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ABSTRACT We rethink on the contradiction between accuracy and efficiency in the field of video pose
estimation. Large networks are typically exploited in previous methods to pursue superior pose estimation
results. However, those methods can hardly meet the low-latency requirement for real-time applications
because of their computationally expensive nature. We present a novel architecture, PosePropagation-
Net (PPN), to generate poses across video frames accurately and efficiently. Instead of extracting temporal
cues or knowledge someways to enforce geometric consistency as most of the previous methods do,
we explicitly propagate well-estimated pose from the preceding frame to the current frame by leveraging
pose propagation mechanism, endowing lightweight networks with the capability of performing accurate
pose estimation in videos. The experiments on two large-scale benchmarks for video pose estimation show
that our method significantly outperforms previous state-of-the-art methods in both accuracy and efficiency.
Compared with the previous best method, our two representative configurations, PPN-Stable and PPN-Swift,

achieve 2.5x and 6 x FLOPs reduction respectively, as well as significant accuracy improvement.

INDEX TERMS Network efficiency, pose propagation mechanism, video pose estimation.

I. INTRODUCTION

Video pose estimation aims at localizing human body joints
across video frames. It can be applied in many areas, such as
human-computer interaction, computer animation and video
surveillance. Most of the research works on pose estimation
focus on the single-image level, while less attention has been
paid to video-based pose estimation mainly because of the
limited number of large-scale annotated datasets. Compared
with image-based pose estimation, video-based pose estima-
tion is more challenging due to several inevitable troublesome
factors, including motion blur, perspective change and scale
variation.

Previous methods for video pose estimation task mostly
rely on large networks to produce high-quality image repre-
sentations, facilitating body joint localization at pixel level.
Temporal cues are additionally extracted and leveraged to
ensure temporal dependency, improving preliminary pose
estimation results. As shown in Fig. 1(a), LSTM units
are employed to transfer temporal knowledge as hidden
states. Besides, optical flow is also widely exploited [1]-[3]
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as a strong temporal cue. Although these methods demon-
strate applaudable experimental performances, most of them
are proven to be computationally expensive, preventing them
from meeting the low-latency requirement for real-time
applications such as real-time surveillance and autonomous
driving.

Lightweight networks are weak in producing satisfying
single-image pose estimation results because of their rel-
atively low representational capacity when no supplemen-
tary information is provided. However, in the video domain,
consecutive frames share great geometric consistency, which
makes it possible for lightweight networks to perform accu-
rate pose estimation if temporal knowledge can be somehow
transferred across frames to provide guidance. As shown
in Fig. 1(b), temporal knowledge is distilled and transferred in
the form of pose kernels, providing guidance for lightweight
networks in joint localization. Based on this understanding,
we take efficiency problem into consideration and propose
a novel architecture, PosePropagationNet (PPN), to enhance
the capability of lightweight networks in the field of video
pose estimation.

The pipeline of our proposed end-to-end trainable PPN is
shown in Fig. 1(c). Instead of bothering to generate temporal
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FIGURE 1. Comparison of our method with the other two state-of-the-art
methods in video pose estimation. (a) Pipeline of the LSTM Pose
Machines [4]. (b) Pipeline of the Dynamic Kernel Distillation (DKD)
network [5]. (c) The proposed pipeline which takes advantage of pose
propagation mechanism, allowing lightweight networks to perform
high-quality pose estimation in videos. We provide two representative
configurations, PPN-Stable and PPN-Swift. Accuracy and computational
efficiency of different methods are compared in (d). Evaluation is
implemented on Penn Action Dataset with metric PCK-torso. The
floating-point operations (FLOPs) is used to measure computational
efficiency. Detailed numerical results are shown in Table. 5.

cues or knowledge in a learnable form, we directly propagate
the pose estimated from the previous frame to the subse-
quent frame as explicit temporal guidance. The subsequent
pose can be generated by transforming the previous pose
according to joint motion offsets between the two frames.
We implement the pose propagation mechanism illustrated
above with a specially designed module, namely the Pose
Propagation Unit (PPU). As such, the process of localizing
body joints is converted to pose propagation across frames,
which is a less challenging task for lightweight networks.
Compared with LSTM units [4] and pose kernels [5], our PPU
carries explicit temporal guidance in a more computationally
compact way, leading to dramatically FLOPs reduction while
achieving significantly higher accuracy, as shown in Fig. 1(d).
We evaluate our method on two widely used video pose
estimation benchmarks, Penn Action Dataset [6] and Sub-
JHMDB Dataset [7], obtaining state-of-the-art performances
in both accuracy and efficiency.

