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ABSTRACT It can be life-saving to monitor the respiratory rate (RR) even for healthy people in real-time.
It is reported that the infected people with coronavirus disease 2019 (COVID-19), generally develop mild
respiratory symptoms in the early stage. It will bemore important to continuouslymonitor the RR of people in
nursing homes and houses with a non-contact method. Conventional, contact-based, methods are not suitable
for long-term health monitoring especially in-home care services. The potentials of wireless radio signals
for health care applications, such as fall detection, etc., are examined in literature. In this paper, we focus
on a device-free real-time RR monitoring system using wireless signals. In our recent study, we proposed
a non-contact RR monitoring system with a batch processing (delayed) estimation method. In this paper,
for real-time monitoring, we modify the standard joint unscented Kalman filter (JUKF) method for this new
and time-critical problem. Due to the nonlinear structure of the RR estimation problem with respect to the
measurements, a novel modification is proposed to transform measurement errors into parameter errors by
using the hyperbolic tangent function. It is shown in the experiments conducted with the real measurements
taken using healthy volunteers that the proposed modified joint unscented Kalman filter (ModJUKF) method
achieves the highest accuracy according to the windowing-based methods in the time-varying RR scenario.
It is also shown that the ModJUKF not only reduces the computational complexity approximately 8.54% but
also improves the accuracy 36.7% with respect to the standard JUKF method.

INDEX TERMS Unscented Kalman filter, joint unscented Kalman filter, respiratory rate tracking, device-
free, vital signs, health monitoring, radio signals.

I. INTRODUCTION
Elderly monitoring systems are becoming widespread and
continuously monitoring of respiratory rate (RR), especially
for those living alone and suffering from respiratory dis-
eases is vital [1]. Especially, the infection with severe acute
respiratory syndrome (SARS), Middle East respiratory syn-
drome (MERS) and COVID-19 can cause a severe viral res-
piratory illness. For the conventional RRmonitoring methods
such as capnography or photoplethysmography, the physical
contact with the human body is required [2]. These con-
ventional contact-based methods are not suitable especially
for long-term monitoring at home or nursing homes since
they restrict people’s movements and prevent them from
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performing their daily activities. Non-contact (device-free)
RR monitoring methods are developed for eliminating the
disadvantages of contact-based systems especially in-home
care services.

In recent years since wireless radio communications sig-
nals are ubiquitous in indoors, radio-frequency (RF)-based
monitoring methods (such as fall detection [3], [4], indoor
localization [5], etc.) become increasingly popular. These RF
based methods are not requiring day-light and line-of-sight
propagation, and annihilating users’ privacy concerns [6].

It is observed that the chest movement in the area of interest
during breathing, which is a slow and periodic movement, can
be sensed using radio waves. In this context, the radar-based
methods are existed in literature [7]–[9]. However, these
methods have high computational burden since they need
time and phase synchronization between the radio transmitter
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and the receiver. They also require costly equipment and
specific antennas. On the other hand, the ambient RF signals
which are commonly exist in indoors such as WiFi, can also
be used for RR estimation. These methods can be divided
into two groups depending on whether they use the received
signal strength (RSS) [10], [11] or the fine-grained channel
state information (CSI) parameters [12]–[15] of the ambient
WiFi signals for monitoring. In addition to these wireless
sensing systems, other non-contact methods which are using
different technologies such as audio [16] and visual [17] are
also investigated in literature.

In these methods the RR is assumed as a deter-
ministic unknown constant number and batch processing
(windowed) methods are widely used. It is shown that in
a steady indoor environment, the averaged RR rate is suc-
cessfully estimated using RF signals. These methods can be
grouped as FFT-based methods (such as periodogram) [10],
[13]–[15], [18], [19], and high resolution subspace techniques
[12], [20]–[22]. In the periodogram method, the frequency
resolution and accuracy completely depend on the duration
of the collected data window. The RR is a time-varying
parameter, assuming it is constant over a long period of time,
increases the estimation latency and this can be a critical
problem in emergencies. Although we showed in our recent
studies that the subspace techniques, estimation of signal
parameters by rotational invariance technique (ESPRIT) and
multiple signal classification (MUSIC), for the RR estimation
with a reduced latency and improved accuracy according to
the periodogram methods [21], [22], a real-time RR tracking
is still an important requirement. In [23], Kalman Filter-
ing (KF) approach for RR estimation is investigated with a
limited accuracy.

In this paper, the nonlinear model-based KF approach
which is capable of estimating and tracking the RR in
real-time with a low steady-state error is proposed. The KF is
an optimal filter for linear systems andwidely used in control,
robotics, navigation systems, target tracking, and communi-
cation systems [24]. But, most of the real systems can not
be modelled as linear systems such as biomedical systems
[25], [26], neural networks [27], and smart grids [28], [29].
For these inherent nonlinear systems, extended Kalman Filter
(EKF), which provides an approximation to optimal estima-
tion, is developed [30], [31]. In EKF, since the first-order
linearization is applied to the nonlinear model, the mean and
covariance of the approximations highly deviate from their
actual values. This may cause poor estimation performance
and even divergence of the filter. To overcome this problem,
the Unscented Kalman Filter (UKF) is developed [32], [33].
It is evaluated in many KF applications that UKF outperforms
EKF [34], [35]. In UKF, true mean and covariance values are
captured by using the deterministic sigma points. The UKF
and its variants are successfully used in various fields such as
attitude estimation [36], target tracking [37], power systems
[38], [39], vehicle navigation [40]–[42].

The problem of estimating the vital signs such as RR is
difficult due to the inherent nonlinearity of the problem.

