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ABSTRACT Deep learning methods have made some achievements in the automatic skin lesion recognition,
but there are still some problems such as limited training samples, too complicated network structure,
and expensive computational costs. Considering the inherent power-efficiency, biological plausibility and
good image recognition performance of spiking neural networks (SNNs), in this paper we make malignant
melanoma and benign melanocytic nevi skin lesions classification using convolutional SNNs with unsu-
pervised spike-timing-dependent plasticity (STDP) learning rule. Efficient temporal coding, event driven
learning rule and winner-take-all (WTA) mechanism together ensure sparse spike coding and efficient
learning of our networks which achieve an average accuracy of 83.8%. We further propose to use feature
selection to select more diagnostic features to improve the classification performance of our networks. Our
SNNs with feature selection reach an average accuracy of 87.7%. Experimental results show that comparing
to CNNs that need to be trained from scratch, our SNNs (with and without feature selection) not only achieve
much better classification accuracies but also have much better runtime efficiency. Moreover, although the
pretrained CNNs models can achieve similar running time, our proposed SNNs are more stable and easier
to use than the pretrained CNNs because we do not need to try many pretrained models any more, and our
SNNs also have much better classification accuracies than the pretrained CNNs. In addition, our networks
have only three convolutional layers, and the complexity of the model and the parameters that need to be
trained in the networks are greatly reduced. Our works show that STDP-based SNNs are very beneficial for
the implementation of automated skin lesion classifiers on small portable devices.

INDEX TERMS Melanoma recognition, convolutional spiking neural networks, STDP, deep learning.

I. INTRODUCTION
Skin cancer is one of the most common worldwide malig-
nancy [1]. It has been found that over the past three decades,
the people diagnosed as skin cancer is more than those diag-
nosed as all other cancers combined [2].Malignantmelanoma
is a kind of high-risk deadly skin cancer. Early detection
of malignant lesions has great significance for helping the
clinicians to improve the chances of survival [3]. Because of
the visual similarities of some lesion types, correct diagnosis
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is a challenging task for clinicians, and is largely dependent
on the experience.

Machine learning (ML) methods have shown their advan-
tages in detecting key features and patterns from complex
datasets, thus are suitable to perform classification, prediction
or estimation tasks [4]. In recent years there is growing trend
on the application of ML methods as an aid to accurate and
automated cancer diagnosis and detection [4], [5]. The appli-
cation of ML techniques has significantly improved the accu-
racy of cancer prediction by 15%–20% over the past decades
[5]. Deep learning, in particular CNNs supported by advanced
computing technology and large datasets, has become
one of the most popular and powerful machine learning
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methods in image recognition and classification [6], and has
been applied to the classification of skin lesions [7]–[9]. The
CNNs can learn from training image set and automatically
extract important features for classification. The prior knowl-
edge and complicated image preprocessing which are very
necessary in the image classification using traditional ML
algorithms, are no longer greatly demanded. Some classi-
fiers based on deep learning methods have shown to classify
images of skin cancer with the performance comparable to
the level of skilled dermatologists [8]. Thus CNNs have the
potential to help develop dermatologist-level, computer-aided
fast skin lesion classifiers.

However, at present there is still a lack of high-quality
medical image datasets those can be used for training. This
mainly refers to the lack of annotated/labeled data or lack
of images for the abnormal classes [10]. CNNs with simple
architectures are prone to overfitting on the small training
datasets. Some researchers apply very deep CNNs architec-
ture (for example, Resnet152, which has 152 layers [11]).
Although this can improve the classification performance
of the networks, it also adds more computing costs, which
is major barrier in clinical applications [12]–[14]. More
researchers tend to use pretrained CNNs to classify skin
lesions [15]–[26], which avoids the problem of overfitting,
but the network architectures are still very complex. And
the pretrained CNNs use features learn from natural image
datasets (such as ImageNet) without sufficiently considering
the features of medical images [17], which limits the applica-
tion of transfer learning in the field ofmedical image analysis.
So unsupervised learning methods are needed in medical
image analysis when labeled training data is scarce. More-
over, in order to facilitate the implementation of automated
skin lesion classifiers, and to make the access convenient and
cheap, for example through installation of apps on mobile
devices, the computational costs of the CNNs-based skin
lesion classifiers must be reduced.

