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ABSTRACT In the process industry, online operators usually adjust the entire production process in
time according to changes in certain key indicators. However, it is difficult to directly obtain the value
of key indicators due to the complex structure and the numerous processes of the process industry. This
paper proposes a method to achieve high precision on-line prediction of key indicators in the process
industry. The method first performs data preprocessing of multi-source heterogeneous time series data
involved in industrial processes based on the professional knowledge, which not only keeps the prediction
error within 10%, but also reduces the prediction time. Then a model framework is constructed based
on LSTM neural network and the error correction algorithm is proposed to improve prediction accuracy
based on real-time error, which directly causes the error to drop by 3%-5%. At the end, a set of multi-
mode online training strategies and related trigger conditions are designed to perform predicting online.
Diesel hydrodesulfurization is a typical case in the process industry. The effectiveness of the proposed
method is empirically studied by applying its actual data sets. Through the comparison with other traditional
well-known forecasting models, and models optimized by adjusting parameters, the experimental results
demonstrate that the method can achieve the great prediction performance in terms of both accuracy and
stability.

INDEX TERMS Fuel sulfur, LSTM, online predicting, sensor.

I. INTRODUCTION
Process industry is an industry in which raw materials are
separated, mixed, formed or changed by physical or chemical
changes to increase their value. Process industry is an impor-
tant part of manufacturing industry and plays an important
role in the improvement of national economy and the devel-
opment of social, its production process is usually continuous
or batch. However, at present, process industry is generally
faced with the process time-consuming, complex structure,
various procedures and many other prominent problems.
Therefore, it is urgent to improve the automation level of
process industry, which is of great significance to reduce
resource consumption and improve practical benefits [1].

The process industry usually involves many process indi-
cators or variables with important reference values. Operators
often judge the changes of these key process variables or
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indicators based on experience to adjust the entire production
process timely and ultimately improve production efficiency,
such as the temperature of molten iron and the content
of silicon. The production process indicators are roughly
divided into two categories. One is often obtained directly
based on sensors and other equipment, such as temperature
and pressure. These indicators are collectively referred to as
production process operating parameters. However, a large
number of process variables included in this type of indicator
are usually multi-source time series data with time offsets
between each other and different time series, which makes
our application of these data very difficult. The other is the
defined production process indicators, such as the real-time
sulfur content in the device during the hydrodesulfurization of
diesel. These indicators are often difficult to measure directly
or cannot be monitored at all because they are limited by
the actual conditions in the industrial process. However, this
kind of production process indicators usually has a complex
non-linear relationship with other process variables, so it is
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FIGURE 1. Flow chart of diesel hydrodesulfurization.

particularly important to establish an effective mathemati-
cal model for real-time prediction. On the other hand, from
the perspective of real-time regulation of industrial process
trends, in terms of operators, they hope to grasp the future
change trends of certain key process variables in advance,
which alsomakes the index trend prediction an important task
of the current intelligent production process in the process
industry.

The traditional production process index prediction uses
mechanism-based modeling method, which is based on the
internal mechanism of the process. It used to apply some
known laws to establish an accurate mathematical model,
such as dynamic principles, material balance equations,
energy balance equations, etc. However, themechanismmod-
eling depends heavily on the cognition of processmechanism.
Due to the characteristics of non-equilibrium, non-stability
and non-linearity in industrial production process, this kind
of mechanism model has high cost and difficulty and its
accuracy and reliability is difficult to guarantee. Therefore,
there are always problems such as low model accuracy and
easy model mismatch [2]. With the popularization of com-
puter applications and the arrival of the era of big data,
enterprises have obtained a large amount of industrial big data
based on process monitoring and data acquisition systems.
Under the situation of continuous integration of informa-
tion technology and industrialization, these rich data and
information materials are combined with machine learning
technology to promote the development of industrial enter-
prises towards intelligence [3]. At present, the most popu-
lar method for predicting production process indicators is
based on the data-based modeling method, which usually
collects the key variable values obtained in the production
process, and the relationship between input and output vari-
ables is established by machine learning methods to com-
plete the prediction task. This type of method does not
need to study the mechanism information of the production
process.

Diesel hydrodesulfurization is a typical case of process
industry, its device is shown in Fig.1. Because the diesel
hydrogenation reaction device is affected by the production
environments with high temperature and high pressure, its
internal sulfur content cannot be directly measured. A com-
monly used method now is through the monitor at the end of
the outlet to estimate the sulfur content in the diesel hydro-
genation reaction device, due to the effect of actual distance
factors, the data collected by the monitor is not the real-
time sulfur content in the diesel hydrogenation device, but
the sulfur content some time ago in the diesel hydrogenation
device. Another method is taking a sample at the outlet and
then performing expert analysis in a laboratory environment
to obtain the sulfur content in the diesel hydrogenation reac-
tor. Although the results of this method are very accurate,
its operation is complex and time-consuming. The method
is not suitable for real-time prediction of sulfur content in a
diesel hydrogenation reactor in a production line. Through
the analysis of these existing measuring methods of sulfur
content, we cannot predict sulfur content with high precision
in real time.

In order to realize timely and accurate closed-loop con-
trol of diesel hydrodesulfurization process to stabilize the
production quality of fuel, this paper designed an online
sulfur content prediction method based on LSTM, which
greatly improved the timeliness and accuracy of process reg-
ulation. However, due to the existence of real-time errors and
unknown changes in the production environment, the predic-
tion process of sulfur content is always unstable. In order
to improve the accuracy and robustness of the prediction
method, we designed an online correction strategy that can
correct the predicted results of the model online based on
real-time errors. In addition, equipment damage and pro-
cess upgrading are inevitable production links in the process
industry, and a single prediction model is not enough to cope
with complex production conditions. Therefore, we designed
a set of online training strategies combined with offline
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prediction to improve the automation level of the prediction
method.