It is required to find the most appropriate KF approach for
the RR monitoring problem. There are other types of KF
besides UKF for nonlinear models such as particle KF [43],
cubature KF [44]–[46], and ensembleKF [47]. All these types
of KFs are proposed to solve the problems especially when
the model’s state and/or parameter dimensionality is high.
Similarly, the other variants of UKF such as iterative one
in [48], provides better state and covariance estimation when
the dimensionality is high and the system is too complicated.
Some other recent versions of UKF in [49]–[51] are proposed
to give more robust results when there are outliers, incorrect
states and measurements. But, in our case since the RR
state-space model can be formulated with two states and one
parameter, the standardUKF and themodification of standard
joint UKF (JUKF), which is widely used for parameter
estimation [52]–[56], are considered. In [57], it is shown
that the modification for JUKF, decreases the computational
complexity which is called as modified joint unscented
Kalman filter (MJUKF). Both JUKF and MJUKF are based
on unscented transformation [57]–[60]. In JUKF, the parame-
ters are combined with the state vector and estimated together
with the states [61]. Thus, the computational complexity of
the JUKF increases depending on the number of parameters.
In MJUKF, the parameters are separated from the state-space
and updated based on the transformation of errors between
measurements and transformed sigma points into parameter
errors. Thus, MJUKF reduces the computational complexity
significantly according to the JUKF while parameter esti-
mates converge. However, it is clear that the modification
proposed in [57] works for nonlinear systems in which a
linear transformation between measurements and parameters
is achieved. Due to the nonlinear structure of the parameter
estimation problem with respect to the measurement hereby,
a new and novel modification which is sketched in Fig. 1 is
proposed and presented in this paper. A hyperbolic tangent
function (i.e. tanh) is firstly considered to transform mea-
surement errors into parameter errors. Similar functions (e.g.
hyperbolic sine, sigmoid, rectified linear unit function etc.)
are generally used as activation functions in artificial neural
network concept, [62], [63]. As stated in [63], such activation
functions have two critical drawbacks, firstly outputs can
be limited to a finite range, and secondly, they provides
non-linearity for any function. Depending on the noise level
of the measurements and with appropriate selection of the
filter parameters, ModJUKF can surpass JUKF in terms of
accuracy [57].

FIGURE 1. The overview of the proposed non-contact real-time
respiratory rate tracking system using ModJUKF method.
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In the real-time RR estimation problem which is sketched
in Fig. 1, the first critical issue for the system performance
is the considered signal model. We utilize the third-order
state-space model for signal representation and this model
is also considered for frequency tracking in previous studies
[64], [65]. The proposed system uses the amplitude of the
received unmodulated carrier wave (CW) signals captured
by low-cost software defined radio (SDR) modules. Contin-
uous CW signals provide fine-grained amplitude information
which does not have the disadvantages of RSS parameter.
However, the proposed KF approach is not only limited to
this type of signal but can also be applied to any wireless
radio signals. We collected signals from healthy volunteers
to obtain performances of the proposed real-time monitoring
method. It is shown in various experiments that the proposed
ModJUKF method outperforms both the windowing-based
periodogram method commonly used in the respiratory
rate monitoring literature and the super-resolution methods.
The main contributions of the paper are summarized as
following:
• The proposed system utilizes the continuous CW signals
captured by powerful low-cost SDRmodules which pro-
vide flexibility and versatility to the users.

• Due to the nonlinear structure of the RR estimation prob-
lem with respect to the measurement hereby, a new and
novel modification is proposed in this paper to transform
measurement errors into parameters errors by using the
hyperbolic tangent function.

• The proposed new real-time non-contact RR esti-
mation and tracking ModJUKF method reduces the
computational complexity and improves the accuracy
according to the standard JUKF method. In addition,
ModJUKF achieves the highest accuracy among the
windowing-based common methods in the time-varying
RR scenario.

II. SYSTEM MODEL AND DATA PROCESSING
In this section, we discuss the model and the third-order
state-space formulations of the breathing signal, and data
pre-processing procedures.

A. BREATHING SIGNAL MODEL
The received RF signal, affected by the breathing motion of
an adult which is on or near the propagation path between the
radio transmitter and the receiver, is called as the breathing
signal. In this section, the mathematical formulations of the
breathing signal are considered. During breathing, the chest
movements of an adult who stands on/near the propagation
path of the RF signal variate the magnitude and phase of
the received signal. These variations on the received signal’s
magnitude can bemodeled as a sinusoidal function depending
on the periodical change of the chest movements. The mag-
nitude of the received complex-value baseband signal (rk ) in
discrete-time can be written as the following,

|rk | = µk + xk + uk , (1)

where k is discrete time index, µk is the time-varying DC
component (average) value of the received signal, uk is
assumed as an additive noise. xk is the waveform due to
motion and in this problem it is a breathing signal due to
periodic chest movements,

xk = A sin(2π fRk kTs + φ), (2)

where A and φ denote constant amplitude and phase of the
sinusoidal signal, respectively. Ts is the sampling period. fRk
which is time-varying frequency is the RR of an adult who
stands on the propagation path of the radio signal as shown
in Fig. 1.

B. STATE-SPACE FORMULATION
The state-space equations are defined as,

xk = f(xk−1)+ wk (3)

ψk = g(xk )+ vk (4)

where (3) and (4) are state and measurement models, with
nonlinear f and g functions, respectively. wk ≈ N (0,Q) and
vk ≈ N (0,R) are uncorrelated noise on states and measure-
ment, respectively. Q and R are the state and measurement
noise covariances, respectively.