Contributions of our work can be summarized as follows:
1) We propose a novel architecture, PosePropagationNet, for
video pose estimation. Geometric consistency is guaranteed
in the manner of pose propagation, facilitating the model to
generate accurate and consistent pose estimation results in
videos and achieve state-of-the-art accuracy on two major
benchmarks. 2) Benefitting from the pose propagation mech-
anism we present, lightweight networks employed in PPN can
perform pose estimation accurately and efficiently in videos.
Significant FLOPs reduction over previous state-of-the-art
methods allows our PPN to meet the low-latency requirement
for real-time applications.
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Il. RELATED WORK

A. HUMAN POSE ESTIMATION IN IMAGES

Early research works studying image-based single-person
pose estimation are mostly based on pictorial structures
[8]-[11], which model human body as a tree-structured
graph. However, those methods naturally lack the abil-
ity to deal with complex occlusions. Most of the recent
works take advantage of deep Convolutional Neural Net-
work (CNN) and follow a regression fashion: regress-
ing joint coordinates [12] or regressing joint heatmaps
[13]-[17]. These CNN-based methods either employ multi-
stage architectures [13], [15] to recursively refine estimation
results, or build strong backbones [14], [16] to efficiently
extract high-level image representations, in order to achieve
competitive performance on popular benchmarks [18], [19].

B. HUMAN POSE ESTIMATION IN VIDEOS

Video pose estimation has attracted less attention com-
pared with image-based pose estimation mainly because
of the limited number of large-scale benchmarks in video
domain. Existing research works focus on extracting tempo-
ral cues, such as optical flow [1]-[3], [20], to help refine
framewise estimation results generated by large networks.
Song et al. [1] propose a deep spatio-temporal network,
namely Thin-Slicing, which aligns joint heatmaps across
frames based on dense optical flow computation. Recurrent
architectures are exploited in [4], [21] to transfer temporal
information in the form of hidden states. A large network is
typically required to serve as image encoder, producing high-
level image representations. 3D CNN is investigated in [22] to
capture temporal dependency, facilitating multi-person pose
estimation in videos. Nie et al. [5] propose a method that
distills pose kernels and thus simplifies joint localization as
a matching problem. We take the efficiency problem into
consideration and explicitly propagate poses across frames as
temporal guidance, allowing lightweight networks to perform
accurate pose estimation in videos.

ill. METHODOLOGY

As shown in Fig. 2(a), we build our PosePropagationNet
(PPN) as a streamline architecture so that consecutive frames
within a temporal range can be processed in a single-shot
feed-forward manner. In the following, we first introduce the
overall pipeline of our network and then go through the details
of each component.

A. OVERALL PIPELINE OF PosePropagationNet

Given a video sequence that contains 7 consecutive frames
F = {I}_,, where I, € RF>*W>3 denotes the frame at
time step ¢, we enable our proposed PPN to generate a set of

joint heatmaps H = {h,}"_,, where h; € RS %5 *K denotes
the estimated joint heatmaps for frame ;. We use H and W
to denote the height and width of frames, and use S and K
to denote the total stride of the network and the number of

joints, respectively. For frame I;, the lightweight BodyNet
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FIGURE 2. Network architecture of our proposed PosePropagationNet. (a) Overall pipeline of PPN. & denotes elementwise addition.
Network components with the same color share weights throughout all time steps to help reduce parameter amounts. (b) The structure of
Pose Propagation Unit, which is basically modified from PoseWarper [23]. © denotes elementwise subtraction.

takes charge of generating preliminary joint heatmaps h e
R¥ ¥ 5 XK Afterwards, together with the joint heatmaps 4,
from the previous frame, hy is fed into Pose Propagation Unit
(PPU), which is able to propagate the previous pose to the
current time step according to joint motion offsets between
the two frames, outputting the propagated joint heatmaps
h € R¥*5 <K The final joint heatmaps i, € RS *¥*K
for frame I, is computed by combining h, and h, with ele-
mentwise addition. Since there is no predecessor for the first
frame I, we additionally design a HeadNet that is generally
much larger than BodyNet, to generate reliable initial joint
heatmaps hy.In order to reduce parameter amounts in our net-
work, BodyNets and PPUs throughout all time steps follow
the weight-sharing principle.

Loss is computed on the produced final joint heatmaps /,
across all frames. Note that the first frame appears twice in the
feed-forward process, so both two sets of joint heatmaps for
the first frame, le and h1, are involved in loss computation.
Given the ground truth joint heatmaps g; for frame I;, the loss
is defined as the Mean Squared Error MSE(-) shown in Eq. 1.

