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ABSTRACT Flexible manifold embedding (FME) has been recognized as an effective method for face
recognition by integrating both class label information from labeled data and manifold structure information
of all data. In order to achieve better performance, this particular method usually requires sufficient samples
to make manifold smooth. However, it is often hard to provide enough samples for FME in practice. In view
of facial symmetry, we utilize left/right mirror face images to address the deficiency of samples in manifold
embedding. These mirror images enable to reflect variations of illuminations, or poses or both them that the
original face images cannot provide. Therefore, we propose a robust manifold embedding (RME) algorithm
in this paper, which can fully use the class label information and correctly capture the underlying manifold
structure. The proposed RME algorithm integrates two complementary characteristics of the label fitness
and the manifold smoothness. Moreover, the original face images and its left/right mirror images are jointly
used in the learning of RME, which shows better robustness against the variations of both illuminations and
poses. Extensive experiments on several public face databases demonstrate that the proposed RME algorithm
is promising for higher recognition accuracy than other compared methods in reference.

INDEX TERMS Manifold embedding, mirror image, robust manifold embedding (RME), face recognition.

I. INTRODUCTION
Dimension reduction is a hot topic for the recognition tasks of
high dimensional image. In past decades, a large number of
dimension reduction algorithms have been proposed [1]–[7].
Linear discriminant analysis (LDA) and principal compo-
nent analysis (PCA) are the two most classical algorithms
for dimension reduction. As a supervised method, LDA
uses the class label information from training samples and
solves the classification problem by simultaneously making
the between-class scatter matrix (SW ) maximizing and the
within-class scatter matrix (SB) minimizing in the expected
low-dimensional feature space. By contrast, PCA is an unsu-
pervised method and it finds the directions of maximum
scatter for optimal reconstruction without using any class
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label information. Owing to the simplicity and high effi-
ciency of LDA and PCA, lots of variants based on the two
algorithms have been proposed [8]–[14]. Due to the appli-
cation of class label information, the supervised methods
offer better recognition performance than the unsupervised
methods when there are enough labeled training samples
available. In addition, with the development of deep learning
in recent years, the face recognition methods based on neural
network has attracted more and more attention [15]–[17].
However, although deep learning has made a great break-
through in image recognition due to its strong learning ability,
data-driven and adaptability, it has a large amount of compu-
tation, high hardware requirements, complex model design
and poor interpretability.

Structurally, human faces are non-rigid, and the corre-
sponding face images essentially show a complicated non-
linear structure. Therefore, the essential nonlinear structure
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of face images cannot be well revealed by the traditional
linear dimension reduction methods. Due to the effectiveness
of manifold learning in nonlinear dimension reduction, it is
widely used by capturing low-dimensional essential struc-
tures embedded in high-dimensional space [18]–[22]. In gen-
eral, the most classical manifold learning methods include
locally linear embedding (LLE), ISOMAP and Laplacian
Eigenmap (LE). Despite their effectiveness, the weakness
of these manifold learning methods is so-called out-of-
sample problem. That is to say, these methods cannot obtain
a projection matrix to map a new sample to the desired
low-dimensional embedding space. To solve this issue, many
researchers focused on many improved manifold learning
methods. He et al. [23] proposed a locality preserving pro-
jection (LPP) algorithm for the description of the essential
face manifold structure. Vural and Guillemot [24] presented
a semi-supervised manifold learning method, in which an
interpolation function is built to provide an out-of-sample
extension for general supervised manifold learning meth-
ods. In order to utilize the local structure information of
the data, Lu et al. [25] proposed a novel manifold linear
regression framework. Based on this framework, manifold
discriminant regression learning (MDRL) and robust mani-
fold discriminant regression learning are respectively given.
By using the findings in sparse coding theory, Raducanu and
Dornaika [26] proposed a generalized out-of-sample exten-
sion solution. Shi et al. [27] presented a novel supervised
multi-manifold learning method, in which the multi-manifold
features of images are extracted. In manifold learning algo-
rithms, the local neighborhood size is very important and
sensitive for the algorithm performance. In order to determine
the neighborhood size, Zhang et al. [28] presented an adap-
tive manifold learning framework. Based on graph manifold
learning in high dimensional feature space, Wang et al. [29]
presented an unsupervised feature selection method, in which
the importance of features in the original space was com-
puted by means of L1-regularized least square and the spec-
tral regression analysis. Fang et al. [30] proposed a locality
and similarity preserving embedding (LSPE) for the preser-
vation of locality, similarity and the sparse reconstruction
relationship. In order to eliminate effects of occlusions and
illumination variations, Wang et al. [31] presented a manifold
regularized local sparse representation (MRLSR) method.
Zhang et al. [32] proposed a patch alignment framework to
unify spectral analysis based dimensionality reduction algo-
rithms, in which discriminative locality alignment (DLA)was
used. DLA consists of twomajor stages: the part optimization
and the whole alignment. Nevertheless, DLA is too much
sensitive to the values of the parameters such as neighborhood
size and dimensional size. Liu and Jin [33] presented an
enhanced discriminative locality alignment (EDLA) algo-
rithm, which simultaneously uses the local structure infor-
mation and class label information, leading to better perfor-
mance than DLA.