The respiratory frequency (rate) of breathing signal
in (2) is time-varying and can be called as instantaneous
frequency [65] and rewritten as,

x1,k = A sin(8k + φ). (5)

where third–order state space representation of the signal is
given as a rotating vector in Cartesian plane and projections
of this rotating vector is given as the states x1,k and x2,k ,
and its angular velocity equals to the instantaneous frequency
x3,k = �k . The constant frequency case is expressed as:

�k = 8k −8k−1. (6)

The noise free relations of state model in (3) can be
expressed as,

x1,k = cos(x3,k−1)x1,k−1 − sin(x3,k−1)x2,k−1,

x2,k = sin(x3,k−1)x1,k−1 + cos(x3,k−1)x2,k−1,

x3,k = x3,k−1, (7)

and the measurement model in (4) can be explicitly rewritten
as,

ψk = x1,k + vk , (8)

C. REAL-TIME RECURSIVE DC BLOCKING FILTER
As shown in Fig. 2. (a) the DC (mean) value of the breathing
signal is changing with time. In state-space formulations,
the sinusoidal waveform with time-varying frequency in (5)
is defined without a DC component. The presence of the DC
component disrupts the built-in model and consequently pre-
vents the estimated parameters from converging to the correct
value. Thus, DC components do not contain any information
about the respiratory rate and must be filtered out from the
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received signal. To get rid of zero frequency component,
a simple method which subtracts the average of the signal
from the signal itself can be used. However, this method is
not suitable for real-time applications since it requires batch
data for computing the average, and also fails since the DC
component changes over time. Alternatively, in this study,
a recursive DC blocking filter [66], [67] which can operate
in real-time is preferred. The transfer function of the system
in the Z-domain is written as,

H (z) =
1− z−1

1− pz−1
, (9)

where p is a coefficient, 0 < p < 1, and the difference
equation of DC blocking filter is given as,

yk = ψk − ψk−1 + pyk−1, (10)

where ψk is the measurement data in (8) and yk is the filtered
measurement data. The initial value, y0, is selected as a very
small number close to zero for not creating an offset.

Fig. 2 (a) & (b) show an example of the received RF
signal before and after passing through the DC blocking filter,
respectively. In real measurements, the received signal may
also have a trend not caused by respiratory rate as shown
in Fig. 2 (a) due to the time-varying DC components. These
trends can cause nonlinearity that adversely affects transient
time that is the time for the system to converge the correct
parameter. By using DC blocking filter, the trend of the signal
alongside the DC component is also eliminated as shown
in Fig. 2 (b). UKF assumes white Gaussian noise distributions
on states andmeasurements but for this practical application it
can not be always possible. Instead of applying some complex
methods in [49]–[51] to overcome this problem, the mea-
surements can be processed by recursive DC blocking filter.
So besides getting rid of DC component, unwanted noise
components are also eliminated due to the cascaded differ-
entiator/integrator structure [66]. In our case, this filtering
improves signal-to-noise ratio (SNR) of the measurements
and it also decreases the model and measurement errors
of UKF and preventing stochastic stability and divergence
problems.

FIGURE 2. (a) RF signals before passing through the DC blocking filter
(b) RF signals after passing through the DC blocking filter.

III. RESPIRATORY RATE ESTIMATION USING ModJUKF
It is reported in [57], [68], [69] that there are twomain types of
parameter estimation approaches using family of KFs, these
are dual and joint filtering. In joint filtering, the parameters
are concatenated to state vector and they are estimated by just
one filter, whereas in dual filtering, two filters are separately
used for the state and parameter estimation. In a joint scheme,
since states and parameters are concatenated in an augmented
matrix, a cross–covariance between states and parameters are
calculated. Nevertheless, in dual filtering such calculation of
cross–covariance is missing, [68]. As indicated previously,
first modification to JUKF is to create an initial sigma point
vector for parameters

χθ =
[
θ̂1 θ̂2 . . . θ̂n

]T
, n = 2L + 1 (11)

where parameters are initially distributed as

θ̂ i=
(
θ̂0−pθ (L + 1)

)
+ pθ i, i = 1, . . . , 2L + 1 (12)

where θ̂0 is the initial parameter estimate vector, pθ contains
the initial error covariances of parameters. i is the index of
the sigma point of corresponding parameter and L denotes the
number of states. In ModJUKF, just like the concatenation of
states and parameters into a vector, the corresponding sigma
point vectors are also concatenated. Suppose a system has L
states and Lθ parameters, the system generates 2(L+Lθ )+ 1
sigma points for JUKF, whereas for ModJUKF it generates
2L + 1 and it corresponds to the standard state filter (UKF).
Clearly, the number of generated sigma points is reduced by
2Lθ and in (2Lθ )

(2(L+Lθ )+1)
× 100%, if ModJUKF is used for

parameter estimation. Nevertheless, computational complex-
ity reduction is less than this percentage due to the separate
parameter update rules given in (13) and (14).

The major modification for the JUKF is in the measure-
ment update section, the parameter estimate and sigma point
vector update is carried out as

χθi = θ̂
−

k − ξT tanh
(
ξ
(
yk ./ϒ∗i,k|k−1 − 1

))
i = 1, . . . , 2L + 1 (13)

θ̂k =
1

2L + 1

2L∑
i=0

χθi , i = 1, . . . , 2L + 1 (14)

where θ̂k is the parameter estimate at k th index, ξ is a scaling
parameter, T is the transformation matrix with the size of
Lθ × Lm which transforms measurement errors of measure-
ment sigma point vector to parameter errors, where Lθ is the
number of parameters and Lm is the number ofmeasurements.
Selection of T is simple and it includes one for each of its
element. Scaling parameter ξ is determined based on sim-
ulations of the considered system. In RR estimation, there
is only one measurement and parameter, so both Lθ and Lm
are one. Thus, T is considered as one and the parameter ξ
selected as 0.025 based on simulations of the system. The
selection of T and ξ are the important points of the proposed
modification for RR estimation. For the further details of the
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modification and the selection of T and ξ please refer to [57].
As indicated previously, parameter update rule is changed and
a hyperbolic tangent function is considered in this study to
include non-linearity between measurements and parameters.
Algorithm for the ModJUKF is provided in Algorithm 1.