The whole structure of this paper is given below. Firstly,
Section1 and Section2 are the introduction containing the
description of background on the prediction of key physical
quantities in the process industry and related researches on
this field. Then, Section3 introduces the data preprocessing
algorithm based on multi-source heterogeneous time series
data. Section4 introduces the components of the prediction
model, including the model framework and error correction
algorithm. Next, the online training strategies and related
trigger conditions are included in Section5. Section6 is the
experimental simulation and discussion. Finally, Section7
includes conclusion that summarize the ideas in the whole
paper.

II. RELATED WORK
Generally, the key technologies for real-time prediction of
production process indicators based on data include three
aspects, namely feature extraction; the establishment of
prediction models; and the construction of online learning
systems. The feature extraction process refers to a large num-
ber of candidate input features are effectively calculated to
calculate some equivalent features or to select the features
most relevant to the prediction index as input variables of
the prediction model. Data-based predictive modeling can be
completed using machine learning methods. Unlike mech-
anism models, such methods only focus on the input and
output of the model. The input is the selected relevant feature
variable and the output is the key indicator to be predicted [4].
The construction of the online learning system will realize
the online training of the prediction model and the real-time
prediction of key indicators by combining with data collected
on site.

A. FEATURE EXTRACTION
In the process industry, the predicted index value often has a
complex non-linear relationship with multiple process vari-
ables. To predict the production process index, we need to
select some of the most effective features from the many
original variables to reduce the data set dimension. This
is an important method of improving learning algorithm
performance and is also a key step in data preprocessing.
Whether the feature selection based on the data is inde-
pendent of subsequent modeling algorithms can be divided
into two types: filter and wrapper [5]. The basics idea of
filter feature selection is to define an evaluation criterion
in advance to determine the degree of correlation between
the process variable and the predicted index, and then select
a series of highly relevant process variables to participate
in the modeling. The method of wrapper combines the fea-
ture selection steps with the modeling algorithms. Although
the method will improve the prediction accuracy, the time
cost will be relatively high. At present, the most common
feature selection method applied in industrial production
processes is the filter methods, such as correlation-based

analysis methods [6]–[8]; wrapper methods, such as vari-
able pruning methods [9], [10], genetic algorithm-based
methods [11].

B. THE ESTABLISHMENT OF PREDICTION MODELS
With the further development of machine learning technol-
ogy, its application in the field of engineering is more com-
mon. In various types of artificial neural networks, radial
basis functions (RBF) [12], [13], least squares support vector
machine (LSSVM) [14]–[16], convolutional neural network
(CNN) [17], [18], long short-termmemory networks (LSTM)
and other models have attracted the attention of many
researchers. Long short-term memory networks (LSTM) are
better than recurrent neural networks (RNN). It inherits most
of the characteristics of the RNNmodels and solves the prob-
lem of gradient explosion and gradient disappeared during
gradient back propagation. Specific to engineering tasks, the
LSTM model is very suitable for dealing with problems that
are highly related to time series, and it has become a very
hot research model in the deep learning framework. In the
process industry, due to the existence of many aspects of
chemical transformation and different catalyst deactivation
mechanisms in the reaction system, coupled with the lack
of comprehensive understanding of the process, it is difficult
to fully grasp the process. Machine learning technology is
used to help establish prediction and optimization models and
achieve efficient quality control and more accurate monitor-
ing processes. This technology has triggered wide concern
in the industry and academia, which not only can be used
to understand the importance of process factors, but also can
apply historical data to predict the future. At the same time,
it saves a lot of time and energy and reduces the empirical
error.

For some data-driven systems, a variety of sensor data
is used as input to select and extract features that char-
acterize the state of the system. Sensor data is essentially
data with a certain time sequence, which is sampled by the
sensor and represented in sequential form. Previous research
mainly focused onmulti-domain feature extraction, including
statistics (variance, skewness, kurtosis), frequency (spectral
skewness), and time-frequency (wavelet coefficient) features.
However, these methods cannot model the intrinsic sequence
characteristics behind the sensor data [19]. These models
require a lot of expert knowledge or feature engineering.
In addition to these methods based on artificial engineering
features, some sequences models including Markov models,
Kalman filters, and conditional random domains, which have
powerful capabilities only for accessing the sequence data
of the original time series [20], [21]. However, they have
been unable to capture long-term dependencies. In recent
years, recurrent neural network (RNN) and its derivative
long short-term memory network (LSTM) [22], [23] and
gated recurrent neural network [24] show great advantages in
terms of sequence prediction tasks. Among them, the network
of long short-term memory has achieved good results in
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petrochemical field [25], transportation field [26], [27] and
medical field [28], [29]. They are widely used in speech
recognition, caption generation, machine translation, image
and audio classification. Recurrent neural networks have
proven to be superior to convolutional neural networks in
processing data that is tightly connected [30]. However, the
problem of the disappearance or explosion of the error gra-
dient during the model back-propagation directly affects the
performance of the neural network. This means that RNN
cannot capture the long-term dependence of the data. The
LSTMmodel makes up for the shortcomings in this area, it is
capable of capturing long-term dependencies and nonlinear
dynamics in time series data.

