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ABSTRACT The operation of energy transmission lines with high efficiency without failure has great
importance in today’s electricity-dependent world. Problems that may occur in electricity transmission lines
are failure cause of many operations not only industrial but also daily life. One of the most important causes
of the problems encountered in power lines is the change in the amount of sagging. The change of sagging
amount causes line breaks and losing energy efficiency. This problem, which is frequently encountered due
to seasonal and climatic changes, is one of themajor problems of continuity in the power line. The calculation
of sag contains uncertain and variable parameters that can change seasonally, climatically and/or structurally
such as weight per unit length of the conductor, the horizontal component of tension, total tension, etc. In
this case, it is difficult to calculate a precise and reliable sag amount. The sagging of power lines is generally
calculated theoretically or measured on-site by the personnel in charge. In this study, a new approach is
presented to measure the sag amount by using sensor data of a power line inspection robot, precisely and
reliably. The inspection robot moving on the power line can be remotely controlled and send sensor data. The
sagging is measured with an error of less than 2 percent in the laboratory test field by using this technique.

INDEX TERMS Power line inspection, line sag, line inspection robot.

I. INTRODUCTION
Overhead lines are the backbones of every electrical power
transmission and distribution system [1]. The lines carried
by the poles in the energy transmission lines play the most
significant role in the transportation of energy from the power
generation facilities to the end-users [2]–[4]. Since there are
no dense residential areas and populations around the power
plants, energy must be transmitted to long distances. There
are various technical procedures in transporting energy from
power stations to end-users. These procedures are studied
both electrically and mechanically. Mechanical properties
include the line properties to increase the mechanical strength
of the posts and lines carrying the energy line. Electrical
features include pole height, line cross-section, and related
parameters. In addition, different analyzes are carried out for
conducting economic analyzes so that energy transmission
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lines can transmit energy in a sustainable, safe and economi-
cal way, and for the poles to be transported to the appropriate
geography at the least cost and in the shortest distance [5]–[8].
As is known, the energy produced in power plants should be
delivered to users and cities with the shortest distance. Here,
procedures such as renting or purchasing the land on which
electricity poles will be located are also made at the planning
stage. The power pole and transmission line costs must be
high, these components fail less, and they are designed and
planned to require less maintenance [7]–[10]. Power lines are
fixed on poles, and this fixation is made according to certain
criteria. The parameters are evaluated according to whether
the electric transmission line fixed on the insulators in the
selected pole is primarily in the city center or outside the
center. These evaluations are listed below:
• The transmission lines should be designed in a way not
to harm living life. This design and evaluation should be
in a way to reduce both the height of the conductor and
the damages of electromagnetic effects [11]–[13].
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• The energy transmission line should be the shortest,
safest, and most economical in terms of length and
location.

• The route of the energy transmission line should be
designed by considering the lease-purchase, risk of life,
and economic criteria.

• The route of the energy transmission line must be close
to the existing transportation arteries so that it can be
reached quickly in case of failure [14]–[16].

• The components on the transmission line should be
selected from the longest lasting and highest quality
materials to require less maintenance and more failure.

• Energy transmission lines and transmission components
should be selected according to the atmospheric con-
ditions of the region. (In particular, very hot, cold,
windy, and pulsating regions should be identified,
and projects should be prepared according to this
determination) [17]–[19].

Alongwith all these general rules, the length, diameter, and
mechanical and electrical properties of the electricity trans-
mission line should be determined separately [20]. Although
all these parameters are determined by international stan-
dards, each country differs according to its climate condi-
tions, electricity network structure, and the experience of
expert personnel. These standards include maximum wind,
ice load (varies according to the climatic characteristics of
these countries). The electricity transmission line’s electrical
properties are the recommendations of expert technical per-
sonnel [21]–[23]. The components that make up the electric
pole have different strength properties; this difference plays
an active role in sagging. This situation does not generally
comply with the parameters table and should be taken into
consideration by expert staff. The design of the pole mechan-
ics in the lines [24] and the project of the energy transmission
line is an engineering work that requires long experience.
In the energy transmission lines, sagging is observed due
to the weight of the transmission line stretched between
the insulators and the effects of the climatic conditions
[21]–[23]. The distance between these two insulators between
the assumed straight line and the point where the conductor
stretches the most is called sagging.