SNNs have been emerged as an ideal biologically inspired
neuromorphic-computing paradigm for realizing energy-
efficient on-chip intelligence hardware [27], [28]. Like in the
brain, information in SNNs is encoded not only by spike rates,
but also by precise spike times and spike latencies of neu-
rons. Furthermore, SNNs usually apply bio-inspired STDP
as unsupervised local learning (synaptic weight modification)
rule, which is crucial for brain learning. STDP is observed in
different brain areas [29]–[32], in particular in the visual cor-
tex [33]–[35]. Weight modification of this synaptic plasticity
depends on the temporal order and time difference between
presynaptic and postsynaptic spikes. Since individual spike
events in the networks can be made sparse in time, learning in
SNNs in principle is sparse and event-driven, leading to low
computational consumption. Moreover, SNNs equipped with
unsupervised STDP learning rule have the capability to learn
the spatio-temporal patterns of input signals, especially in an
onlinemode [36]–[38]. SNNswithmultiple hidden layers can
extract more complex features from input to obtain high clas-
sification performance [39], [40]. There are deep SNNs with

unsupervised learning rules whose performances are compa-
rable to the traditional CNNs for small-scale image recogni-
tion tasks [41]–[43]. Recently SNNs have shown very good
performance in the task of pattern recognition such as visual
processing [41], [44], [45] and speech recognition [46], [47].
They have also been applied to predict strokes and seizures in
the medical diagnosis based on electroencephalograms(EEG)
classification [48], [49]. Kasabov et al [48] proposed a new
spiking neural networks reservoir system for early prediction
of occurrence of stroke on an individual basis. Their results
showed that their method had obvious advantages in the
accuracy and time of stroke event prediction compared with
standard ML algorithms. Ghosh-Dastidar et al [49] proposed
an efficient SNNs model for epilepsy and epileptic seizure
detection using EEG. Their model reached a classification
accuracy of 92.5%.

Although SNNs have shown good performance in natural
image classification, to our knowledge, this is the first work
that applying SNNs on medical image classification tasks.
It is worth noting that medical image classification is more
difficult than traditional natural image classification [50].
This is mainly because unlike natural images, the bound-
aries between different issues, or between normal tissues and
lesion areas are usually not clear, and their texture differ-
ences are not obvious. Besides, some imaging principles used
in medical images are different from those used in natural
images. In addition, comparing to the most similar existing
SNNs (i.e., Kheradpisheh et al. [41]), in order to improve the
classification performance of the SNNs, we further propose
to use feature selection operation to help pick out diagnostic
features which may not be so prominent. In our model, input
skin lesions images are encoded into a spiking train by a dif-
ference of guassians (DOG) filter. Then, we use unsupervised
STDP rule in combination with WTA and lateral inhibition
mechanisms to extract prominent hierarchical features from
the spiking trains of skin images in CNNs-architectures (with
only a few convolutional and pooling layers). We use feature
selection method to select diagnostic features from extracted
features. Finally, a SVM classifier is used to classify the
categories of the input skin lesions images based on the
selected features.

In our networks, STDP learning rule and lateral inhibition
mechanism work together to enable the networks to pro-
cess input images with sparse but informative spikes. For
the SNNs with unsupervised STDP learning rule, this kind
of convolutional SNNs architectures provide so far the best
classification performance in processing large scale natural
images [41]. Our STDP-based SNNs can learn from the small
training datasets quickly and effectively in an unsupervised
manner and do not suffer from the overfitting challenge
caused by small training set size [41], [51], [52]. Therefore,
our networks can well solve the problem of lacking labeled
data in the field of medical image analysis. Moreover, our
networks have only a few convolutional layers and pooling
layers, so there are a very small number of parameters need
to be trained. Besides, efficient temporal coding, WTA and
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lateral inhibition mechanism ensure the sparseness of the
spike coding, these together enable the networks to require
very little computational and memory consumption, which
facilitate the deployment of skin lesions automatic diagnosis
systems to smart phones and other portable devices, as well
as cloud computations.

The classification results of our networks are compared
to those of the art-of-date CNNs. The results show that our
networks which have only a few hidden layers can learn
features well from the small skin lesions training datasets, and
after using feature selection they have better classification
performance than CNNs trained from scratch and pretrained.
Our networks take much less computational costs than tra-
ditional CNNs trained from scratch, and their running times
are comparable to those of pretrained CNNs models. Our
works evaluate the validity of SNNs with unsupervised STDP
learning rule in classifying medical images and discuss the
advantages of the SNNs over traditional deep neural net-
works.

