapping of the fuzzy system is shown in
Fig. 3. There is the fuzzification (fuzzy rules) of the inputs, a
time delay, the FANs with activation function, and an aggre-
gation of type RBFNN, then the defuzzification (fuzzy rules)
of the output.

From (2), the resultant of the three components of seismic
accelerograms can be modeled by,

Ymodel i (K) = WEAN—R 11 - paF1 (K) - €1 + WiAN—RBF21
‘mGar2 (k) -c2 + w31 - psar3 (k) - ¢3
+ WEAN—RBF41 - LGAF4 (k) -C4 + WrAN R 51
‘1Gars (k) - ¢5 (36)
where i = FTIG, YAIG.

Ymodel i (K) = Wran—RrBF11 - ILpaF1 (k) - €1 + WEAN—RBF21
‘1Gar2 (k) -c2 + Wipan —RBF31 - saF3 (k)
-3 + WRAN—RBF41 * LGAF4 (k) « Caq + Cap
+ WEAN-RBF51 - LGAFs (k) - 5 (37)

where i = YOIG, HLIG, TPIG, PPIG.

We use our novel fuzzy system to model the resulting
seismic accelerograms based on the data of the seven seis-
mological stations. The fuzzy model has two inputs,

Zin FANjiy (K) = Zin classic RBFNNjiy (K) = 2y (k — Akj)
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The initial conditions are

o Weights €[0, 1], winran—sar; (k) = Winean—par; (k)
= WinkAN—GaFy; (k) =0;i=1,---,5;j= 1.
o Weights € [—1, 1], waan—grprnn; (k) = 0;i=1,---,5;

j=1
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FIGURE 7. Modeling TPIG.
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FIGURE 8. Modeling YAIG.
o Learning factors, fixed values, yppn; (k) = 1.

o Thresholds, fixed values, Viyeshoiaran (k) = 0.

o Inputs, Zinj,, () = zruic (k — AK)), ZinvoiGeaes, (k)=
zxuiG (k — Akj + 8.5), ZinHLIGsp3 (k) = zHUIG
(k — Akj + 8.5), ZinPPiGaras (k) = zrUIG (K — Akj — 8.5).

| = SAF, PAF,GAF; i=1,---,5;
Jj = max (Yrepror6) » max (Yreprric) » max (Yyemiic) »
max (Yyerpic) » max (Yreyarc) » max (Yreppic).
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15 : :
~— Real data
ANFIS
— AN fuzzy
0O 100 260 360 400 500 600 700 800 900
TIME (s)
FIGURE 9. Fig. 9. Modeling PPIG.
TABLE 1. Modeling errors.
JV) FANs-classical FANs-fuzzy
RBFNN RBFNN
YOIG 0.0648 0.0418
FTIG 0.4107 9.81e-8
HLIG 0.0256 0.0117
TPIG 0.1231 0.1171
YAIG 0.1229 4.1e-8
PPIG 0.51 0.23

o Reference outputs .5 (k) =y (k).

o r, =0.01.

o Ideal values of the weights are unknown.

o Sampling period is Ksgmpie = 0.01second.

o Proposed Values, CyolGl = 2.7664e — 4, CyolG2 =
0.1,cvorcs = 0.08,cyoicaa = 0.1,cyoicap =
—0.013, cyoigs = 0.1.crrig1 = 2.7664e¢ — 4, crrigy =
0.02, CFTIG3 - 0.08, CFT]G4 = 0.01, CFT[GS =
O~l-CHLIGl = 2.7664e — 4, CHLIG2 = 0.1, CHLIG3 =
0.08, cyricaa = 0.1, chricap = —0.013, cyrigs =
O.l.CTp[Gl = 2.7664e¢ — 4, CTPIG2 = 0.2, CTPIG3 =
0.08, crpiGaa = 0.2, crpigap = —0.014, crpigs =
0~1-CYA1G1 = 276646 - 4, CYAIG2 = 002, CYAIG3 =

0.08, CYAIG4 = 0.01, CYAIGS = 0.1.Cpp1G1 = 4.4262¢ —
4,cppricz = 0.15,cppigz = 0.104, cppiGaa
0.155, CPPIG4b = —0.02, CPPIGS = 0.1.

o Fixed values, §;p,,,, = 0.001, 0,,,; = 0.0025.8;;,,, =
0.3, Oigary = 0.l.aisars = 20, bisarz = 10, cisar3 =
9.8iGars = 0.2, igary = 0.1.8i5405 = 0.9, 0igups = 0.1,
i = YOIG, FTIG, HLIG, TPIG, YAIG, PPIG.

The weights are updated after ten episodes of training.
Seismic accelerograms were filtered and scaled to the interval
[0,1]. The modeling errors of these 4 data sets are shown in
Table 1, (38) and Fig. 4. So, our novel fuzzy system works
well for the seismic accelerograms modeling. Defining the
mean squared error for finite time,

1
JWN) =5 ZZZI (k) (38)

The real data of HUIG is shown in Fig.5. The compari-

son results with ANFIS for the four data sets are shown in
Fig.6-Fig.9.
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VI. CONCLUSION
In this paper, a novel fuzzy model is proposed. This fuzzy
model is based on the adaptive neurons. It can be interpreted
as a simple neural network. We design a simple training
method for this fuzzy model. Stability of the proposed train-
ing method is given. We apply this novel model for the
seismic accelerograms modeling. The results show that the
new model has better performance that the classical fuzzy
neural networks for nonlinear system identification.
Multiple applications can be carried out applying this
novel fuzzy system, such as systems identification, control
and automation of systems [8], low-scale unmanned aerial
vehicles (UAVs) [27], and optimization of manufacturing
processes.
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