T
L =MSE(h. g1)+ Y _ MSE(h;. g) (1)

t=1

B. FROM PoseWarper TO POSE PROPAGATION UNIT

We get the inspiration of designing PPU from PoseWarper,
which is proposed by Bertasius et al. [23] to solve the prob-
lem of pose estimation in sparsely-annotated video datasets.
Specifically, the relationship between two adjacent frames
with opposite annotation status (one labeled, one unlabeled)
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is investigated. PoseWarper is designed to build that rela-
tionship by estimating joint motion offsets between the two
frames and performing pose estimation on the unlabeled
frame by transforming the labeled pose according to the esti-
mated offsets. We recognize the capability of PoseWarper to
transfer labeled pose to adjacent unlabeled frames and build
our PPU on the basis of PoseWarper architecture along with
several significant modifications. In the following, we first
mathematically formulate the pipeline of PoseWarper and
then introduce the modifications we make.

Given labeled frame I; and unlabeled frame /41, Pose-
Warper is trained to estimate poses for /;4 | by transferring the
labeled pose of I;. Firstly, /; 11 is fed into an image-based pose
estimation network, outputting preliminary joint heatmaps
fz,+1. On the other side, the joint heatmaps A4; for frame I;
can be obtained from ground truth. Afterwards, the difference
between h; and ilt+ 1 is computed as

Viit1 = hir — Iy 2

and fed into a stack of convolution blocks ®(-). The output
feature maps are then fed into a set of convolution layers
with different dilation rates C@ )() to generate a set of offset
tensors, namely

d
o\ =CUQ W i41) de?, 3)
where oidt)ﬂ denotes the estimated joint motion offset tensor

between time step ¢ and ¢ + 1 with dilation rate d and Z is
an ensemble of different dilation rate values. Finally, those
offset tensors are used to transform joint heatmaps h; via
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FIGURE 3. Comparison of different pose propagation paths. (a) Pose
propagation path in PoseWarper. (b) One possible midway modification.
(c) Pose propagation path in our PPN. Details can be viewed in text.

deformable convolution layers [24] D) as

7(d d
WY =D Dy, o) ) de, ()
where ﬁ;‘i)l denotes the transformed joint heatmaps for ;11
with dilation rate d. Joint heatmaps produced with different
dilation rate d are summed up as the final transformed joint
heatmaps for ;4 1, namely,

z Z(d
=D A
d

Conventionally, preliminary joint heatmaps iz,+1 can be
viewed as the final pose estimation result of I;; following
a single-image manner regardless of temporal dependency.
In PoseWarper, geometric consistency is taken into consider-
ation in the process of pose transferring and transformation,
leading to a better pose estimation result for /; 1. We design
our PPU on the basis of PoseWarper. As shown in Fig. 2(b),
PPU takes the estimated joint heatmaps from the previous
frame and preliminary joint heatmaps of the current frame
generated by BodyNet as inputs, producing the propagated
joint heatmaps %, 1 based on pose propagation mechanism
illustrated above. The modifications we make are mainly in
three folds:

1) We unify the pose propagation path during training and
evaluation phases. As shown in Fig. 3(a), for PoseWarper,
frames are sparsely annotated. During the training phase,
poses are transferred from unlabeled frames to the labeled
frame to meet supervision. On the contrary, during the eval-
uation phase, the labeled pose is reversely transferred to

de9. 5)
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unlabeled frames to perform dense pose estimation. In our
architecture, the training path illustrated above fails to fit our
HeadNet-BodyNet configuration, as it is somewhat counter-
intuitive to refine a better pose by transforming a worse one,
which intrinsically increases the difficulty of training. One
possible pipeline for unify training path and evaluation path
is shown in Fig. 3(b). Benefitting from densely-annotated
datasets, poses can be propagated along that path to meet
supervision at each time step during the training phase.

2) We modify the cascade scheme across frames. The
pipeline shown in Fig. 3(b) propagates the high-quality pose
from time step ¢ to several subsequent time steps respectively.
It perfectly corresponds to our HeadNet-BodyNet configura-
tion, as the high-quality pose remains undamaged throughout
the propagation process. However, it can be expected that
the above pipeline would perform poorly when applied to
long-range video sequences, since poses from temporally
distant frames can hardly provide any useful guidance to
the current frame in videos containing complicate human
motions. We design our pose propagation path by building
a connection between each neighboring frame pair, as shown
in Fig. 3(c). In such a pipeline, poses are iteratively propa-
gated from the previous frame to the current frame, ensuring
the validity of the information flow. Therefore, our method is
expected to be more scalable, and is capable of dealing with
video sequences with different frame ranges, meeting various
requirements in real applications.

3) Instead of treating the propagated joint heatmaps &, as
the final joint heatmaps for I;, we further fuse them with
the preliminary joint heatmaps hy via skip connection. In our
architecture, HeadNet, BodyNet and PPU can be simultane-
ously trained. The propagated joint heatmaps /, are generated
by transforming joint heatmaps from the previous frame 4;_|
via deformable convolution. The preliminary joint heatmaps
hy generated by BodyNet are somehow vanished in that
course and thus not directly involved in loss computation,
which prevents BodyNet from receiving sufficient training.
To solve the problem, we perform identity mapping for hy
and combine it with the propagated joint heatmaps /, via
elementwise addition. Following that fashion, the preliminary
joint heatmaps hy are explicitly involved in loss computation,
facilitating the effective training of BodyNet.