C. THE CONSTRUCTION OF ONLINE LEARNING SYSTEM
The multivariate statistical process control (MSPC) method
has proven to be an effective tool for process monitoring,
modeling, and fault detection. This method has achieved a lot
in real-time monitoring and on-line modeling of continuous
multi-scale operation process in factory operation [31]–[33].
However, the traditional method is based on assumption
that process variables are independently sampled, Gaussian
distribution and linear correlation. In industrial production,
the process variables are always non-linear due to changes in
actual operating conditions or in parameters setting. In addi-
tion, some variables may not obey the Gaussian distribution.
A method based on kernel-PCA (KPCA) is proposed by [34].
Compared with other non-linear principal component analy-
sis methods, the main advantage of the KPCA is that it does
not require non- linear optimization. A new principal compo-
nent non-linear measurement method is proposed by [35] and
it also discussed the criteria for selecting linear or non-linear
principal component analysis for a specific process. Because
MSPC is not efficient in multi-mode processes, a monitoring
strategy is proposed by [36], which updates the monitoring
model by establishing a recursive PCA model. In order to
avoid fault adaptation, Kruger et al. [37] proposed a fault
monitoring strategy and also introduced a method based on
model library.

On-line modeling based on current data is a key link
for real-time monitoring in the process industry. Tradi-
tional modeling methods such as neural networks, fuzzy
set methods and methods based on parametric model all
rely on pre-collected data sets. It is difficult to solve the
time-dependent model structure determination and parameter
optimization during the actual industrial problem [38]. How-
ever, the idea of local modeling is to set a non-linear model
within a limited range of data to predict the key physical
quantities of the local area. The famous models based on the
idea of local modeling include neural fuzzy networks and
T-S fuzzy models. However, the difficulty of local model-
ing lies in the need to use prior knowledge to determine a
certain operating area. Once the prior knowledge or experi-
ence is insufficient, a complex training strategy is needed to
determine the optimal structure and parameters of the local
model.

FIGURE 2. Multi-source time series data fusion.

III. TIME SERIES DATA
A. CHARACTERISTICS AND COMPLEXITY
The process industry has a complex structure and a variety
of processes. The entire process usually runs at different
levels, in which a large number of key process indicators
are involved. These important variables have important ref-
erence values for the control of the entire production process.
Multi-time series data fusion is a significant feature of the
process industry.

The data of the process industry has many characteristics,
as shown in the Fig.2. It is mainly reflected in (1) extensive,
the process industry usually has the characteristics of long
sampling time, high rate, many machines and equipment,
high information density, and large data storage. (2) variety,
there are many types of data in the process industry, and
data acquisition is diverse, usually including information
management system data, machine equipment data, external
data, etc., and its storage methods are complex and diverse,
including structured data, semi-structured data, unstructured
data, etc. In addition, irregular sampling of data is also one of
the reasons for the diversity of data. (3) high velocity, the pro-
cess industry usually needs online modeling and real-time
updating, which requires that the data acquisition rate should
meet certain requirements. (4) nonuniform, in the data mod-
eling process of process industry, the value density of data
is often considered, that is the proportion of valid data in
a batch of data. However, the value density of data in the
process industry is usually uneven. (5) authenticity, in the
process industry, due to the interference of abnormal factors
such as the failure of monitoring instruments or equipment,
the sampling data may contain unreal data or data missing,
which are the problems to be solved in the process of data call.
(6) time sequence, the data collected in the process industry
has a certain time series and has the characteristics of high
dimensional and dynamic sampling. (7) relevance, the data
collected at the same stage in the process industry has strong
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relevance, such as the status of machinery and equipment at a
certain stage, etc. In addition, the data between different links
in the product life cycle also have a certain correlation.

In the case of diesel hydrodesulfurization, multiple sources
of time series data are involved in the process of predict-
ing the sulfur content in the diesel hydrodesulfurization
device. The data sources are divided into two categories,
one type is the sensor data with a certain time series in the
diesel hydrodesulfurization device and the front-end reaction
device, and the other type is the sulfur content value in the
diesel hydrodesulfurization device with time series obtained
through multiple schemes. Due to the limitation of actual
distance factor between the front-end reaction device and
hydrogenation reaction device, it takes some time for the
change of the front-end reaction device to have some effect
on the hydrogenation reaction device. Therefore, when the
data values of two types of sensors in the front-end reaction
device and the hydrogenation reaction device are applied to
represent the sulfur content in the hydrogenation reaction
device, the time series of the two types of data should have
a certain time lag when they correspond to each other. The
sulfur content value obtained by different scheme is divided
into three categories. One is the value obtained by the online
monitor called YSYL. This scheme uses the monitor at the
outlet to estimate the sulfur content in the hydrogenation
reaction device. Also due to the limitation of distance, the data
collected by the monitor represents the sulfur content in the
hydrogenation reaction device some time ago. Another type
is laboratory testing value called LIMS, this solution obtains
a very accurate sulfur content in the hydrogenation reaction
device by sampling at the outlet and then performing expert
analysis in a laboratory environment, but this solution usually
requires a lot of analysis work and it can only obtain a small
number of accurate values. It is not suitable for the prediction
of the real-time sulfur content in the diesel hydrogenation
reaction device in the production line. The last category is
the real-time prediction value called JZCYS. In this scheme,
the sulfur content in the hydrogenation reactor can be pre-
dicted in real time by the model designed by us.