II. RELATED WORKS
Since high-quality published skin cancer datasets are lim-
ited, using CNNs trained from scratch will make network
models prone to overfitting. Therefore, more researchers tend
to use pretrained CNNs to classify skin lesions [15]–[26].
Most such works are to pretrain CNNs on ImageNet [53]
dataset, and then the weights of CNNs are fine-tuned accord-
ing to the practical classification problems. The most com-
mon CNNs architectures used are VGG16 [18], [25], Resnet
[22], [54]–[56], GoogleNet [16], [20], [57], and Alexnet [58].
Haenssle et al. [16] made the classification of melanoma and
melanocytic nevi using a pretrained Inception v4 model,
and they achieved an area under the receiver operating
characteristic curve (AUC) of 0.95. Compared with a large
international group of 58 dermatologists, their results were
better than most dermatologists. Yu et al. [17] confirmed
that very deep CNNs with effective training can be used
to make skin lesions diagnosis, even with limited training
data. They achieved an accuracy of 85.5% on the 2016 ISIC
dataset, and won the first place at ISIC challenge 2016.
Menegola et al. [18] used VGG16 networks pretrained on
diabetic retinopathy dataset and on ImageNet respectively,
and their results showed that the networks pretrained on
ImageNet had better performance, and reached an AUC of
80.9% on the 2016 ISIC dataset. Codella et al. [19] com-
bined deep learning, sparse coding and SVM for melanoma
recognition, and they achieved an accuracy of 93.1% for the
melanoma vs all non-melanoma lesions task, and an accu-
racy of 73.9% for the melanoma vs melanocytic nevi task.
Mahbod et al. [21] proposed a method combining the classi-
fication results of three pretrained CNNs (Alexnet, VGG16
and Resnet18) to discriminate between three lesion classes
(malignant melanoma, seborrheic keratosis and benign nevi).
This method had been proven to be more effective than
a single networks, and obtained an AUC of 0.838 for
melanoma classification. In addition, to solve the problems

that handwork can not deal with the huge intra class variation
of melanoma and there is high visual similarity between
melanoma and non-melanoma, some researchers proposed
to perform segmentation first, and then recognize melanoma
according to the segmentation results [17], [59]–[62].

Although very deep CNNs or combined deep network
models can improve the classification accuracy, the problem
of hardware resources consumption will be more serious,
which make it more difficult to deploy diagnostic systems on
small portable devices. Besides, recent studies have shown
that the success of transfer learning depends on the distance
between the data used to pretrain CNNs and the data in
the actual classification task [63]. Therefore, these CNNs
pretrained on natural images may not well deal with the
challenge ofmelanoma recognition [17], [64]. In recent years,
SNNs have shown good performance in many image recog-
nition tasks [40], [51], [65]–[69]. And due to their sparse,
spiked-based communication framework, they have huge
advantages in the computational costs and hardware friend-
liness [27], [70]–[74]. Kheradpisheh et al. [41] proposed a
deep SNNs which use STDP learning rule to train multiple
convolutional/pooling layers to extract the visual features
of images and then send them to the SVM classifier. Their
model reached an accuracy of 98.4% on MNIST datasets,
and their results showed that the networks performs well on
small training datasets. Qiao et al. [74] proposed a biolog-
ically plausible SNNs model for hardware implementation,
which used a hardware-friendly STDP mechanism to achieve
unsupervised learning. Their model achieved a recognition
accuracy of 94.5% on the MNIST datasets, and significantly
reduced hardware costs and power consumption.

Therefore, we try to use convolutional SNNs to make
melanoma classification. Our convolutional SNNs use STDP-
based unsupervised learning method which can learn features
from small training datasets. Moreover, the networks use
sparse coding method and only three convolutional lay-
ers, which make the networks run faster and consume less
memory.

III. MATERIALS AND METHODS
A. MATERIALS
In order to evaluate the performance of our STDP-based
convolutional SNNs on the skin lesion classification, we use
the data from the International Skin Imaging Collaboration
(ISIC) 2018 Challenge, which is an international effort to
automatic skin lesion analysis towards melanoma detection,
including lesion segmentation, dermoscopic feature extrac-
tion and lesion classification. The ISIC datasets are cur-
rently the largest public dermoscopic image collection of
skin lesions in the world. The dataset we used is from ISIC
2018 challenge Task 3: Disease classification. Melanoma is
the most deadly type of skin cancers, and is responsible for
an overwhelming majority of skin cancer deaths. So, one
of the most practical task for an AI skin cancer diagnostic
model is to classify melanoma from non-melanoma. Since
melanocytic nevi (one type of benign skin lesions) has high
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FIGURE 1. The workflow of the skin lesion classification using STDP-based convolutional SNNs.

similarity with melanoma in morphological appearance, and
are easily confused with melanoma in clinical diagnosis, we
adopt the melanocytic nevi images as the non-melanoma
images in this work and try to use our proposed model to
distinguish melanoma from melanocytic nevi.