C. HeadNet AND BodyNet

We employ two pose estimation networks for different time
steps, namely HeadNet and BodyNet. HeadNet is responsible
for performing pose estimation on the first frame. Generally
speaking, the quality of initial pose decides the overall level
of pose estimation results in that video sequence. Therefore,
large networks are typically employed as HeadNet to guar-
antee high performance. Afterwards, BodyNet takes charge
of generating preliminary pose for each frame. Since pose
propagation mechanism brings geometric knowledge from
the previous frame to the current frame, BodyNet can be
much more lightweight.

VOLUME 8, 2020
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IV. EXPERIMENTS

A. DATASETS

1) PENN ACTION DATASET

Penn Action Dataset [6] contains 2326 video sequences
of 15 different actions, where 1258 clips are used for training
and 1068 clips are used for testing. The number of frames
varies among different video sequences. The 2D locations
and visibility of totally 13 body joints are annotated for each
frame, including head, shoulders, elbows, wrists, hips, knees
and ankles. During testing, only visible joints are involved in
evaluation.

2) SUB-JHMDB DATASET

JHMDRB [7] is another dataset for video-based pose estima-
tion. For fair comparison with previous works, only a subset
of JHMDB is used in our experiments, which is named as
Sub-JHMDB. Sub-JHMDB consists of 316 video clips with
11200 frames in total. In Sub-JHMDB, only complete human
bodies are involved and totally 15 body joints are annotated
for each human instance. There are three split schemes for
Sub-JHMDB and the split ratio of training and testing sam-
ples is roughly 3:1. Following previous works [1], [4], [5],
we train and evaluate our method separately and report the
average result over the three splits.

B. IMPLEMENTATION DETAILS

1) DATA AUGMENTATION

We perform data augmentation strategies following previous
works [4], [5], including random scaling ([0.8, 1,4]), random
rotation ([—40°, 40°]) and random flipping. On account of
sequential input, the transformation remains consistent across
frames within a video sequence. All the frames are cropped
based on the center and scale of the person instance and
padded to a fixed size (256 x 256) as input.

2) EXPERIMENT SETTINGS

Following previous works [4], [5], we pretrain all image-
based pose estimation networks exploited in our experiments
on MPII dataset [18]. The frame range T of each sample
is set as 5. Deconvolution layers used in our experiments
follow the settings illustrated in [16]. Adam optimizer [25]
is adopted with 10~ weight decay, and the learning rate is
decreased linearly from 10™* to 0. We set the batch size as
8 and train our network for 300k iterations. During evaluation
phase, seven scales {0.8,0.9, 1.0, 1.1, 1.2, 1.3, 1.4} are used
for multi-scale inference.

3) EVALUATION METRICS

We adopt the PCK metric proposed in [11] to evaluate our
pose estimation results. In PCK, a joint is considered as being
correctly localized if it falls within a predefined threshold
o-L, where « is a controlling coefficient and is conventionally
set to 0.2. L is the reference distance, which is set as L =
max(H, W) in [1], [4], where H and W denote the height and
width of bounding box of the person instance. However, since
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the scale of person is large, this metric has been considered
to be too loose to differentiate different methods. Following
[5], [26], we additionally adopt the definition of reference
distance L as torso diameter, which is defined as the distance
between left shoulder and right hip of ground-truth skele-
ton [26]. To avoid ambiguity, we term the above two metrics
as PCK-body and PCK-torso respectively.

C. ABLATION STUDIES

We perform ablation studies to verify the effectiveness of
our proposed PPN from two aspects. On the one hand,
PPN can largely improve the performance of existing image-
based pose estimation networks in video domain by introduc-
ing pose propagation mechanism. On the other hand, PPN
endows lightweight networks with the capability of perform-
ing accurate pose estimation by explicitly propagating high-
quality pose generated from a large network forward across
frames.

Firstly, we investigate one of the state-of-the-art image-
based pose estimation networks, Simple Baseline [16], which
follows a high-to-low-to-high pipeline that first extracts
high-level low-resolution feature maps with ResNet fam-
ily [27] and then raises the resolution back to a decent
level via 2-strided deconvolution layers. Specifically, we vary
the backbone of Simple Baseline models among ResNet-x,
x € {18,34,50, 101} and evaluate each configuration
on Penn Action Dataset following the single-image frame-
wise manner as baselines, which are denoted as Framewise
(ResNet-x) in Table. 1. Following original settings in [16],
three 2-strided 4 x 4 deconvolution layers are appended to
recover resolution. For comparison, we adopt Simple Base-
line models as both HeadNet and BodyNet in our PPN.
We use PPN (ResNet-x) in Table. 1 to denote our proposed
network with ResNet-x as the backbone of HeadNet and
BodyNet.