The power transmission robot by Yong et al. has been
used to detect deformations in energy transmission lines [25].
This study can be used especially to detect fire and major
deformations. The robot made by Li and Ruan [26] and
Cao et al. [27] is designed to perform mechanical tasks.
In the study conducted by Zhibin et al., a method was pro-
posed to overcome the obstacles encountered by the robot
whilemoving on the power line [28]. In recent years, the over-
all work has been done to detect obstacles on transmission
lines with camera applications [29]–[31]. Some studies focus
on determining the static characters of the transmission sys-
tem [32]. A survey on robotic studies in electric power trans-
mission lines examined all studies in the literature [33].When
the studies here are examined, it is seen that our study differs
from the others in design and application. No other study was

FIGURE 1. Schematic representation of sagging occurring in the electric
power transmission line.

found where sagging on power lines was measured using an
inspection robot.

In this study, a new approach is presented to measure the
sag amount by using a line inspection robot is proposed.
In Section II, the classical sag calculation is explained.
Then the materials and methods are described in Section III.
In Section IV, the experimental results performed in the
laboratory test field are presented. Finally, conclusions are
presented in Section V.

II. SAG THEORY
Transmission and distribution systems constitute an essential
part of electrical power systems. Transmission lines cover the
section from power generation plants to distribution stations.
Transmission lines with lower voltage levels are also used
in the sections after the distribution stations. In this study,
a developed robot was made to detect excessive sagging in
the transmission lines and to communicate this fault to the
technical personnel with its location. Definitions in this study;
• Clearance: It is the horizontal distance between two
insulators.

• Sag: The term ‘‘sag’’ can be defined as the distance
between the midpoint of the strained transmission line
between the two insulators and the assumed direct line
between the insulators. In Figure 1, the necessary formu-
las for the conductor lying on the insulators are given in
Equation 1. As shown in Figure 1, the distance between
the poles is denoted by D. S is the sagging of the con-
ductor [9].

• Tangent Tension: The actual Tangent Tension direction
of any point in a transmission line is calculated by
drawing a tangent to the conductor’s curve at that point.

• Tension: The Electric Power system shows the horizon-
tal component of the tension in the transmission line
of the transmission line, where the horizontal tension is
equal at each opening.

In electric power systems, the electrical drain of the trans-
mission line is closely related to the change of the pass-
ing load current. However, the transmission line may also
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heat with the effect of the magnetic warming skin effect
[9], [15]. In sagging calculations, the slope of the line is
calculated using a parabolic equation (catenary). In calcula-
tions made here, its share is neglected. Since the parabolic
approach is used, the error is rather small, except for very
long, steep or deep openings. The parameters of the parabolic
equation (sagging, tension, weight, and span length) are given
in Figure 1 [9], [15].

Another part of the work done on electrical power systems
is installing electrical poles and mechanical parts in the field.
This project is based on the geographical location of the
production facilities and distribution facilities. Geographical
conditions of the land may create elevation differences in
poles; in this case, it may increase sagging in conductors
[20], [23]. The connection point of the two ends of the
electricity transmission line to the pole is called the level
range. The opening at the connection points with different
elevation heights is called the oblique opening. Equation 1
and Equation 2 are used for catenary calculations [9], [23].

y(x) =
H
w

[
cosh

(wx
H

)
− 1

]
(1)

y ∼=
wx2

2H
(2)

where H is the horizontal component of tension (N), w is the
weight per unit length of conductor (N/m), x is the horizontal
distance from the lowest point (m), y(x) is the vertical dis-
tance from the lowest point at x (m).