B. OVERVIEW OF THE PROPOSED METHODS
Our method mainly consists of three parts, skin lesion image
data preprocessing, feature extraction based on spiking neural
networks, and skin lesions classification using SVMclassifier
as shown in Fig 1. Our SNNs are similar to the networks
of Kheradpisheh et al. [41], which include a DOG encoding
layer, three convolutional layers (Conv1, Conv2 and Conv3),
and three pooling layers (Pool1, Pool2 and Pool3). The DOG
filter is applied to convert the preprocessed skin images
into spikes using the intensity-to-latency coding scheme.
Convolutional layers and pooling layers are all consisting
of integrate-and-fire (IF) neurons. Each convolutional layer
learns features from its input by STDP learning rule, in
combination with WTA weight updating strategy and lateral
inhibition mechanism. Different to [41], in this work, we
replace the final global maximum pooling layer (Pool3) with
a feature selection layer in order to improve the classification
performance of the SNNs. The outputs of feature selection
layer are then used to make the skin lesion classification by
SVM classifier.

C. DATA PREPROCESSING
Data preprocessing is used to remove the hairs or noises in the
raw images. We use three preprocessing methods which are
hair deleting, media filter and global contrast normalization.
Many images in the ISIC dataset have a lot of hairs which
affects the classification accuracy. In our work hair deleting is
implemented by using an algorithm called DullRazor, which
was proposed by Lee et al. [75] and used to preprocess
skin images [76], [77]. The DullRazor can remove hairs
effectively, and also additional noises by using Fast Median
Filtering. The example results of hair deleting algorithm is
shown in Fig 2. Then, a media filter with a window size
of 7*7 is used to reduce small pores on the skin and light
reflections or shines in the dermoscopic images. Finally, we
use global contrast normalization to eliminate the effects of

FIGURE 2. Results of the algorithm of hair deleting.

different light conditions on the pixel values of the images. It
works by subtracting the mean of the intensities in the image
to each pixel.

D. THE PROPOSED CONVOLUTIONAL SPIKING NEURAL
NETWORKS WITH STDP LEARNING RULE
1) INPUT SPIKE ENCODING
Efficient input spike coding can lead to fast and accurate
responses of SNNs. A DoG filter is applied to encode each
input skin image into discrete spikes. The output of the filter
is spikes of the DOG cells which detect contrasts in the
input image according to their receptive fields. The higher the
contrast, the earlier the cell fires when its activation is above
a certain threshold. That is, the firing time of a DoG cell is
inversely proportional to its activation value. This intensity-
to-latency temporal coding is shown to be effective to detect
V1 like oriented edge features as well as complex visual
features in higher cortical areas [78]. The output spikes of
the DOG filter are grouped into some sequential time steps
to be processed in the following convolutional layer. These
sequential time steps can be efficiently propagated in parallel
on the GPU. Therefore, each input two-dimensional image is
encoded into a three-dimensional spiking train with time step
as one dimension.

2) CONVOLUTIONAL LAYER
Each convolutional layer in the networks has several feature
maps to learn different features determined by their input
synaptic weights. Like CNNs, each visual feature obtained
in one convolutional layer is a combination of several sim-
pler features extracted from the previous layer. Each neuron
receives input spikes from the neurons located in the same
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convolutional window of all feature maps of the previous
layer. Input synaptic weight sharing is applied to neurons
belonging to the same feature map. At each time step, the
membrane potential of an IF neuron is updated as follows:

V (t) = V (t − 1)+
∑
j

WjSj(t − 1). (1)

where V (t) is the membrane potential of this neuron at time
step t , W is the shared input synaptic weight matrix of the
corresponding featuremap.Wj is the synaptic weight between
the jth presynaptic neuron in the previous layer and this neu-
ron. Sj is the spiking train of the jth presynaptic neuron.When
its membrane potential exceeds its threshold Vthr , the neuron
fires a spike, and its value is reset: V (t) = 0 and S(t) = 1.
Lateral inhibition mechanism is applied to the neurons of
all convolutional layers. When a neuron belonging to one
feature map fires, it inhibits neurons in that same location
but belonging to other feature maps to fire. In addition, each
neuron is allowed to fire only once. Each spike of a feature
map indicates the detection of a particular feature at that
location, and the earlier the spike, the more prominent the
detected feature.