A. ANALYSIS OF ModJUKF
An analysis based on maximum a-posteriori estimation per-
spective (i.e. MAP) can be considered here along with the
statistical linearization (i.e. SL) to prove that the selection of
parameter update rule in (13) can provide an extremum for
the maximum posterior likelihood equation, and it is used for
the theoretical analysis of parameter estimation with sigma
point KFs in [68]. Main assumption for the sigma point KFs
(e.g. JUKF, DUKF) is that the prior knowledge on system
states and parameters are known. To overcome this limitation
adaptive versions of unscented Kalman filter are proposed
based on maximum likelihood estimation (i.e. MLE) [41],
and MAP estimation is a regularization of MLE in case of
prior statistics. This analysis includes a similar one given in
[57], [68] for JUKF and a similar modified JUKF. Conditions,
which make the parameter estimate in ModJUKF a MAP
estimate, are discussed hereby in comparison with standard
JUKF case. Posterior distribution of parameters is

p (θk | y1:k) =
p (yk | θk) p (θk | y1:k−1)

p (y1:k) /p (y1:k−1)
. (15)

Previous equation is the result of Bayes rule and the condi-
tional independence of the observation for the current state.
The θk which maximizes the following equation is selected
as MAP parameter estimate in (15),

θ̂
MAP
k = argmax

θ̂k

[p (yk | θk) p (θk | y1:k−1)] . (16)

If the terms inside brackets are written as a negative natural
logarithm in (16), it becomes

J (θk) = − ln (p (yk | θk))− ln (p (θk | y1:k−1)) . (17)

This expression is called as posterior log–likelihood func-
tion [57], [68], and map parameter estimate is given as
θ̂
MAP
k = argmin [J (θk)] .
In Kalman filtering framework general assumption is that

all noise densities are Gaussian. Probability densities in pos-
terior log–likelihood function [57], [68] can be given as

p (θk | y1:k−1)=
1√

(2π)Lθ
∣∣∣P−

θ̂k

∣∣∣ exp
[
−
1
2

(
θk − θ̂

−

k

)T

× P−
θ̂k

(
θk − θ̂

−

k

) ]
, (18)

p (yk | θk)=
1√

(2π)Lm |Re|
exp

[
−
1
2
(yk−g (xk , θk))T

× (Re)
−1 (yk−g (xk , θk))

]
, (19)

Algorithm 1ModJUKF Algorithm for Additive Noise Case
1: DefineFilter Parameters
2: L,Lm,Lθ F Size of state,measurement and parameter

vector, respectively
3: α← 1 F (10−4 ≤ α ≤ 1)
4: κ ← 2 F (generally κ = 3− L)
5: β ← 2
6: λ← α2(L + κ)− L
7: W (m)

0 ←
λ

L+λ
8: W (c)

0 ←
λ

L+λ + 1− α2 + β
9: for i← {1, . . . , 2L} do

10: W (m)
i ← W (c)

i :=
1

2(L+λ)
11: end for
12: End
13: function UKF(x̂,Px , pθ )
14: Initialize
15: x̂0 ← E [x0]
16: P0 ← E

[
(x0 − x̂0)(x0 − x̂0)T

]
17: θ̂0 ← E [θ0]
18: pθ ← E

[
(θ0 − θ̂0)(θ0 − θ̂0)T

]
19: for i ∈ {1, . . . , n = 2L + 1} do
20: θ̂ i ←

(
θ̂0 − pθ (L + 1)

)
+ pθ i,

21: end for
22: χθ ←

[
θ̂1 θ̂2 . . . θ̂n

]T
23: End
24: for k ∈ {1, . . . ,∞} do
25: function Sigma Points(x̂, Px )

26:
χk−1 ←[x̂k−1, x̂k−1 +

√
(L + λ)Px ,

x̂k−1 −
√
(L + λ)Px ]

27: end function
28: function Time Update(χk−1, P, Q, χθ )
29: χ

†
k−1 ←

[
χk−1|χθ

]
30: χ∗k|k−1 ← f (χ†

k−1)

31: x̂−k ←
∑2L

i=0W
(m)
i χ∗i,k|k−1

32:
P−k ←

2L∑
i=0

W (c)
i (χ∗i,k|k−1 − x̂−k )×

(χ∗i,k|k−1 − x̂−k )
T
+Q

33: end function

34: function
Measurement and parameter

Update
(
χ∗k|k−1,R

)
35: ϒ∗k|k−1 ← g(χ∗k|k−1)