The common equation used for the sagging calcula-
tion is the Parabolic approach, as given in Equation 3.
In Equation 4, sagging is given as a function of line and
span length. Calculations assume that the transmission line
is under ideal flexibility conditions [9], [34]–[36].

S =
wD2

8H
(3)

S =

√
3S(L − D)

8
(4)

where S is sag (m), D is span length (m), L is line length (m),
H is the horizontal component of tension (N), T is total ten-
sion (N), w is the weight per unit length of conductor (N/m).

There are many studies in the literature on sagging calcu-
lation and measurement [23], [37], [38]. However, although
there are no studies in the literature that detect sagging with
robots in the transmission line, there are some studies that
solve sagging and other mechanical problems by robotic
methods [5], [39]–[41]. There is also a study in the liter-
ature on a device that stands on the transmission line and
measures sagging [42]. Precision measurement of the sag is
related to sensor quality. The limitation of this study is that
the sensitivity of the sensors operating under high voltage
environment over time decreases. Therefore, sensor errors
must be compensated. Briefly, many uncertain and variable
parameters are used in the calculation of sagging. Under these
circumstances, it is difficult to measure the sagging ratio
instantly and precisely. In this study, a new approach is pre-
sented to measure the sag amount by using a line inspection

FIGURE 2. 3D model of ROSETLineBot.

FIGURE 3. RoSeTLineBot moving on the power line in the lab test field.

robot during a line maintenance operation. In the following
section, introduced methods will be explained in detail.

III. MATERIALS AND METHODS
Materials and methods will be given in two chapters. First,
the line inspection robot and its control interface will be
shown. Then the data retrieval process will be explained.

A. ROSETLineBot: THE POWER LINE INSPECTION ROBOT
A robot named RoSeTLineBot to inspect overhead lines
was previously developed by the authors [43]. In that study,
the mechanical structure of the robot was given in detail.
A 3D model of the system and several photos of the
robot from different perspectives are shown in Figure 2 and
Figure 3, respectively. In the previous research, the control

99200 VOLUME 8, 2020



A. T. Zengin et al.: Measurement of Power Line Sagging Using Sensor Data

FIGURE 4. Robot controller design in Simulink.

system was developed at a basic level to demonstrate the
operation of the system.

In this study, the algorithm was redesigned entirely on
Matlab/Simulink to improve the control system’s accuracy
and controllability. The embedded software running on the
robot is completely designed with Simulink, as shown
in Figure 4. Some blocks are coded in C language manu-
ally. The model compiled using the MATLAB Coder tool
is embedded in the microcontroller, and the system can be
controlled remotely. Remote access was achieved through
Xbee modules connected to both the robot and the PC.
Plant block defines the robot as a Hardware in the Loop

(HIL) system. Wheel Direction and Speed subblocks deter-
mine which direction and speed the robot will move with
respect to the control signal created by the Controller block.
Receive Parameters via Serial Port block received control
parameters of PID controller, which also applied the on-off
signal for the entire system. All the necessary parameters
were received in the hex format and recreated by the get-
Params block. Similarly, data to be sent to the remote PC
were serialized and converted to hex bytes by the Send via
Serial Port block. IMU Read and Encoder Read subblocks
acquired sensor data and were written in C language.

A control interface has been developed in Simulink as
well, to collect data from the system remotely, and send the
necessary parameters and commands from PC to robot. The
control interface is shown in Figure 5. Interface sent the con-
trol parameters through Xbee connected to the PC USB port
and received the measured data through the same channel.
Live data was being saved to Matlab workspace in real-time.
Transmit block prepares the data pack consisting of control
system parameters and on-off signal.Receive block parses the
byte-array, which sent by the robot, and saves it to Matlab
Workspace for further analysis.

FIGURE 5. Robot control interface in Simulink.