B. DATA ALIGNMENT AND DATA FILTERING
In the process industry, the prediction of certain key phys-
ical quantities based on multi-source time series data often
involves a series of related variables. Because the process
industry has the characteristics of continuous and batch pro-
cessing, the effects of the values of related variables collected
at the same time on the key physical quantities usually have
a certain time offset. In addition, due to the characteristics
of the machine or the equipment failure, the corresponding
time series of the monitoring values obtained by each variable
may be different. We use data alignment algorithm to process
this kind of multi-source time-series data with time offset and
different time series. After the original data is data aligned,
the values of each variable are evenly distributed on the same
time series. Then multivariate values are filtered to achieve
dimensionality reduction. At the same time, data filtering

can effectively extract features based on expert knowledge,
thereby improving the prediction accuracy of the model and
speeding up the calculation of the model. The results of data
alignment algorithm and data filtering algorithm are shown
in the Fig.3.

Some concepts in data alignment and data filtering algo-
rithms are defined as follows:
Definition 1: The base timestamp is defined as BT that

is the end time of the sampling. If base timestamp is not
specified, the current timestamp of the system is used as the
base timestamp.
Definition 2: The collection of time offsets on the base

timestamp is defined as T , T =
{
T1,T2, · · · ,Tj

}
, j is the

j− th time offset on the base timestamp in the T . When j = 0,
it represents the time offset is 0.
Definition 3: A collection of related variables with a cer-

tain time offset j is defined as Sj =
{
Sj1, Sj2, · · · , Sji

}
,

Sji represents the i− th related variable with time offset j.
Definition 4: The number of variables of a certain

collection Sj with time offset j is defined as SNj.
Definition 5: The sampling time is defined as Sr . The

sampling time step is defined as Sp.
Definition 6: The sampling range of the time series is

defined as T ′n, it is expressed as an ordered collection, T ′n =
{0, 1, 2, 3, · · · ,m}. T ′nm represents the m − th element in
the set T ′n, its meaning is to generate a time series with m
timestamps at equal time intervals in the sampling time.
Definition 7: Some kind of related variable Sj with time

offset j, its end timestamp and start timestamp are defined
as ETj and STj, they are obtained according to the following
formula:

ETj = BT + j (1)

STj = ETj − Sr (2)

Then according to T ′n, the sampling minimum timestamp
and the sampling maximum timestamp of the certain type of
variable are defined as MinTj and MaxTj, they are calculated
according to the following formula:

MinTj = STj + T ′nmin × Sp (3)

MaxTj = STj + T ′nmax × Sp (4)

where: T ′nmin, T
′
nmax are the minimum and maximum values

in T ′n.
According to the calculated MinTj, MaxTj, ETj, and STj,

the minimum and maximum timestamps are selected as the
start and end timestamps of the relevant variable samples.
Definition 8: The time series to be calculated is defined as

TSj, it is expressed as an ordered collection whose elements
have equal time interval, the time interval is equivalent to
Sp, TSj = {t1, t2, t3, · · · , tm}. Among them, the m − th
timestamp in the set TSj called TSjm is obtained according
to the following formula:

TSjm = STj + T ′nm × Sp (5)
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FIGURE 3. Schematic diagram of key physical quantity prediction in process industry.

In the data alignment algorithm, the related variable classes
with different time offsets are all uniformly aligned according
to the time series TS0.
Definition 9: tn is the required calculation timestamp,

Vn is the corresponding value of the timestamp. If tn is within
the time range of the sampled data and there is a sampling
value corresponding to the current timestamp, the sampling
value isVm. If there is no corresponding value at that moment,
define ts as the timestamp after tn, tp as the timestamp after
ts, tq as the timestamp before ts, Vp as the value of tp, and Vq
as the value of tq; if tn is not in the time range of the sampled
data, tr is defined as the timestamp closest to tn in the time
series of the sampled data, and Vr is the value corresponding
to tr .

The detailed steps of data alignment algorithm are
described as follows.

Step 1.According to BT , T , Sj, Sr , Sp, and T ′n, the STj, ETj,
and TSj are calculated.
Step 2. Obtain the sample data of each variable. The time

interval is STj < t < ETj. The original data is used to
calculate data that corresponds to the time series calculated,
and finally all the data have been calculated are unified under
the TS0.

Step 3.To calculate the valueVn correspond to the required
timestamp tn, if tn is not within the time range of the sampled
data, Vn = Vr ; if tn is within the time range of the sam-
pled data and there is corresponding value at that moment,
Vn = Vm; if tn is within the time range of the sampled data

but there is no corresponding value at that moment, Vn could
be obtained according to the following formula:

V =

[(
1

tp−tn

)
× Vp

]
+

[(
1

tq−tn

)
× Vq

]
(

1
|tp−tn|

)
+

(
1
|tq−tn|

) (6)

After the original data is aligned, the values of each mea-
surement point are evenly distributed on the same time series.
According to expert knowledge, a part of the measurement
point data collected in the device on the production line can
be better characterized by effective calculation. It can also
improve the prediction accuracy of the model and speed up
the calculation speed of the model. This process is called data
filtering, the result is in the Fig.3.

The detailed steps of data filtering algorithm are described
as follows.

Step 1. Ratio discrimination of abnormal values. That is
the sensor data column of a measurement point contains too
many abnormal values, whichmeans it is less likely to contain
valuable information. Therefore, the feature points that the
ratio of abnormal values in the data column is greater than a
certain threshold are removed.

Step 2. Low variance filtering. That is the little change
in the value of a sensor data column. It also doesn’t contain
much valuable information. Therefore, the positions with low
variance of their data column are removed.

Step 3. High correlation filtering. In other words, if the
variation trend of sensor data of two measurement points is
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FIGURE 4. Schematic diagram of data publishing service.

similar, it is believed that the information contained in them
is similar. The similarity is represented by the correlation
coefficient of the two columns of data, while the correla-
tion coefficient is greater than a certain threshold, only one
column is reserved for the input of the machine learning
model.