36: ŷ−k ←
∑2L

i=0W
(m)
i ϒ∗i,k|k−1

37:
Pỹk ỹk ←

2L∑
i=0

W (c)
i (ϒ∗i,k|k−1 − ŷ−k )×

(ϒ∗i,k|k−1 − ŷ−k )
T
+ R

38:
Pxkyk ←

2L∑
i=0

W (c)
i (χ∗i,k|k−1 − x̂−k )×

(ϒ∗i,k|k−1 − ŷ−k )
T

39: Kk ← PxkykP
−1
ỹk ỹk

40: x̂k ← x̂−k +Kk (yk − ŷ−k )
41: Pk ← P−k −KkPỹk ỹkK

T
k

42: χθi ← θ̂
−

k − ξT tanh
(
ξ
(
yk ./ϒ∗i,k|k−1 − 1

))
43: θ̂k =

1
2L+1

∑2L
i=0 χθi

44: end function
45: end for
46: end function
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where θ̂
−

k is the prior parameter estimate,P−
θ̂k

is its covariance
and g (xk , θk) is nonlinear observation function given in (4)
(i.e. ψk ), Re is the observation noise covariance. A statisti-
cally linearized form of this nonlinear function is considered
for the analysis of JUKF as a parameter estimator in [68],
and it is used to reveal conditions on how both JUKF and
ModJUKF provide MAP parameter estimates. By assuming
a statistically linearized form, the nonlinear measurement
function can be expressed as

y = g (xk , θk) ≈ Aθk + b. (20)

The approximation error is

εk=̇g (xk , θk)− Aθk − b. (21)

The main aim here is to find the matricesA and b such that
J = E

[
εTkWεk

]
is minimized for a positive semi–definite

matrix W. After some manipulation (see [57]), A and b can
be found as

A = PTθkykP
−1
θk
, (22)

b = ŷk − Aθ̂k , (23)

where Pθk is the parameter covariance matrix and Pθkyk is
the cross covariance matrix between parameter and measure-
ments. If b is substituted in (21) and it is rearranged, this
approximation is given as

g (xk , θk) = A
(
θk − θ̂

−

k

)
+ ŷ−k + εk , (24)

where εk is the statistical linearization error and it is
assumed as a Gaussian random variable with covariance Pε .
Substituting (24) into (4) (here ψk is the measurement and
regarded as yk ).

yk = A
(
θk − θ̂

−

k

)
+ ŷ−k + εk + vk , (25)

where ẽk = εk + vk is called as effective observation noise
and since both εk and vk are assumed Gaussian random
variable, their sum is also a Gaussian random variable with
covariance

Rẽ = Pε + Re, (26)

where Re is the measurement noise covariance defined as
Re = E

[
vkvTk

]
and vk is expressed in (4). If the alternative

form in (25) with the term ẽk = εk +vk is substituted in (19),
then themeasurement likelihood density function is presented
as

p (yk | θk) =
1√

(2π)Lm |Re|

× exp
[
−
1
2

(
yk − A

(
θk − θ̂

−

k

)
− ŷ−k

)T
× (Rẽ)

−1
(
yk − A

(
θk − θ̂

−

k

)
− ŷ−k

)]
. (27)

If (27) and (18) are substituted in (17), this posterior
log-likelihood function is rewritten as

J (θk) =
1
2

[
yk − A

(
θk − θ̂

−

k

)
− ŷ−k

]T
(Rẽ)

−1

×

[
yk − A

(
θk − θ̂

−

k

)
− ŷ−k

]
+

1
2

(
θk − θ̂

−

k

)T (
P−

θ̂k

)−1 (
θk − θ̂

−

k

)
. (28)

MAP parameter estimate is simply found by taking the
partial derivative of (28) with respect to θk and equating it to
zero. MAP parameter estimate providing extremum to (28) is
given as (see [57] for derivation)

θ̂
MAP
k = θ̂

−

k +

[
P−1θk
+ ATR−1ẽ A

]−1
ATR−1ẽ

[(
yk−ŷ−k

)]
.

(29)

In [68], (29) is given as MAP parameter estimate of JUKF.
The Kalman gain in this case is expressed as

K =
[
P−1θk
+ ATR−1ẽ A

]−1
ATR−1ẽ , (30)

and it results in the parameter update rule for JUKF as

θ̂
MAP
k = θ̂

−

k +K
(
yk − ŷ−k

)
. (31)

To compare the parameter update rule of ModJUKF and
JUKF, writing both rules is a good practice and they are
provided as

χθi = θ̂
−

k − ξT tanh
(
ξ
(
yk ./ϒ∗i,k|k−1 − 1

))
,

i = 1, . . . , 2L + 1 (32)

θ̂
MAP
k = θ̂

−

k +

[
P−1θk
+ ATR−1ẽ A

]−1
ATR−1ẽ

[(
yk − ŷ−k

)]
.

(33)

In JUKF, effective observation noise Rẽ is considered
as constant and by selecting a variable Kalman gain as
given in (30), it provides a MAP parameter estimate.
Nevertheless, JUKF implicitly calculates covariances
between states and parameters. To achieve a MAP parameter
estimate, ModJUKF assumes a constant Kalman gain ξT and
a variableRẽ. For ModJUKF, it can be expressed as (see [57])

Rẽ =

[
−ξ

(
AAT

)−1
AP−1θk

T [I + ξAT ]−1
]−1

, (34)

One may oppose that direct comparison of two equations
(32) and (33) is not possible at first glance, since the second
terms of the two functions are different. However, it should be
noted that as ŷ−k → yk (orϒ∗i,k|k−1→ yk forModJUKF) both
functions exhibit same behavior. To reveal this fact, the first
step is to rewrite (32) as

χθi = θ̂
−

k − ξT tanh
[(
ξ/ϒ∗i,k|k−1

) (
yk − ϒ∗i,k|k−1

)]
.

i = 1, . . . , 2L + 1 (35)
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Before continuing to derivation for comparison, the behav-
ior of the tanh function should be investigated. Maclaurin
series of this function is

tanh(x) = x −
1
3
x3 +

2
15
x5 −

17
315

x7 +
62

2835
x9 − . . . ,

(36)

and with Big O notation (36) can be expressed as

tanh(x) = x +O(x2). (37)

In this notation, as x close to zero the error of the series
expansion is limited to a constant times |x2|. In addition to
that, this function is lower and upper bounded. Considering
this information, (35) becomes

χθi = θ̂
−

k −

(
ξ2T ./ϒ∗i,k|k−1

) (
yk − ϒ∗i,k|k−1

)
− ξT O

([(
ξ/ϒ∗i,k|k−1

) (
yk − ϒ∗i,k|k−1

)]2)
.

i = 1, . . . , 2L + 1 (38)

Obviously, the error term in (38) is limited to a constant

times

∣∣∣∣[(ξ/ϒ∗i,k|k−1) (yk − ϒ∗i,k|k−1)]2∣∣∣∣ as ϒ∗i,k|k−1 → yk .