B. DATA RETRIEVAL AND PROCESSING
While driving on the line, wireless data was continuously
received from the robot. Both IMU and encoder data con-
nected to the rotor were continuously sent to the control inter-
face. The block diagram of the system is given in Figure 6.
ATMega2560 was used as the main controller unit (MCU)
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FIGURE 6. Block diagram of system.

in this system. Both the controller and motor were powered
by a 3S LiPo battery of 11.1V. XBee modules were set up
as Coordinator and Router for the PC side and robot, respec-
tively. Acceleration data were processed to obtain speed and
position, respectively. Since the movement on line created
a substantial amount of vibration, and the acceleration sen-
sor had a serious sensor-shift, pure measurement was not
enough to calculate the displacement. Therefore, we pro-
posed amethod to filter the noise and detrend the sensor-shift.
Equation 5 and Equation 6 show how the data is processed,
where ω[n] was the cosine-tapered window, a(τ ) was the
measured acceleration, v(τ )dt was the detrended value of
velocity and x(t) was the calculated displacement.

v(t) = v0 +
∫ t

0
[ω[n]a(τ )] dτ (5)

x(t) = ω[n]
[
x0 +

∫ t

0
[ω[n]v(τ )dtdτ ]

]
(6)

IV. CASE STUDY
The experimental study was performed in the lab test field
in which specifications are shown in Figure 7. Data was col-
lected by driving ROSETLineBot along the test line, which
was connected between two walls 13.7 [m] apart. The actual
sag was 40.3 [cm] at the midpoint of the power line.

FIGURE 7. Dimensions of the lab test field.

The power line sag measured by the ROSETLineBot pre-
sented in this study is shown in Figure 8. The motion of
the robot was measured with accelerometer and position
change was calculated by two consecutive cumulative trape-
zoidal numerical integration. After each integration, data
were detrended to compensate for the sensor shift and fil-
tered with a cosine-tapered window with a 0.9 taper ratio.
Measured sag was between 39.3 [cm] and 40.5 [cm]. Accord-
ing to the test result, the proposed systemmeasured the actual
sag amount of less than 2% error.

V. DISCUSSION
In their study, Wale and Sandeep detect the transmission
line’s malfunctions with the cameras on the robot and

FIGURE 8. Line sag measurement by the RoSeTLineBot.

transmit them to the service center with the GPSmodule [44].
In the study conducted by Debenest et al., A robot that
can move on energy transmission lines was designed, and
the robot was controlled remotely to move on hard-to-reach
areas [45]. In their study, Golightly and Jones have made
an application that can move on energy transmission lines
and shoot with the camera [46]. In other studies, robots
capable of moving on energy transmission lines that have the
ability to transmit images taken by a video camera have been
designed [47]–[51]. Although the robots designed in all these
studies differ mechanically, they pioneer today’s work and
generally transmit video recordings to service centers while
moving on the transmission line. The most important differ-
ence of this study compared to other studies is that it sends
all data collected from the sensors to the central computer
in real-time while the robot is moving on the transmission
line and can detect sagging and other possible faults such as
obstacle, icing, etc. on the line. In this sense, with this feature,
this study differs from other studies in the literature.

VI. CONCLUSION
The calculation of sag contains uncertain and variable param-
eters that can change seasonally, climatically, and/or struc-
turally, such as by weight per unit length of the conductor,
the horizontal component of tension, total tension, etc. Hence,
assumptions must be made in calculation parameters because
of many of them depending on environmental and structural
factors. The proposed technique offers a lower error ratio
than the classical calculation method. The main reason for
this is that the proposed technique does not use uncertain and
changeable parameters, but actual measurement. The robot
collects actual data and then calculate sag value, during a
line inspection process, simultaneously. According to the test
result, the actual sag value has been calculated less than a
2% error by using the proposed technique. The test result
confirmed that the proposed technique could measure pre-
cisely and reliably. Robot’s transition from one line to another
is planned as future work. To achieve this, new mechanical
design studies have started. Also, in the next study, additional
sensors will be placed, and sound analysis will be made for
corona discharge measurement on the line.
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