It can be observed from Table. 1 that PPN improves single-
image framewise pose estimation results by a large margin.
The improvement appears more obvious on evaluation metric
PCK-torso, since results on PCK-body tend to be some-
what saturated. We can find that by introducing temporal
pose propagation mechanism, PPN lifts the accuracy of pose
estimation by 0.90% on PCK-body metric and 2.28% on
PCK-torso metric in average. The performance of PPN with
a relatively smaller backbone, ResNet-18, even significantly
surpasses the level of single-image framewise pose estimation
results with a larger backbone, ResNet-34 (92.1% versus
90.4% on PCK-torso). The above results convincingly verify
the effectiveness of our proposed Pose Propagation Unit for
providing temporal guidance to refine single-image frame-
wise pose estimation results.

Furthermore, we investigate the potential of lightweight
networks for performing accurate pose estimation in videos
by enforcing pose propagation mechanism. From Table. 1,
we can find that lightweight networks alone are weak in
producing satisfying pose estimation results. For example,
Framewise (ResNet-18) achieves merely 88.7% accuracy on
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TABLE 1. Comparison of pose estimation results with and without
exploiting pose propagation mechanism on Penn Action Dataset.
Evaluation results on both PCK-body and PCK-torso metrics are reported.
Better results are highlighted in Bold.

Backbone lHead Sho Elb Wri Hip Knee Ank|Mean

PCK-body
Framewise (ResNet-18) | 98.7 97.8 95.3 94.6 97.1 96.1 95.7| 96.3
PPN (ResNet-18) 99.1 98.5 96.5 95.7 98.1 97.1 97.5| 97.6
Framewise (ResNet-34) | 99.0 98.1 96.1 95.6 97.8 969 96.3| 97.0
PPN (ResNet-34) 99.3 98.8 97.0 96.1 98.3 97.4 98.1| 98.1
Framewise (ResNet-50) | 99.1 98.4 97.3 96.8 98.1 97.8 97.3| 97.7
PPN (ResNet-50) 99.2 98.9 97.8 97.4 98.7 98.5 98.3| 98.7
Framewise (ResNet-101) | 99.5 99.1 98.3 98.1 99.1 98.7 98.5| 98.7
PPN (ResNet-101) 99.4 99.3 98.5 98.4 99.2 98.6 98.7| 98.9

PCK-torso
Framewise (ResNet-18) | 94.7 89.8 89.8 88.4 83.3 88.8 89.0| 88.7
PPN (ResNet-18) 954 92.8 93.0 91.7 87.1 92.5 92.3| 92.1
Framewise (ResNet-34) | 95.5 91.5 91.4 90.2 85.2 90.6 90.7| 90.4
PPN (ResNet-34) 95.8 93.6 93.7 92.7 88.1 939 93.4| 93.3
Framewise (ResNet-50) | 95.6 93.1 93.4 92.3 86.9 93.0 92.5| 92.2
PPN (ResNet-50) 95.9 95.3 94.4 93.5 89.5 954 94.8| 94.1
Framewise (ResNet-101) | 96.2 95.0 95.4 94.1 89.5 95.0 94.6| 94.1
PPN (ResNet-101) 96.1 95.6 95.1 94.2 91.1 959 95.2| 95.0

TABLE 2. Ablation studies on Penn Action Dataset. Best results are
highlighted in Bold.

Method FLOPs (G) | PCK-body PCK-torso
Framewise (ResNet-18-w-Deconv) 7.74 96.3 88.7
Framewise (ResNet-18-w-DUC) 3.07 96.2 88.3
PPN (ResNet-18-w-DUC)-w/0-SC 3.87 97.9 93.2
PPN (ResNet-18-w-DUC) 3.87 98.8 94.2
Framewise (MobileNet-V2-w-Deconv) 5.64 95.8 87.9
Framewise (MobileNet-V2-w-DUC) 0.59 95.7 87.7
PPN (MobileNet-V2-w-DUC)-w/o-SC 1.39 97.5 92.9
PPN (MobileNet-V2-w-DUC) 1.39 98.5 93.8