Thus, by neglecting this error term another parameter update
rule can be written as

χθi = θ̂
−

k −

(
ξ2T ./ϒ∗i,k|k−1

) (
yk − ϒ∗i,k|k−1

)
.

i = 1, . . . , 2L + 1 (39)

If (32) provides a MAP parameter estimate with a
Gaussian distribution assumption, so does the rule in (39)
with a variable Rẽ and measurement estimate dependent
Kalman gain K = ξ2T ./ϒ∗i,k|k−1. It should be noted that the
main difference between parameter update rules is the neglec-
tion of higher order terms inMaclaurin series expansion of the
tanh function in (39). Therefore, parameter ξ must be selected
differently for the rule given in (39). To achieve same level of
effective observation noise covarianceRẽ, ξ in (39) should be
selected higher than it is in (32) since a square of this small
parameter appears in Kalman gain. Nevertheless, with same
selection of ξ , the convergence of the ModJUKF with (39)
will be slower. A comparison of two parameter update rules
are provided in the experimental results (Fig. 6).

In ModJUKF, the estimated parameters may have some
undesired fluctuations around the true rate, which reduces
overall accuracy. These fluctuations can be reduced by
smoothing methods such as the α-trimmed mean filter,
the moving average filter, and the standard median filter [11]
but they all require batch-processing as they use the estimates
in a time window. Instead, for the smoothing of the RR
estimates, we use the exponential filter which does not require
batch-processing as it uses only one past output value. Thus,
it is able to be applied to real-time applications. In the simple
moving average filtering, the past output values are equally
weighted, while the exponential filter uses the exponentially
changing weights for the outputs. The exponential filter is as,

sk = γ ek + (1− γ )sk−1, k > 0 (40)

where ek denotes the respiratory rate estimates, sk is the
smoothed data. γ is smoothing factor where 0 < γ < 1.
This smoothing process causes a small latency due to the
cumulative structure of the filter, which increases the conver-
gence time. To accelerate convergence, the smoothing pro-
cess begins at 15th seconds. The values of the smoothed data
before 15th seconds are selected the same as the estimates.

IV. RESULTS AND DISCUSSION
A. EXPERIMENTAL SETUP
The real measurements are taken using the two experimental
setups which are shown in Fig. 3. Two Universal Software
Radio Peripheral (USRP) B210 modules which are deployed
two sides of a bed (or a chair) are used as the radio transmitter
and the receiver. The radio transmitter emits a continuous
wave carrier signal at 900 MHz. The transmit power of signal
is adjusted as zero decibel-milliwatt (dBm). The receiver
module down-samples and digitizes the RF signal to base-
band for processing. After down-sampling, the sampling rate
is specified as 10 Hz which ensures the Nyquist rate crite-
rion for obtaining the respiratory frequency. Omni-directional
antennas are used in both transmitter and receiver.

FIGURE 3. The real measurements are collected using the experimental
setups in laboratory [22].

B. EVALUATION OF RESPIRATORY RATE ESTIMATION
We design some experiments to obtain the real-time per-
formances of the proposed ModJUKF method. The respi-
ratory rate tracking performances of the ModJUKF method
for time-varying and constant respiratory rate scenarios are
given and compared with the standard JUKF method and
high resolution ESPRIT and MUSIC approaches and the
periodogram method. The real measurements are taken from
8 healthy participants. The participants breathe with rates in
the range of 12 bpm (breath per minute) to 20 bpm in different
experiments and they synchronize their respiratory rates with
the help of a metronome which acts as a ground-truth. The
absolute estimation errors of the ModJUKF and the JUKF for
the constant RR scenario are also shown. The absolute error
equals to |e(n)| = 60×|f̂R(n)− fR(n)| in terms of bpm, where
f̂R and fR are the estimated and the actual respiratory rates
in terms of Hz, respectively, and n is the estimation index.
The underlying reason for multiplying by 60 is to convert
the frequency unit from Hz to breath per minute (bpm). The
parameters p in (9) and γ in (40) are selected 0.9995 and
0.0093, respectively. These values are obtained empirically.
In addition, state covariance matrix used in the experiments
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is taken as,

Q = diag [10−10 10−10] (41)

and measurement noise covariance, R, is selected as 0.1. Q
and R are determined by physical intuition and empirically.
Besides, the root mean square error (RMSE) values of all
the methods for the time-varying RR scenario are illustrated.
RMSE is calculated as follows,

RMSE (bpm) =

√√√√ 1
N

N∑
n=1

e(n)2, (42)

where N is the total number of estimates.

1) CONSTANT RR SCENARIO
In the first experiment, the behaviors of the Kalman Filter
approaches in the constant respiratory rate scenario are inves-
tigated. In this scenario, the participant keeps his/her respi-
ratory rate constant with the help of a metronome and does
not change the rate during the measurements. Fig. 4 shows
the RR tracking performance of the ModJUKF and the JUKF
methods when the participant breathes at a rate of 12 bpm.
As is seen, both methods converge to the actual rate, while
the proposed ModJUKF method has less oscillation than
the JUKF method, which increases accuracy. The absolute
estimation errors of the methods for this measurement are
shown in Fig. 5. It is also seen that the steady-state errors of

FIGURE 4. Respiratory rate (RR) tracking performances of the ModJUKF
and JUKF methods in the constant RR scenario.