Recently, representation based classification methods have
become a research hotspot in pattern recognition and

computer vision. Wright et al. [34] introduced sparse rep-
resentation to image classification and presented a sparse
representation based classification (SRC) algorithm. In SRC,
a given test sample is first represented as a linear com-
bination of all the training samples, and then a minimum
reconstruction error is used to achieve the final classification.
In order to examine the classification capability of collabo-
rative representation or L1-norm sparsity, Zhang et al. [35]
elaborated on the mechanism of SRC and concluded that
it is collaborative representation that contributes to the per-
formance of SRC. Based on the above observation, a col-
laborative representation based classification (CRC) method
was developed for image classification. An observed data
includes lots of features. However, it is well known that each
feature of the observed data has different contribution to the
pattern representation and classification. Based on this fact,
Yang et al. [36] proposed a relaxed collaborative represen-
tation (RCR) method. Xu et al. [37] presented a two-phase
test sample sparse representation method (TPTSSR) which
makes a coarse-to-fine classification decision for the face
samples. Considering that all samples from an object lie in
a linear subspace, a linear regression classification (LRC)
algorithm was proposed in [38]. In order to effectively use
label information and manifold structure of the observed
data, Nie et al. [39] presented a unified manifold learning
framework called flexible manifold embedding (FME) by
employing a linear regression function to map a new sample
to desired feature space.

In practical application scenario, the same face shows con-
siderable changes in pose, illumination and expression, so the
variations of pose, illumination and expression regarding the
same person are almost always larger than image variations
of face identity [40]. To perform feature extraction for better
performance, one should prepare enough training samples
varying in different poses, illuminations and expressions.
However, in practice, it is difficult or burdensome to collect
sufficient facial images with different poses, illuminations
and expressions of each object as the training samples. For-
tunately, both the facial structure and the facial expression
are symmetrical [41]. This has motivated many studies on
the application of symmetry to enhance the diversity of train-
ing samples. For example, Xu et al. [42] proposed to first
generate a set of new samples based on the symmetry of
the face and then both the original samples and the newly
generated symmetrical training samples are used to perform
face classification.

Inspired by the prior work proposed in [43] and the sym-
metry feature of human faces [44], we propose a novel robust
manifold embedding (RME) algorithm. The key idea of the
proposed RME algorithm is that both the manifold informa-
tion and the symmetrical information of facial image are fully
taken into consideration to boost up recognition performance.
The advantages of RME are two-fold. Firstly, due to the use
the mirror images of the original images, the proposed RME
can get better recognition performance even though there are
few training samples. Secondly, our method integrates two
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complementary characteristics of the label fitness and the
manifold smoothness.

The rest of this paper is organized as follows.
Section 2 reviews the related works. Section 3 presents the
proposed RME algorithm. Experimental results are presented
in section 4. Finally, Section 5 concludes the paper.

II. BRIEF REVIEW OF RELATED WORKS
Suppose that there are n training samples for c classes and
each class has n1 training samples. In each class, the first
n2 samples are labeled and the rest are unlabeled. Let X =
[x1, x2, · · · , xu, xu+1, · · · , xn] ∈ Rm×n be the training set,
where m is the dimensional size of the samples, u = c×n2 is
the number of labeled data, and n = c×n1 is the total number
of training samples. For any labeled sample xi from ith class,
it should belong to yi (yi = 1, 2, · · · , c) class. We denote the
class label of all samples as a binary label matrix Y ∈ Rn×c,
and the ith row and jth column element Yij in matrix Y is
defined as

Yij =

{
1, if yi = j
0, otherwise

(1)

Let G = {X , S} be an undirected connected graph with
nodes X and similarity matrix S ∈ Rn×n. The similarity
matrix S is a symmetric matrix, in which each element Sij
represents the similarity of a pair of samples [45]. The Lapla-
cian matrix is denoted by L = D − S, and D is a diagonal
matrix and its diagonal elements are denoted as Dii =

∑
j Sij.