PCK-torso. We realize that deconvolution operation can be
especially computationally intensive if applied on feature
maps with large spatial size during the upsampling phase.
Taking Framewise (ResNet-18-w-Deconv) shown in Table. 2
as baseline, we implement an ablation study to further reduce
network computational intensity and enhance network capa-
bility at the same time. On the one hand, instead of using
expensive deconvolution layers, we investigate the usage of
Dense Upsampling Convolution (DUC) layer that is proposed
in [28] to implement 2x upsampling. As shown in the Ist
and 2nd rows of Table. 2, by replacing deconvolution layers
with DUC layers, we achieve over 2x FLOPs reduction with
minor accuracy decrease. On the other hand, in order to intro-
duce pose propagation mechanism, we adopt the state-of-the-
art architecture on MPII benchmark [18], HRNet-W48 [14],
as our HeadNet to generate high-quality initial pose for better
performance, which is denoted as PPN (ResNet-18-w-DUC)
in Table. 2. It can be observed from Table. 2 that despite of
its weak performance on single-image level, the capability
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of lightweight network ResNet-18-w-DUC in video domain
is dramatically boosted by propagating high-quality pose
generated by strong HeadNet across frames.

To further verify the capability of PPN to facilitate
lightweight networks to perform accurate pose estimation
in videos, we experiment with another smaller backbone
for BodyNet, MobileNet-V2 [29]. The effectiveness of
MobileNet family is broadly evaluated in the field of image
classification, object detection and semantic segmentation.
As shown in Table. 2, we use Framewise (MobileNet-V2-
w-Deconv) to denote single-image pose estimation with
MobileNet-V2 as backbone and deconvolution layers as
upsample unit. Likewise, we replace deconvolution layers
with DUC layers to perform single-image framewise pose
estimation and denote it as Framewise (MobileNet-V2-w-
DUC). Significant FLOPs reduction can be observed fol-
lowing that setting, which is down to no more than 0.6G.
Then we treat that tiny network as BodyNet and employ
HRNet-W48 as HeadNet to constitute our PPN, which is
denoted as PPN (MobileNet-V2-w-DUC). Compared with
PPN (ResNet-18-w-DUC), dramatic FLOPs reduction can be
witnessed, while high performance is still maintained.

FIGURE 4. Comparison of left hip heatmaps generated by BodyNet, PPU
and their combination respectively. The 2nd and 3rd rows are produced
by PPN (ResNet-18-w-DUC)-w/0-SC, while the 4th row is produced by
PPN (ResNet-18-w-DUC).

By comparing the 3rd and 4th rows, as well as 7th and 8th
rows of Table. 2, we demonstrate the necessity of skip con-
nection (SC) in PPN that fuses the propagated joint heatmaps
with the preliminary joint heatmaps. Additionally, we visu-
alize the joint heatmaps of left hip generated by BodyNet
(2nd row), PPU (3rd row) and their combination via skip
connection (4th row) in Fig. 4. It can be observed that the
propagated joint heatmap of left hip is noisy with plenty of
false positive points with relatively high response values. The
preliminary joint heatmap generated by lightweight BodyNet
is relatively clean, while high responses fall in a large region
around the precise location of left hip. With skip connection,
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FIGURE 5. Qualitative results on (a) Penn Action Dataset and (b) Sub-JHMDB Dataset. Best viewed in color.

the final joint heatmap is somewhat clean with high responses
compactly aggregated.

Finally, we specially verify the scalability of our method to
adaptively perform pose estimation for video sequences with
different frame range 7. To better simulate real application
scenes, we directly apply our representative model, PPN
(ResNet-18-w-DUC) that is trained with T = 3, to testing
samples with different frame range T € {l, 2,5, 10, 15}.
As shown in Table. 3, without being specially trained, our
network still maintains a competitive performance within
long frame ranges.

TABLE 3. Comparison of experimental results with metric PCK-torso
under different frame range T on Penn Action Dataset.

T 1 2 5 10 15
PCK-torso 95.0 94.7 94.2 92.9 92.0

Based on the experimental results shown above, we adopt
PPN (ResNet-18-w-DUC) and PPN (MobileNet-V2-w-
DUC) as two major configurations in our experiments that are
capable of generating poses across video frames accurately
and efficiently, and term them as PPN-Stable and PPN-Swift
respectively for simplicity.

D. COMPARISON WITH STATE-OF-THE-ART METHODS

To verify the superiority of our method, we compare our
PPN with the previous state-of-the-art, which is the Dynamic
Kernel Distillation (DKD) network proposed in [5], under
the same settings. Specifically, in DKD, a large pose initial-
izer is designed to generate initial pose and the following
frame encoders for feature extraction are much smaller, which
is fairly similar to our HeadNet-BodyNet configuration.
Modified from Simple Baseline [16] models, the pose ini-
tializer and frame encoder used in DKD both follow a high-
to-low-to-high pipeline, where ResNet family is exploited
to encode image representations and two 2-strided 4 x 4
deconvolution layers are appended to perform upsampling.
Therefore, the total stride of pose initializer and frame

VOLUME 8, 2020

TABLE 4. Comparison with the method proposed by Nie et al. [5] on Penn
Action Dataset with evaluation metric PCK-torso. Experimental results
related to DKD are borrowed from [5]. Better results are highlighted in
Bold.