Step 4. Data point simplification. Its algorithms usually
include accumulation, squaring, weighting, averaging, or a
combination of several of them. The values of Zmeasurement
points on the same time series are converted into P derivative
values after data point simplification to participate in the
training and testing of the model.

C. DATA PUBLISHING SERVICE
In order to unify the way of data call and improve the level
of data application and management, the data service inter-
face is designed and developed based on Socket communica-
tion framework, the schematic is drawn in Fig.4. When the
client side interacts with the server side for information,
the server side recognizes the data request pattern through
the data request type, nature, magnitude and other aspects,
and invokes the matching data service interface for data
invocation. Currently, there are three types of request modes:
historical data requests, real-time data single requests, and
real-time data push requests. For the client, historical data
requests and real-time data single requests are short connec-
tions. The client will actively interrupt the connection after
obtaining the required data. The real-time data push request is
a long connection for the client. The client will continuously
receive real-time data until the client feedback indicates that
it stops receiving data, the client will end the link by itself.
Regardless of the form of data request, the data header of
the first request sent by the client is uniformly encoded in
JSON format. For different types of data requests, their binary
packaging format design is also different. For example, in the
complete historical data request, the server side and the client
side need to conduct 5 data interactions. However, in the
single query request of real-time data, the server side and the
client side only need to conduct two data interactions.

FIGURE 5. The mode framework of Sulfur-LSTM.

IV. PREDICTION MODELS BASED ON LSTM
A. MODEL FRAMEWORK
The model we built can be divided into three parts: input
layer, hidden layer, and output layer. The input layer is
mainly used for data preprocessing and dataset division of
the multi-source heterogeneous timing data. The data can
be normalized and scaled between 0 and 1 after passing
through the input layer. The hidden layer is trained based
on the training set. The setting of batch size and the num-
ber of network layers affects the learning ability and test
time of the model, mean square error is used in training the
LSTMmodel. Through the Adam optimizer, the weight of the
LSTM structural unit is optimized, and the optimal parameter
combination is obtained by continuously optimizing the batch
size parameter of the network layer. The Linear activation
function is used to improve the computing power andDropout
is added to prevent overfitting. The output layer predicts the
data according to the model learned in the hidden layer and
performs inverse data transformation. The model framework
is shown in Fig.5.

B. CONSTRUCTION OF THE DATA SET
1) DIFFERENT FEATURES
Different data filtering algorithms will directly lead to
changes in the input features of the model, which will have a
significant impact on the final output of the model. In the case
of diesel hydrodesulfurization, we use five different schemes
to construct the dataset to find the best feature combination.
The data sources of the diesel hydrodesulfurization produc-
tion line come from the real-time values of the temperature
sensors in the front-end reaction device and the hydrogena-
tion reaction device as well as the real-time sulfur content
value monitored by the online monitor at the outlet. The
Table 1 defines different data sources.

Since the problem we need to solve is to use the real-time
temperature values of the various positions in the front-end
reaction device and the hydrogenation reaction device to pre-
dict the sulfur content in the hydrogenation reaction device at
that time, then which of the measured temperature values can
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TABLE 1. Definition of various data sources in diesel
hydrodesulfurization production line.

TABLE 2. Data sets of different features.

TABLE 3. Data sets of different time lags.

be better characterized the sulfur content in the hydrogenation
reaction device at that time? In order to solve this problem,
we proposed 5 different data processing schemes, the data
collected were respectively made into data sets D1, D2, D3,
D4, D5. The method of feature combinations of the five data
sets, sample number and input shape are shown in the Table 2.

2) DIFFERENT TIME LAGS
When the data set is made into a supervised learning data
set, in order to determine the optimal time lags, we have
made 5 kinds of data sets with steps of 4, 5, 6, 7, 8 of time
lags based on expert knowledge, named in sequence D6, D7,
D8, D9, D10. The feature combination methods of five data
sets, the number of samples and the input shape are shown in
the Table 3.

C. THE MODIFIED ALGORITHM
Due to the influence of various uncertain factors, there is
always an error between the true value and the predicted value
in the prediction process. In order to improve the prediction
accuracy, we propose a correction strategy based on real-time
errors, which can be used to continuously modify the output
of the model. The algorithm flow is shown in the Fig.6. Here
are some concepts in the modified algorithm:

FIGURE 6. Flow chart of modified algorithm.

Definition 10: The sampling period is defined as
Sampling_period . The minimum value of the sampling
period is defined as Fre. If Fres is the larger sampling fre-
quency of predicted and real values, Fre ≥ Fres.
In this period, the real value is defined as M_val and the

predicted value is defined as P_val, the correction value is
defined asC_val and the correction result is defined asC_res.
Definition 11: The maximum standard deviation is defined

as Std_max. It is used to determine the reasonableness of the
error.
Definition 12: The error list is defined as Error_list , this

list is formed by calibrating the measured value and the
predicted value in the current sampling period to obtain the
error.
Definition 13: The Standard deviation of the current error

list is defined as Arr_std . And the mean value of the current
error list is defined as Arr_mean.
Definition 14: The cycling time of correction service is

defined as Cycle_time.
When the correction service is started, C_val is calculated

for each batch of data. In the prediction of the next batch
of data, the C_res is equal to the superposition of the P_val
and the C_val. The detailed steps of correction algorithm are
described as follows.

Step 1. Gets all predicted and true values during the sam-
pling period and align the data to obtain one-to-one corre-
sponding predicted values and true values on the same time
series.