3) STDP LEARNING RULE
In the networks, the synaptic learning of each convolutional
layer is unsupervised and done layer by layer. A simplified
STDP rule in combination with a winner-takes-all (WTA)
mechanism is used to update the input synaptic weights of
neurons in convolutional layers. The modification of one
synaptic weight is calculated as follows:

1ωij =

{
a+ωij(1− ωij), if tj − ti ≤ 0,
a−ωij(1− ωij), if tj − ti > 0,

(2)

where ωij is the synaptic weight from the jth neuron in the
input layer (pre-synaptic neuron) to the ith neuron in one
convolutional layer (post-synaptic neuron). tj and ti are the
firing times of the pre-synaptic neuron and the post-synaptic
neuron, respectively. And a+ and a− are the two learning rate
parameters of STDP. In a convolutional layer, neurons corre-
sponding to the same feature map detect the same feature but
at different locations. They compete with each other to update
their shared input synaptic weights. The neuron that fires
the earliest is the winner which is then modify their shared
weights according to STDP rule, and the other neurons of the
same feature map are prevented from doing weights updating.
Moreover, in order to encourage different feature maps to
learn different and prominent features, there is local lateral
inhibition between the feature maps of one convolutional
layer. That is, if one neuron is allowed to modify its input
synaptic weights, it prevents other neurons at the same loca-
tion and belonging to other feature maps to update their input
synaptic weights. These biological mechanisms make the
learning event-driven and the information processing sparse
and effective in the networks.

4) POOLING LAYER
The first two pooling layers in the networks are local pooling.
Each local pooling layer performs a nonlinear max pooling
operation over its previous convolutional layer. Such an oper-
ation helps the networks to gain invariance and also to reduce
the dimensionality of the input. A pooling neuron receives
input spikes from the neurons in a pooling window located in
the corresponding feature map of its previous convolutional
layer. Each pooling neuron is allowed to fire at most once, and
its input synaptic weights and threshold are all set to one. Due
to the rank-order coding used in the DOG encoding layer, this
max pooling operation can simply propagate the first spike in
each local pooling window, which corresponds to the most
prominent feature.

After the last convolutional layer, there can be a global
pooling layer whose outputs are used to classify the input pro-
totypes. This layer performs global maximum pooling over
their corresponding feature maps in the last convolutional
layer. That is, a global pooling neuron receives input spikes
from all the neurons located in the corresponding feature
map of its previous convolutional layer. The thresholds of
the global pooling neurons are set to infinity. Therefore, the
output of each global pooling neuron is the maximum neural
membrane potential of its corresponding neural map and it is
also the maximum membrane potential value of all the time
steps of this neural map. So, there is only one output value for
each feature map, which indicates the presence of that feature
in the input image. These output values are used to classify
the input prototypes by SVM classifier.

E. FEATURE SELECTION
The features extracted by the convolutional layers in the
convolutional SNNs are to some extent redundant (including
irrelevant features). In [41], Kheradpisheh et al. used a global
maximum pooling to compress input information and remove
the redundancy. After the global pooling, there is only one
output value for each feature map, which represents the most
prominent feature of this featuremap. These output values are
then used to classify the input prototypes by SVM classifier.
However, when classifying images with very high similarity,
it is very likely that the global maximum pooling might filter
some diagnostic but not the most prominent features, which
will affect the classification result of the classifier. Therefore,
to improve classification accuracy we use univariate feature
selection based on chi-square test to replace the global max-
imum pooling in order to select more diagnostic features,
while reducing redundancy.

After the learning of all convolutional layers have finished,
we use each training sample as the input of the SNNs, then
the output of Conv3 (extracted features) is flattened and input
to the feature selection layer. The chi-square test is used to
measure the relationship coefficient between each extracted
feature and input category, and these relationship coefficients
are sorted by value. After that, an optimal feature percent-
age (counting from the feature with the biggest relationship
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coefficient in the ranking) can be determined according to
the best classification performance of SVM classifier. This
optimal feature percentage is later used for feature selection
in the test process. The single variable feature selection is
implemented with SelectPercentile method in the scikit-learn
toolbox [79].