Method |[FLOPs (G)|Head Sho Elb Wri Hip Knee Ank|Mean

PCK-torso
Framewise (ResNet-18)| 428 | 94.7 86.0 87.7 84.6 81.1 87.4 84.3] 86.1
DKD (ResNet-18) 527 957 90.0 92.2 89.4 86.8 92.3 89.5| 90.6
PPN (ResNet-18) 448 |95.6 92.1 92.7 91.2 86.9 92.4 91.8| 91.9
Framewise (ResNet-34)|  6.69 | 95.8 88.7 88.5 86.7 83.6 89.6 85.3| 87.3
DKD (ResNet-34) 7.68 | 96.4 91.9 93.0 90.8 88.6 93.5 91.9| 92.1
PPN (ResNet-34) 6.89 [958 93.3 93.5 92.4 88.1 93.8 93.2| 93.1
Framewise (ResNet-50) 7.66 96.0 90.5 89.4 87.6 83.8 89.7 86.0| 88.8
DKD (ResNet-50) 865 |96.6 937 92.9 91.2 88.8 94.3 93.7| 92.9
PPN (ResNet-50) 7.86 | 96.1 95.1 94.3 93.5 90.0 95.2 94.3| 94.0

encoder is 8. In DKD, the backbone of pose initializer is
fixed as ResNet-101, and the backbone of frame encoder is
chosen among ResNet-x, x € {18, 34, 50}. For fair compar-
ison, we follow the settings of DKD, fixing the backbone
of our HeadNet as ResNet101 and varying the backbone of
our BodyNet among ResNet-x, x € {18, 34, 50}. Results are
shown in Table. 4, where Framewise (ResNet-x) is used to
denote single-image framewise pose estimation results with
ResNet-x as backbone. DKD (ResNet-x) and PPN (ResNet-x)
represent DKD model with ResNet-x as the backbone of
frame encoder and our PPN with ResNet-x as the backbone
of BodyNet, respectively. Note that Framewise (ResNet-x)
and PPN (ResNet-x) here denote different configurations
from those in Table. 1. The FLOPs and evaluation result on
PCK-torso of each configuration are reported.

It can be observed from Table. 4 that our PPN signifi-
cantly outperforms DKD in the stricter metric PCK-torso,
with 1.13% accuracy improvement in average. Especially for
localization of shoulder and wrist joints, PPN achieves 1.63%
and 1.90% accuracy improvement in average, respectively.
Moreover, compared with the pose kernels employed in DKD
that transfer temporal knowledge, our designed PPU propa-
gates well-estimated poses across frames to provide temporal
guidance in a more compact manner (0.20G versus 0.99G
additional FLOPs against baselines). The superiority of our
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TABLE 5. Comparison with state-of-the-art methods on Penn Action Dataset. Evaluation results on both PCK-body and PCK-torso metrics are reported.
Besides, the general network architecture of each method and FLOPs are reported as well. Best results are highlighted in Bold.

Method Backbone (t = 1) Backbone (¢t > 1) Upsample Unit | FLOPs (G) | Head Sho Elb Wri Hip Knee Ank Mean
PCK-body
Park et al. [30] - - - - 62.8 52.0 323 233 533 502 43.0 453
Nie et al. [31] - - - - 642 554 338 244 564 541 48.0 48.0
Gkioxari et al. [21] 6xConv 6xConv 2xDeconv - 95.6 93.8 904 90.7 91.8 90.8 91.5 0918
Igbal et al. [32] VGG-16 [33] VGG-16 - - 89.1 864 739 730 853 799 803 8l.1
Song et al. [1] CPM [15] CPM - - 98.0 973 95.1 947 97.1 971 969 96.5
Luo et al. [4] CPM CPM - 70.98 989 98.6 96.6 96.6 982 982 975 977
Nie et al. [5] ResNet-101 ResNet-50 2xDeconv 8.65 98.8 987 96.8 97.0 982 981 972 978
PPN-Stable HRNet-W48 ResNet-18 3xDUC 3.87 99.0 993 985 98.3 98.8 988 98.7 98.8
PPN-Swift HRNet-W438 MobileNet-V2 3xDUC 1.39 989 992 984 979 984 986 985 985
PCK-torso
Luo ez al. [4] CPM CPM - 70.98 96.0 93.6 924 91.1 883 942 935 926
Nie et al. [5] ResNet-101 ResNet-50 2xDeconv 8.65 96.6 937 929 912 88.8 943 937 929
PPN-Stable HRNet-W48 ResNet-18 3xDUC 3.87 96.1 952 94.8 939 89.1 954 952 942
PPN-Swift HRNet-W48 MobileNet-V2 3xDUC 1.39 96.1 952 944 933 888 949 949 938

method is thus verified from the perspective of both accuracy
and efficiency.