Step 2. Calculate the Error_list and then the standard
deviation is calculated as the criterion to judge the degree of
error.

Step 3. If the Arr_std is greater than Std_max, the error
is unstable, C_val = 0. Otherwise, C_val = Arr_mean.
If Std_max < 0, C_val = Arr_mean.

After experimental statistics, the shorter the correction
service cycle, the better the result, but it is necessary to
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FIGURE 7. Tuning of pre-trained models.

consider the limitations of practical factors, such as sampling
frequency for key indicator in the process industry.

V. ONLINE LEARNING STRATEGIES
A. TUNING OF PRE-TRAINED MODELS
The data obtained on the production line is preprocessed and
stored in the statistical database of the training server. The
client can perform offline model training and testing by call-
ing the data in the statistical database and can also implement
online training. There are two modes of online training strate-
gies based on whether the data structure has changed.

When the data source is unstable and the input data struc-
ture of the model changes, a semi-automatic strategy is
adopted, it is shown in the Fig.7. The client trains the model
offline by calling historical data in the database to obtain a
pre-model. Then the trained pre-model file is transmitted to
themodel base for called by the client. During the using of the
pre-model, the model is continuously optimized to increase
the prediction accuracy by combining online data and using
a full-automatic tuning strategy.

In the training process of the network, the data must be
normalized firstly. Due to the different data properties and
the big difference in order of magnitude, in order to avoid
the large prediction error caused by them, it is necessary to
normalize the data and convert the data into values between
0 and 1. The mean absolute percentage error and the root
mean square error are used as the criteria for evaluating the
model.

B. MODEL UPDATING ONLINE
When the data source is stable and the input data structure
of the model is unchanged, a full-automatic strategy shown
in the Fig.8 is adopted. As long as the time reaches the
Cycle_time, all data in the sampling period prior to the current
moment is called. The trigger conditions of model updating
are divided into twomodes. The first mode is to determine the
similarity of current batch input data, and the second mode is
to compare the trend of the predicted value and the measured
value. The first mode is in the priority sequence.

The decision rule of mode one is as follows: determine
the similarity between the input data and the training data
of current model. If the similarity factor is greater than the

FIGURE 8. Model online updating strategy.

limit of similarity, enter mode 2 for judgment. If the similarity
factor is less than the similarity limit, then the batch data
is used as training data to retrain the model and the trained
model is transferred to the model base for prediction of the
next batch of data. The decision rule of mode two is as
follows: the trend of the predicted value and measured value
of the current batch is performed. In comparison, if the trend
of the measured value is the same as the predicted value, but
there is a certain deviation, the model’s prediction accuracy is
improved by calling the correction service. If the error index
calculated from the measured values and predicted values is
within the expected range, the current model is still invoked
after parameter tuning to predict the next batch of data. If the
error index exceeds the expected range, the online training of
the new model will be performed by using the current batch
data and the trained model files are transferred to the model
base. And the newmodel is called when the next batch of data
is predicted. When the new model is built online, the training
process status is uploaded to model management platform
and the model parameters are continuously optimized. After
the training is completed, the model is verified. One defines
the desired prediction accuracy as EA, EA = 90%. If the
verification accuracy is higher than EA, the model is saved as
a binary file and stored in the model base. If the verification
accuracy is not up to standard, the previous model is still
called for prediction.

VI. EXPERIMENTS AND DISCUSSION
A. SYSTEM IMPLEMENTATION AND EXPERIMENTAL
CONDITIONS
Based on the problem of sulfur content prediction in diesel
hydrodesulfurization production line, a data online learning
prediction system as shown in the Fig.9 is designed. Server 1
is used as the InfoPlus21 real-time database, which stores
real-time monitoring data and historical data. Server 2 is
used as the client of the real-time database to communicate
with server 1 through IP21Api to obtain real-time data and
historical data. Server 2 also serves as a server to provide
external data query services, and server 3 acts as a client
to establish a connection request with it through a socket to
obtain historical data and real-time data, which are encap-
sulated in a custom binary format. After acquiring the data,
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TABLE 4. The experiment condition.

FIGURE 9. Online learning and prediction system.

server 3 performs necessary data cleaning and preprocessing
and then carries out machine learning. Server 4 acts as a client
to call the trained predictive model from the model library.
Server 4 also provides a prediction service server and a web-
service service based on the HTTP protocol. Users call data
through the client, which is encapsulated in binary format.
The workstation is the user terminal, which connects to the
server 4 through the HTTP protocol, which can realize visual
analysis of the data and prediction of important indicators.

In this paper, the whole system and its related algorithms
are verified by collecting the actual data of diesel hydrodesul-
furization production line, the operating condition of this
experiment is showed in Table 4. The data source is divided
into two batches of data based on whether the process pattern
changes. And the original feature numbers of the two batches
of data are 37 and 19. Both batches of data are managed in a
unified structured data form. After the data is preprocessed,
the data is unified into a data set with a data volume of 3000,
the first 2000 are used for training and the last 1000 are
used for prediction. In addition, the system model is trained
based on a single GPU and Tensorflow, the online tuning of
the model is implemented based on the model management
platform and multiple models are stored in the model library
for invocation.