FIGURE 5. Absolute estimation errors of ModJUKF and JUKF methods in
the constant RR scenario.

the proposed method are less than 0.5 bpm. The error rate of
the JUKFmethod, which has bias estimates, is around 1 bpm.
Besides, the proposed ModJUKF method converges faster
than the JUKF method as shown in the figure. In addition,
two parameter update rules, which are given in (13) and (39),
of ModJUKF are compared in Fig. 6. ξ parameter, which
is a scaling parameter, is chosen as 0.025 for the first rule
in (13). As we discussed earlier, ξ must be chosen higher
than the first rule in (13) to achieve same level of observation
noise covariance. Therefore, ξ is chosen as 0.095 for the rule
in (39). The selection of ξ in (39) affects the convergence
time of ModJUKF. It is seen that similar RR estimation
performances are achieved by using both parameter update
rules of ModJUKF.

FIGURE 6. The RR estimation performance comparison for parameter
update rules of ModJUKF.

Fig. 7 shows the cumulative density function (CDF) of the
respiratory rate estimation error for the proposed ModJUKF
and the standard JUKF methods. The results are obtained by
using a data set, which includes a total of 25 measurements,
each 2 minutes long, collected from 8 healthy participants
who breathe in a controlled manner for different respiratory
rates in a range between 12 bpm and 18 bpm. As shown in the
figure, over 90% estimation errors of the proposedModJUKF
method are less than 0.6 bpm which is a reasonable value for
the real-time RR tracking. It can clearly be stated that the
proposed ModJUKF method has superior performance than
the standard JUKF.

FIGURE 7. The CDF of the respiratory rate estimation error.
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2) TIME-VARYING RR SCENARIO
In the second experiment, the case of time-varying respira-
tory rates is investigated. In the experiment, the participant
changes his/her respiratory rate from 12 bpm to 15 bpm at
114th seconds and from 15 bpm to 12 bpm at 234th seconds
in a controlled manner to observe the response of the methods
to the sudden changes of the respiratory rates. The proposed
ModJUKF method is tested according to this scenario and
the standard JUKF method is also given for the comparison.
The results for a 6-minutes recording are shown in Fig. 8.
Although the proposed ModJUKF method has more oscil-
lations according to the constant RR scenario, the proposed
method can track the respiratory rate without missing the
sudden changes after the convergence as seen in the figure.
However, the standard JUKF method has considerable oscil-
lations on the actual rate, which decreases accuracy. In addi-
tion, the RR tracking performances of the windowing-based
methods such as high resolution ESPRIT and MUSIC meth-
ods and the periodogrammethod are given. As seen in the fig-
ure, these methods track the changing RR with latency due to
the windowing approach. The window duration is selected as
30 s for these methods. The periodogram also has deviations,
especially when the respiratory rate is 15 bpm, depending
on the limited frequency resolution. The RMSE values of
all the methods for this experiment are shown in Fig. 9. The
proposed ModJUKF method has the lowest error among the

FIGURE 8. RR tracking performances of the methods in the time-varying
RR scenario.

FIGURE 9. The RMSE values of the methods for the time-varying RR
scenario.

other methods. High-resolution ESPRIT and MUSIC meth-
ods are expected to achieve very high accuracy in a constant
RR scenario, while their accuracies decrease depending on
the latency in the time-varying scenario. The JUKF shows the
worst performance since it has many oscillations around the
actual rate.

3) IMPACT OF DISTANCE BETWEEN TRANSMITTER AND
RECEIVER
In the third experiment, the effect of changing the distance
between the transmitter and the receiver on the performance
is investigated. Measurements are taken for distances in the
range of 3 to 8 meters. Fig. 10 shows the received signal
magnitudes for these different distances. As seen in the figure,
the effect of the chest movements caused by breathing on the
received signal magnitude decreases with the increase of
the distance between the transmitter and the receiver. When
the distance reaches 8 meters, the effect on the signal dis-
appears completely as shown in Fig. 10(d). Fig. 11 shows
the respiratory rate estimation error values of the proposed
method according to the distance. A decrease in performance
is seen with the increase of the distance as shown in the
figure. The strength of the radio signals that propagate in the
air changes inversely with the distance. Therefore, the radio
signals attenuate as they travel in free space. While error

FIGURE 10. Received signal magnitudes according to distance between
Tx and Rx: (a) 3m, (b) 4m, (c) 6m, (d) 8m.

FIGURE 11. RR estimation errors (in terms of RMSE) of ModJUKF
according to distance.
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values are low both in 3 and 4 meters of distance, error
increases when the distance is increased to 6 meters, but it
is still in an acceptable range. When the distance reaches to
8 meters, the attenuation in the signal increases a lot and the
signal drops below the noise level. Therefore, it can be said
that it is hard to extract the breathing signal to estimate the
respiratory rate in 8 meters.

4) IMPACT OF HUMAN ORIENTATION
Fig. 12 shows the effect of the orientation of the human to the
RR estimation performance. The purpose of this experiment
is to reveal how human orientation affects RR estimation.
To test this case, five different human positions are taken into
account, four of which are lying positions and one is sitting
position. In lying positions, the participants lie on the bed
in the experimental setup shown in Fig. 3(a) in the supine,
prone, and right and left side positions. Better performances
are obtained in prone and supine positions since the number
of active paths in these positions is more than the paths in
the one-side lying positions. The active path is defined as
the one that is more affected by human breathing than other
paths [13]. In addition, the participants sit on the chair as
shown in Fig. 3(b) for testing the sitting position. It can be
seen that the proposed method attains 0.53 bpm RMS error
in this position. It is clearly seen that our proposed system
can accurately estimate RR without being affected by human
orientation.