In addition, we compare our two representative config-
urations, PPN-Stable and PPN-Swift, with previous state-
of-the-art methods in the field of video pose estimation on
Penn Action Dataset, as shown in Table. 5. We can observe
that our method significantly outperforms all of the previ-
ous state-of-the-art methods in both accuracy and efficiency.
As for accuracy, PPN-Stable achieves 1.0% improvement
on PCK-body and 1.3% improvement on PCK-torso over
the previous best method. Our tiny configuration PPN-Swift
also produces better results compared with the state-of-the-
arts, achieving 0.7% improvement on PCK-body and 0.9%
improvement on PCK-torso over the previous best method.
Moreover, our method diminishes computational complexity
by a large margin compared with the state-of-the-arts. Com-
pared with LSTM Pose Machines proposed by Luo et al. [4],
PPN reduces FLOPs by a magnitude over (3.87G/1.39G ver-
sus 70.98G). Compared with the previous best method [5],
our two configurations, PPN-Stable and PPN-Swift, achieve
2.5x and 6 x FLOPs reduction respectively. We visualize the
comparison of accuracy and efficiency between our method
and the above two state-of-the-art methods in Fig. 1(d),
demonstrating the great superiority of our method.

Table. 6 shows the comparison results on Sub-JHMDB
Dataset between our method and the previous state-of-the-
arts. The scale of person instance in Sub-JHMDB Dataset is
generally smaller than that in Penn Action Dataset, which
makes it more challenging to generate accurate pose esti-
mation results on Sub-JHMDB Dataset. Compared with the
previous best method [5], our two configurations, PPN-Stable
and PPN-Swift, achieve 2.4% and 1.9% accuracy improve-
ment on metric PCK-body, and 3.9% and 3.0% accuracy
improvement on metric PCK-torso.
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TABLE 6. Comparison with state-of-the-art results on Sub-JHMDB
Dataset. Best results are highlighted in Bold.

Method Head Sho Elb Wri Hip Knee Ank | Mean
PCK-body
Park et al. [30] | 79.0 60.3 28.7 16.0 74.8 59.2 493 | 525
Nie et al. [31] 80.3 63.5 325 21.6 763 627 53.1| 557
Igbal er al. [32] | 90.3 769 59.3 55.0 859 764 73.0| 73.8
Songetal [1] | 97.1 957 87.5 81.6 98.0 927 89.8| 92.1
Luo et al. [4] 982 96.5 89.6 86.0 98.7 95.6 909 | 93.6
Nie et al. [5] 983 96.6 904 87.1 99.1 96.0 929 | 94.0
PPN-Stable 99.0 983 925 909 994 983 95.0| 96.4
PPN-Swift 98.7 98.0 91.8 90.7 99.1 982 945 | 959
PCK-torso
Luo et al. [4] 927 756 66.8 64.8 780 73.1 733 | 73.6
Nie et al. [5] 944 789 698 67.6 81.8 79.0 788 | 77.4
PPN-Stable 95.7 833 71.7 709 84.0 834 81.8| 81.3
PPN-Swift 951 828 713 70.2 835 83.0 8I.1| 804

E. QUALITATIVE RESULTS

We provide some qualitative results generated on randomly
selected frames from Penn Action Dataset and Sub-JHMDB
Dataset to demonstrate the capability of our PPN. As shown
in Fig. 5, PPN can robustly produce accurate pose esti-
mation results against several troublesome factors, such as
motion blur (the 3rd row of Fig. 5(b)), scale change (the
4th row of Fig. 5(b)) and articulated occlusion (the 3rd and
4th rows of Fig. 5(a), the 1st and 2nd rows of Fig. 5(b)).
Besides, frames with crowded background can be effec-
tively dealt with, as shown in the 1st row of Fig. 5(a).
Moreover, the person scale, viewpoint and illumination
vary among frames, reflecting the great robustness of our
proposed PPN.
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V. CONCLUSIONS

In this paper, we propose a novel architecture, PosePropaga-
tionNet, for video pose estimation. We implement pose prop-
agation mechanism via the design of pose propagation unit in
PPN, allowing well-estimated poses to be propagated across
frames as the most explicit temporal guidance. Benefitting
from the pose propagation mechanism, lightweight networks
gain the capability of performing accurate pose estimation
in videos. Our experiments on two large-scale benchmarks,
Penn Action Dataset and Sub-JHMDB Dataset, show that
our method significantly outperforms previous state-of-the-
art methods both in accuracy and in efficiency. Our two repre-
sentative configurations, PPN-Stable and PPN-Swift, achieve
2.5x and 6 x FLOPs reduction respectively over the previous
best method, as well as significant accuracy improvement.
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