B. DIFFERENT FEATURES
To measure the effectiveness of different data filtering
algorithms, the Mean Absolute Percentage Errors (MAPE)
and Root Means Squared Errors (RMSE) are computed.
Table 5 demonstrate the prediction performance of differ-
ent algorithms, the algorithms with the best performance is
marked in bold. When the real-time sulfur content monitored
by the online monitor is used as input feature, a better pre-
diction result can be observed compared with the one with no

TABLE 5. Comparison of MAPE and RMSE of sulfur content in the model
trained by data sets with different features.

sulfur content monitored input. In addition, the MAPE and
RMSE of D4 are the lowest excluding D3 and D5, which
shows that the real-time temperature value of each sensor in
the front-end reaction device, the value of the real-time tem-
perature value of each sensor in the hydrogenation reaction
device through data filtering and the real-time monitoring
value of the online monitor are combined to be input features
is effective.

C. DIFFERENT TIME LAGS
To examine the prediction performance in a more intuitive
way, the comparison between the actual sulfur content in the
test set of the five data sets and the predicted sulfur content
by the Sulfur-LSTM model was drawn in Fig.10. We can see
from the curve trend in the figure that all the models trained
from the five data sets have good fitting effect on the test set.
Fig.11 further presents the prediction performances for differ-
ent time lags, we can see that D8 data set performs best among
all other data sets, but the difference is marginal, whichmeans
that the prediction error caused by the change of the time
lag of the data set is not great. In addition, we can clearly
observe from the histogram that the time required to predict
the sulfur content of the test set increases as the time lags
become longer. It shows that while changing the time lags of
the data set to improve the prediction accuracy, it should also
consider the time consumed when a large amount of data is
used for prediction.

D. DIFFERENT NETWORK PARAMETERS
1) BATCH SIZES
After setting up the model framework, we performed a series
of experimental adjustments to its parameters to find the best
results of the model. We studied the impact of the batch size
on the model firstly, and the results are shown in the Fig.12.
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FIGURE 10. Comparison of the predicted values by the model trained in data sets of different time lags and true
values about sulfur content.

The experimental results show that when the batch size is
too small, the randomness is large and the oscillation is too
obvious, and it is difficult for the model to reach convergence.
When the batch size is too large, the model takes a long time
to train and the direction of gradient descent also basically
does not change. Taking into account the prediction accuracy,
fitting effect and other factors of the model, when the batch
size is 15, the prediction effect of the model is the best.

2) ACTIVATIONS FUNCTIONS
The choice of activation function is critical to the perfor-
mance of the model. We have studied the effects of four
common activation functions on the model, and the results
are shown in the figure. From the Fig.13, we can see that the
linear activation function has the best effect in the four sets of
experiments we did, and the MAPE and RMSE are the lowest

in the test set. Therefore, all four LSTM layers in our model
are activated by the linear activation function. The problem
we studied is a regression problem, so the last fully connected
layer still uses a linear activation function.

3) THE NUMBER OF HIDDEN LAYER NEURONS
The number of hidden layer units will affect the learning
ability of the model, so we designed a series of experiments
to find the optimal number, and the results are shown in
the figure. We can observe from the Fig.14 that when the
number of hidden layer units is less than 130, the MAPE
and RMSE show a downward trend with the increase of
the number of hidden layer units. When the number of hid-
den units is equal to 130 or greater than 130, the MAPE
and RMSE increase sharply. The results show that the pre-
diction performance is closely related to the complexity
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FIGURE 11. Comparison of MAPE and RMSE of sulfur content in the
model trained by data sets with different time lags.

FIGURE 12. Prediction performance of the model with different batch
sizes.

FIGURE 13. Prediction performance of the model with different activation
functions.

FIGURE 14. The influence of the number of hidden layer neurons on the
prediction accuracy of the model.

of the model. When the complexity of the model struc-
ture is lower than a certain degree, the prediction results
are very poor. When the complexity of the model structure
exceeds a reasonable interval, the prediction error increases
rapidly.

TABLE 6. Comparison of prediction performance of different models.

E. COMPARISON OF DIFFERENT NETWORK MODELS
We compare the Sulfur-LSTM model with several classic
regression models on the same data set and find that the
Sulfur-LSTM model has higher prediction accuracy and bet-
ter generalization ability. In the methods based on artificial
intelligence, support vector regression (SVR) is considered
to be an effective algorithm. The essence of the algorithm is
to map the data into a high-dimensional feature space through
a non-linear relationship, and then perform linear regression
in the high-dimensional feature space. The support vector
regression prediction model of radial basis function (RBF)
kernel is used in the experiment. Decision tree models and
multilayer perceptronmodels are classic neural networkmod-
els that both can solve the problem of non-linear features
and also played a comparative role in our experiments. The
model based on k-nearest neighbor regression algorithm is
also a classical regression model. The algorithm finds the
K nearest samples of a sample and assigns the average
value of some attributes of these samples to the sample to
obtain the corresponding value of the sample. The experi-
mental results are shown in the Table 6. The Sulfur-LSTM
model shows good results on the data set. Therefore, this
paper mainly studies the application of long short-term mem-
ory neural networks in the process industry. And it did
not do too many studies on the SVR and other traditional
methods.

F. COMPARISON OF TIME SERIES METHODS AND LSTM
NETWORK
In the time dimension, a common method for predicting
large amounts of data is time series analysis. In the field
of transportation, there are precedents for using time series
methods to predict traffic accidents, for example, somebody
study the trend of traffic accidents by studying the trend
changes, periodic changes, seasonal changes and random
changes of the time series of traffic accidents. The method
of time series analysis is to analyze a series of data with
constant time intervals to find long-term trends. Its purpose
is to predict and guide real-world problems. Three analysis
methods commonly used in time series are moving aver-
age models (MA), auto-regressive models (AR) and auto-
regressive moving average models (ARMA).