IV. EXPERIMENTAL STUDY AND RESULTS
In this section, we evaluate the performances of our STDP-
based convolutional SNNs with and without feature selec-
tion on the melanoma (MEL) vs melanocytic nevi (NV)
dataset. We compare the melanoma classification results of
our networks to those of art-of-date CNNs which had been
used in the melanoma skin lesions classification before. And
we analyze the effectiveness of feature selection method on
improving the melanoma classification performance of the
STDP-based convolutional SNNs.

A. DATASET
In our experiments, our task is to discriminate between
melanoma and melanocytic nevi. Melanocytic nevi are non-
malignant lesions characterized by atypical melanocytic
hyperplasia in a lentiginous epidermal pattern, which are
visually similar to melanoma and are very difficult for experts
to distinguish. The ISIC 2018 dataset includes 1113 images
of MEL and 6705 images of NV. After removing the images
with serious noise, we use 1081 images of MEL and 6638
images of NV in the task. Considering the data of these two
categories is imbalanced, we randomly select 1081 samples
from the 6638 NV images, then we use four-fold cross valida-
tion on the 1081 images of the two categories. The samplings
of NV images are performed 5 times (20 experiments in total).

B. EXPERIMENTAL SETTINGS
Our networks are implemented with SpykeTorch [80], an
open-source high-speed simulation framework based on
PyTorch. The computations of the framework are based on
tensor, which is totally done by PyTorch functions, so that
the networks can run efficiently on the GPU platform. CNNs
used for comparison study are also implemented based on
PyTorch. All these models use the same data preprocessing
method as mentioned in this paper, and run on a computer
server with an NVIDIA GeForce RTX 2080TI GPU (11GB
GPU memory) and an Intel Core i7-8700 3.20GHz CPU.

In our experiments, we use a DOG filter with a size of
5*5 in the encoding layer of our networks. Each skin image
is encoded into 15 spiking time packets (time steps) for
processing. The first, second and third convolutional layers
consist of 6, 20 and 20 feature maps with the kernel sizes of
5*5, 17*17 and 5*5, respectively. And their IF neurons have
thresholds of 4, 28 and 6, respectively. The pooling window
sizes of the first and second pooling layers are 7 and 5, and
the strides are 6 and 5, respectively. The learning rates of
all the three convolutional layers are set to a+ = 0.07 and
a− = −0.01. The thresholds of the IF neurons, the sizes
of the feature maps, and the learning rates a+ and a− are

determined according to the visualization of the learned fea-
tures and the classification results of the SVM classifier. For
STDP-based convolutional SNNs with feature selection, the
optimal feature percentage used in the test is 8% determined
in the feature selection phase. The SVM classifier uses a liner
kernel and the penalty parameter C=2 (optimized by the grid
search).

C. EVALUATION METRICS
The output values of the global maximum pool or that of
feature selection are used to train the linear SVM classifier
to classify input prototypes. In the skin lession diagnosis,
it is more important to correctly predict melanoma lesion
which has high mortality than to incorrectly predict benign
melanocytic nevi lesion [55], therefore in our experiments
the performance of the SVM classifier is evaluated in terms
of accuracy (AC), precision (PREC), sensitivity (SE), speci-
ficity (SP) and AUC to measure the classification perfor-
mance of the networks. The criteria are defined as:

AC =
Ntp + Ntn

Ntp + Nfp + Nfn + Ntn
, (3)

SE =
Ntp

Ntp + Nfn
, (4)

SP =
Ntn

Ntn + Nfp
, (5)

PREC =
Ntp

Ntp + Nfp
, (6)

where Ntp is the number of ture positives, Ntn is the number
of true negatives,Nfn is the number of false negatives, andNfp
is the number of false positives.

D. MAIN RESULTS
1) QUALITATIVE EVALUATION OF FEATURES EXTRACTED BY
STDP-BASED CONVOLUTIONAL SNNS
The features of input skin lesions images are learned in the
first, second and third convolutional layers of the STDP-
based spiking neural networks. As shown in Fig 3, the neu-
ronal maps of the first convolutional layer work as filters
to detect the edge features with different orientations over
the images. The second convolutional layer learns visual
features which are the combination of oriented edges. The
third convolutional layer learns the more complex features
which are related to category-specific prototypes. In all the
learning processes of the three convolutional layers, STDP
tends to learn those frequent and salient features, and the
lateral inhibition mechanism helps the spiking neurons to
learn different features.