FIGURE 12. RR estimation errors (in terms of RMSE) of ModJUKF
according to human orientation.

5) IMPACT OF DIFFERENT ENVIRONMENTS
In this experiment, we applied the proposed RR estimation
method for the RF signals which are collected in different
places to see the effects of the environments. RF signals are
easily affected by the environmental conditions. Especially
indoors, the amplitude of the RF signal can change due to
some effects such as reflection, scattering, etc. The size of
the room, the furniture in the room, even the number of
WiFi signals as the interference source are different in each
environment. Hence, the purpose of setting up experiments in
different places is to illustrate that the proposed RR monitor-
ing system is minimally affected by these changing factors.
The proposed method is tested in two different places in

addition to the laboratory with this goal. Environment-1 is the
laboratory shown in Fig. 3, where all other experiments are
carried out. Environment-2 is an office room in the university
and Environment-3 is a living area with a kitchen inside,
which are shown in Fig. 13. RR estimation performances
of the proposed method for these environments are shown
in Fig. 14. Performances are obtained using 45 minutes of
measurements. The proposed method can accurately estimate
RR in all three environments according to the performances
in the figure. It is demonstrated by this experiment that the
proposed method can estimate RR regardless of the envi-
ronmental changes and achieve high accuracy in different
environments.

FIGURE 13. Test environments: (a) Office, (b) Living Area [22].

FIGURE 14. RR estimation errors (in terms of RMSE) of ModJUKF
according to environments (Env-1: Laboratory, Env-2: Office, Env-3: Living
Area).

6) IMPACT OF BREATHING FORMS
Even the respiratory rate is same, breathing forms can vary
from person to person. A robust RR estimation method
should not be affected by these variations. In this experiment,
the proposed method is tested for different breathing forms.
Fig. 15(a) shows the received signal magnitude for different
breathing forms. The participant who lies on the bed breathes
normally during the first 30 seconds. Then, he takes breaths
shallowly in the next 30 seconds, and finally, he takes deep
breaths until the experiment lasts. As seen, peak-to-peak val-
ues of received signal change according to the breathing form.
While chest displacement is minimal in shadow breathing,
the person draws more air into the lungs in deep breathing
form. Fig.15(b) shows the RR estimation performance of the
proposed method for this scenario. As seen in the figure,
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FIGURE 15. (a) Received signal magnitude during different breathing
forms. (b) RR tracking performance of ModJUKF for different breathing
forms.

the proposed method can track RR accurately after conver-
gence regardless of breathing forms.

7) COMPUTATIONAL COMPLEXITY COMPARISON
Lastly, computational complexities of JUKF and ModJUKF
are compared. Stopwatch timer in MATLAB R© 2016a soft-
ware is considered for comparison. Same coding style is
used for both JUKF and ModJUKF, and codes are run on a
ASUSROGCG8580 desktop computer with a 4.60 GHz Intel
CoreTM i7-3770K processor and 24 GB RAM. 6 minutes of
recording, for which the results are illustrated in Fig. 8, is used
for comparison. Time step considered in the realization of
mathematical models is same for both JUKF and ModJUKF,
and it is 0.1 s. Codes are run 103 times for both JUKF
and ModJUKF, and the average elapsed times are recorded.
Average elapsed time for JUKF is found as 0.3905 s, whereas
it is 0.3594 s for ModJUKF. It can be seen that ModJUKF
reduces the computational complexity approximately 8.54%
with respect to the JUKF. In this parameter estimation case,
actually the number of states is 2 in ModJUKF and 3 for
JUKF as provided in (3) and (4), but the last state is used
for parameter estimation in JUKF. As previously stated,
the number of reduction in sigma points for ModJUKF is

(2Lθ )
(2(L+Lθ )+1)

×100 = 2×1
(2(2+1)+1)×100 = 28.5%.However, due

to the separate parameter update rule given in (13) and (14),
which include the calculation of a unary function tanh and
a mean operation, the real reduction in computational com-
plexity is found as≈ 8.54%. Clearly, ModJUKF is a promis-
ing alternative to JUKF for respiratory rate estimation with
respect to its accuracy and computational complexity.

V. CONCLUSION
Nowadays, the potentials of ambient wireless radio sig-
nals are investigated for fall detection, elderly health

monitoring etc. for home-care applications. In our recent
study, a non-contact RR monitoring system with a high accu-
racy subspace estimation method is presented which uses
low-cost software-defined radios. It is observed that in the
case of sudden change in RR, the windowed methods can
not suddenly track the changes. The RR estimation latency is
proportional to the window size whichmeans tens of seconds.

In this paper, a new real-time non-contact RR estimation
and tracking algorithm is proposed. Briefly, the standard joint
unscented Kalman filter method is modified for the trans-
formation of the measurement error into parameter error by
using the hyperbolic tangent function. The proposed method
is validated by the various experiments compatible with
realistic scenarios to show the practical factors affecting RR
estimation performance. It is shown in the experiments con-
ducted with real measurements that the proposed ModJUKF
method offers both a decrease in computational complexity
of 8.54% and an increase in accuracy of 36.7% according
to the JUKF method. It is also shown that the proposed
ModJUKF method outperforms the windowing-based
methods in the time-varying RR scenario.
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