We divide the data of the data set D4 into a training set
and a test set, and the test set takes 10%, 15%, 20%, 25%,
30%, 35%, 40%, and 45% of the total data respectively. From
the perspective of time series analysis, the ARMA model is
establishedwith the same data. This is a classic statistical time
series model. Then several data sets of different proportions
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TABLE 7. Comparison of ARMA and LSTM.

are applied to the time series model and the Sulfur-LSTM
model. In order to better demonstrate the prediction effect of
the two methods, we still choose mean absolute percentage
error (MAPE) and root mean square error (RMSE) as the
evaluation criterion. We can see from the Table 7 that the
prediction accuracy of the two models is relatively high and
stable under the same partition of training set. When the
number of test sets is small, time series models show greater
advantages. But it is not difficult to see that the MAPE and
RMSE values of the LSTM model continue to fall and most
of them are lower than that of the time series model with the
number of test sets increases, which shows that although the
time series is good at capturing linear relationships, it only
works well in the short-term prediction range. It does not
have good performance when data is mixed in dealing with
real industrial problems. In most cases, the LSTM model is
more powerful than the time series model. Although the pre-
diction results of the ARMAmodel and the LSTMmodel are
comparable, the ARMA model requires a lot of preliminary
parameter calibration work, which not only consumes a lot of
energy, but also is not suitable for the online updating of the
model in the process industry online learning system.

G. THE MODIFIED ALGORITHM
Due to the existence of real-time errors, the application of
modified algorithm is of great significance to improve the

prediction accuracy. According to the previous algorithm, it is
known that the calculation of the C_val involves two impor-
tant variables: Sampling_period and Cycle_time. Since the
time series of the supervised learning data set designed by us
has equal time interval, the Sampling_period and Cycle_time
can be expressed equivalently as the number of time series
data, that is the length of time can be expressed equivalently
as the amount of data. In order to study the relationship
between Sampling_period and Cycle_time in the modified
algorithm, we have made the following experiment, the result
is shown in Table 8.

In the experiment, when Sampling_period < Cycle_time,
the collected data is only a part of the data in the
Sampling_period , which results in the discontinuity of the
time series and the incompleteness of the data, this type of
experiment is meaningless. When the Cycle_time is constant,
the average absolute percentage error and the root mean
square error both increase as the Sampling_period increases.
When Sampling_period = Cycle_time, the average abso-
lute percentage error and the root mean square error also
increase as the Sampling_period increases. It can be obtained
that when the cycle time is equal to the sampling period,
the smaller the time, the better the effect. However, the prac-
tical factors must be considered, such as the cycle time and
sampling period in this experiment are subject to the sampling
frequency of the monitoring value of the online monitor at the
outlet on the diesel hydrodesulfurization production line.

H. COMPARISON OF DIFFERENT DATA STRUCTURES
In the process industry, equipment maintenance and replace-
ment are common. In addition, when the processing design
is modified or some machines and equipment fail, the data
source will change, which will lead to the change of data
structure. In order to verify whether the model designed by
us can have higher prediction accuracy when the input data
structure of the model changes, two batches of data with
different process modes on the diesel hydrodesulfurization
production line are tested, and the experimental results are
shown in the Fig.15. We can observe that when the structure
of input data changes, the model we designed can still better

TABLE 8. The relationship between Sampling_period and Cycle_time in the modified algorithm.
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TABLE 9. The prediction performance of the model in two batches of
data.

FIGURE 15. Comparison of the predicted values by the model trained in
two data sets with different data structures and true values about sulfur
content.

capture potential trends and the model has good reliability
and generalization. It can be seen from the Table 9 thatMAPE
and RMSE of the two batches of data tested are within a
reasonable range, which further verifies the effectiveness of
the model.

I. RECOMMENDATION ON APPLICATION
In the process of data processing, due to the large difference
in the magnitude of industrial data, the data should be nor-
malized before the data alignment and data filtering meth-
ods are applied. The normalized data set must be redefined
as three-dimensional data before it can be entered into the
network. Its format is number of samples, time lag, feature
number. Model parameters should be tuned according to
experimental conclusion and actual predicted results. For the
application of the modified algorithm, relevant parameters
should be set reasonably according to the actual results and
field experience, such as Std_max. In addition, in model
online updating strategy, the model update mechanism is
determined by a number of key parameters, such as similarity
factors and similarity limits. Such parameter values can be set
flexibly, and users can design by themselves according to the
actual research field. Design metrics are usually mean value,
absolute error, variance, etc.

VII. CONCLUSION
This paper presents a method for real-time prediction of sul-
fur content based on multi-source heterogeneous time series
data in diesel hydrodesulfurization. The method is verified
on the actual data set and has a promising prediction effect.
Several useful findings can be generated in this paper:

(1) Data preprocessing method based on multi-source het-
erogeneous time series data of process industry is proposed,
which can integrate and simplify multiple related features.

(2) Compared with several classic regression models as
well as ARMA, the predicting effect of LSTM is better,
the MAPE of sulfur content can be controlled within 10.
An algorithm for online correction based on real-time errors
is designed, which can further reduce the MAPE of sulfur
content to 4.395.

(3) During the training process, the selection of batch size,
activation function and number of hidden layer neurons has
a great influence on the fitting effect and running time. The
Sulfur-LSTM in this experiment used a batch size of 15,
Linear activation function and 130 hidden layer neurons as
the optimal model parameters.

(4) A set of multi-mode online training strategies and
related trigger conditions are designed based on LSTM,
which not only can quickly predict online, but also can per-
form offline tests. The user can adjust the decision according
to the real-time trend of key indicators and change the work-
ing state in the reaction device to improve efficiency.
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