2) QUANTITATIVE EVALUATION AND COMPARISION
The features extracted by the convolutional layers are then fil-
tered by global maximum pooling layer or feature selection,
and the final filtered outputs are used to train SVM classifiers
to distinguish melanoma frommelanocytic nevi. We compare
the melanoma classification results of our proposed networks
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FIGURE 3. The visualization of features learned by different convolutional layers on the MEL/NV dataset.

TABLE 1. Classification performances of our SNNs and some other traditional CNNs on the MEL/NV dataset.

with other traditional CNNs on the MEL/NV dataset. These
traditional CNNs include VGG16, Alexnet, Inception v3,
Resnet50, Resnet152 which are all pretrained on ImageNet,
and Resnet152 trained from scratch. All these CNNs are from
the latest studies in the melanoma detection literatures. The
pretrained CNNs are implemented by transferring theweights
trained on ImageNet and then fine-tuning all the last fully
connected layers using our MEL/NV dataset. In addition,
we also train a CNNs with the same structure as our SNNs
from scratch, which have the same number of convolutional
and pooling layers (CNNs-three). All these networks use the
same data preprocessing method as mentioned in this paper.
The classification results of our SNNs and other traditional
CNNs are listed in Table 1. Each result value in the table
represents mean value from five sets of experiments using
four-fold cross validation.

It can be seen from Table 1 that on the melanoma vs
melanocytic nevi classification task, our SNNs without fea-
ture selection reach an average AUC of 0.907, an average
AC of 0.838, an average PREC of 0.8, an average SE of
0.875, and an average SP of 0.801, and its AUC value is
higher than all the 6 traditional CNNs. And after using
feature selection our SNNs achieve the best AUC (0.936),
AC (0.877), PREC (0.846), SE (0.903) and SP (0.847) among
the presented networks. Moreover, our networks show the
highest sensitivity (SE), which means that melanoma lesions
are much easier to be correctly identified by using our
SNNs, which is very important in the actual diagnosis of
skin lesions. Therefore, compared with these listed traditional
CNNs, our STDP-based convolutional SNNs provide better

FIGURE 4. The accuracies of melanoma recognition when using different
percentages of optimal features.

classification performance on the melanoma vs melanocytic
nevi classification task.

Moreover, to compare the hardware resources consump-
tion of these networks for the melanoma vs melanocytic nevi
classification task, the running times and the weight numbers
of these networks are measured and listed in Table 1. Running
time and weight numbers can represent the computational
and memory resource requirements of a network model dur-
ing training [81]. It can be seen from Table 1 that CNNs-
three have the least running time, but their classification
performance is very poor, so shallow CNNs can not be used
in this classification task. With the same network structure,
CNNs-three run faster than our SNNs, this is because our
SNNs have an additional time dimension, and therefore more
data needs to be processed. By comparing the running times
of Resnet152 and pretrained Resnet152, it can be seen that
existing deep CNNs, if not pretrained, will consume dozens
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TABLE 2. Classification performances of our SNNs and some other traditional CNNs on the remaining 5557 NV test images.

FIGURE 5. Classification performance comparisons of our STDP-based convolutional SNNs with and without feature selection on the MEL/NV
dataset. (a) Confusion matrix of our SNNs without feature selection. (b) Confusion matrix of our SNNs with feature selection. (c) ROC curves of our
SNNs with and without feature selection when MEL is the positive sample.

of times more training time and more hardware resources.
Therefore, pretrained CNNs are often used to reduce the
consumption of computing resources. However, as shown in
Table 1, we find that the five state-of-art pretrained CNNs
have very different classification performance. Some work
well in melanoma classification but some do not. Therefore,
it proves that improper pretraining is likely to weaken the
model’s learning capability, so it is usually needed to try
many pretrained models to find the most appropriate one,
which is also time-consuming. The proposed STDP-based
convolutional SNNs is generally a good choice. On one hand,
as shown in Table 1, comparing to non-pretrained CNNs
models (i.e., CNNs that need to be trained from scratch), our
SNNs (with and without feature selection) not only achieve
much better classification accuracies but also have much
better runtime efficiency (tens of times better); on the other
hand, although the pretrained CNNs models (i.e., the fine-
tuned CNNs) can achieve similar running time, our proposed
SNNs are more stable and easier to use than the pretrained
CNNs because we do not need to try many pretrained models
any more, and SNNs also have much better classification
accuracies than the pretrained CNNs. In addition, our net-
works have only three convolutional layers, and there are no
fully connected layers. The complexity of the model and the
parameters that need to be trained in the network are greatly
reduced, which is very beneficial for building a neuromorphic
computing platform or deploying to small portable devices.

In order to further show the good performance of our
proposed SNNs, we use the remaining 5557 NV images after
random sampling and 281 MEL images from the four-fold

cross validation as the test sets, and make the MEL/NV
classification using the models listed in Table 1. It should
be noted that in the case of unbalanced datasets, the AC
value and PREC value will be unreliable, but the AUC value
can still measure the performance of the classifier well. The
classification results are listed in Table 2. It can be seen
that on the remaining 5557 NV images, our SNNs using
feature selection still show the best AUC value, SE value and
SP value, which shows the superiority of our model in the
MEL/NV classification over other CNNs. And for each listed
network model, the AUC and SP values decrease slightly,
but there is no much difference between each of these three
classification values in Table 1 and Table 2, which proves that
the sampling method we used in the experiments is feasible.

E. ABLATION STUDY: EFFECT OF USING FEATURE
SELECTION
In this section we analyze why our SNNs perform better
when using feature selection. In our SNNs without feature
selection, the neurons in the last pooling layer perform a
global maximum pooling over their corresponding neuronal
maps of the last convolutional layer. Only one output value is
taken for each feature to represent the presence of this feature
in the input image. But when the networks recognize images
with high similarity, those rare but diagnostic information
is easily filtered by the global maximum pooling operation,
which affects the final classification performance of the SVM
classifier. Therefore, we use the univariate feature selection
algorithm to replace the global maximum pooling. Using
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feature selection can retain enough optimal features while
removing redundant features. Figure 4 shows the melanoma
classification accuracies of our SNNs when using different
percentages of optimal features during the testing phase.
It can be seen that when 8% of the optimal features are
selected and used in the classification, we obtain the best
accuracy of 0.883 (the highest point in the figure) for the
melanoma vs melanocytic nevi classification. Figure 5 shows
the performance comparison of our SNNs with and without
feature selection in a single experiment. Figure 5 (a) and (b)
are the confusion matrices of our SNNs without and with
feature selection, Figure 5 (c) shows the ROC curves of our
SNNs without and with feature selection. We can see that on
the MEL/NV dataset, the recognition rate of MEL increases
from 0.875 (without feature selection) to 0.907 (with feature
selection), the recognition rate of NV increases from 0.822
(without feature selection) to 0.861 (with feature selection),
and the AUC increases from 0.917 (without feature selection)
to 0.945 (with feature selection). It is obvious that the use of
feature selection improves the classification performance of
our SNNs on the MEL/NV dataset.

V. CONCLUSION
Although deep CNNs have achieved remarkable success in
medical image analysis tasks in recent years, their expensive
computational costs limit the application of CNNs in the
real-time clinical practice. Besides, since labeled skin cancer
images are limited, using CNNs trained from scratch will
make networks prone to overfitting, and the CNNs pretrained
on natural images are not very suitable for skin lesion image
analysis. In this paper, we use a STDP-based convolutional
SNNs to distinguish melanoma frommelanocytic nevi, which
is the first work that applying SNNs on medical image clas-
sification tasks. The classification results show that efficient
temporal coding, event driven learning rule and winner-take-
all (WTA) mechanism together ensure sparse spike coding
and efficient learning of our networks which achieve an aver-
age accuracy of 83.8%. We also find that after the learning of
all convolutional layers have finished, using feature selection
can effectively help pick out diagnostic information from the
features extracted by SNNs, and can improve the classifi-
cation performance of our SNNs to an average accuracy of
87.7%. In addition, compared with listed traditional CNNs,
our SNNs using feature selection show the best classification
accuracy andAUC value, andmore importantly, our networks
have significantly lower computational costs than CNNs that
need to be trained from scratch. So, our SNNs are very
friendly to smartphones and portable devices with low com-
putational power (CPUs or low-end GPUs) limitations [82].
And also our SNNs are more stable and easier to use than the
pretrained CNNs. This is very helpful to facilitate the imple-
mentation of automated skin lesion classifiers and makes the
access convenient and cheap. Moreover, our networks can be
easily extended to other medical image analysis fields.

In the future, we will try to improve the spike coding
in the input layer of the SNNs in order to better encoding

some visual information such as texture and color which
the DOG filter may not deal well with [41]. We will also
try to further improve our network architectures by adding
feedback connections, which has been proven to play an
important role in the visual pathway [83]. In addition, our
future work will include multi-classification of skin cancer
lesions with high performance, which is still challenging to
STDP-based SNNs.
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