A. GAUSSIAN FIELDS AND HARMONIC FUNCTIONS
(GFHF)
Based on the label fitness and the manifold smoothness,
GFHF is presented to predict class label matrix F ∈ Rn×c.
As shown in [43], the objective function gG(F) of GFHF is
minimized as below:

gG(F) =
1
2

∑n

i,j=1

∥∥Fi − Fj∥∥22 Sij + λ∞∑u

i=1
‖Fi − Yi‖22

(2)

where Yi and Fi are respectively the ith row of matrix Y and F ,
and Yi is comprised of the class label of the ith labeled sample,
Fi is comprised of the predicted class label of the ith unlabeled
sample. In order to make

∑u
i=1 ‖Fi − Yi‖

2
2 = 0, or Fi = Yi,

λ∞ is defined to a very large number [46]. Equation (2) can
be rewritten as

trace(FTLF)+ trace((F − Y )TU (F − Y )) (3)

where L is a graph Laplacian matrix, and it is defined as
L = D− S, D is a diagonal matrix and its diagonal elements
are Dii =

∑
j Sij, U is a diagonal matrix, in which the first

u diagonal elements are λ∞, and the rest diagonal elements
are 0, respectively.

B. FLEXIBLE MANIFOLD EMBEDDING (FME)
On the basis of keeping the label fitness and the manifold
smoothness, GFHF predicts the class labels of unlabeled

samples. However, it can not get a projection matrix in GFHF
algorithm. That is to say, GFHF can not map new samples
to the desired subspace. By contrast to GFHF, the method
proposed in [47] enables to convert new samples to fea-
ture subspace by linear Laplacian regularized least squares
(LapRLS/L) method through the linear regression function
as follows.

Fi = h(xi) = W T xi + t (4)

where W ∈ Rm×c is a transformation matrix and t ∈ Rc×1

is a translation vector. The objective function of LapRLS/L
is to minimize the ridge regression errors and preserve the
manifold smoothness simultaneously, which is defined as
follows.

gM (W , t) = λ ‖W‖22 + µtrace(W
TXLXTW )

+
1
u

∑u

i=1

∥∥∥W T xi + t − Y Ti
∥∥∥2
2

(5)

where λ and µ are two balance factors.
Equation (4) can be rewritten as

F = h(X ) = XTW + entT (6)

where en = [1, 1, · · · , 1]︸ ︷︷ ︸
n

T is a n-dimensional vector of all

ones.
From the above definition, the obtained prediction labels

F in LapRLS/L are restricted in the space spanned by all the
training samples X . For a given new sample, its class label
can be obtained by the projection matrix W . Nie et al. [39]
suggested that Equation (6) may be overstrict to fit the data
samples from a non-linear manifold. In order to solve this
problem, flexible manifold embedding (FME) is presented.
In FME, the constraint F0 is added to represent the regression
residue in Equation (6), i.e.,

F = XTW + entT + F0 = h(X )+ F0 (7)

where regression residue F0 ∈ Rm×c is used to evaluate the
mismatch between F and h(X ). In order to obtain the optimal
prediction label matrix F , the objective function of FME is to
minimize the following function.

gFME (W ,F) =
1
2

∑n

i,j=1

∥∥Fi − Fj∥∥22 Sij
+λ∞

∑u

i=1
‖Fi − Yi‖22

+λ1

∥∥∥XTW − F∥∥∥2
F
+ λ2 ‖W‖2F (8)

where λ1 and λ2 are balance factors. Equation 8 can further
be converted as

trace(FTLF)+ trace((F − Y )TU (F − Y ))

+ λ1

∥∥∥XTW − F∥∥∥2
F
+ λ2 ‖W‖2F (9)

To seek the optimal solution to Equation (9), we can
respectively fix W and F , and make the derivatives of the
objective function in Equation (9) with respect to W and F
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Algorithm 1 FME

Step 1. Set each element of matrix F ∈ Rn×c to 1
Step 2. Compute the optimal projection matrix W using

Equation (10).
Step 3. Use Equation (11) to compute the optimal label

matrix F .

equal to zero. The solutions of W and F can be represented
as follows.

W = (λ1XXT + λ2I )−1λ1XF (10)

F = (L + U + λ1I )−1(UY + λ1XTW ) (11)

Because the solution to W and F in Equation (9) is con-
tained each other, its solution cannot directly be obtained.
An iterative way is to iteratively find the solution of the
objective function. The FME algorithm is outlined as follows.

III. ROBUST MANIFOLD EMBEDDING (RME)
The advantages of the FME are two-fold. First, it can use
a linear regression function h(X ) = XTW + entT to map
the feature space of new samples to the expected class label
space. Second, both the label information and manifold struc-
ture are integrated in FME for the improvement of recogni-
tion performance. However, the performance of this method
heavily depends on enough training samples for each object
when learning.We usually have not so many training samples
for each object to apply to FME in reality. Especially for
face recognition, there are often few training samples for each
object, so it may encounter the problem of small sample size.
In addition, face appearance can change drastically due to the
variations in expression, illumination and pose. In particular,
the variations between the images of the same face are nearly
greater than the variations of face identity [48]–[51]. These
above factors can bring adverse effect on the recognition
performance of FME.

It is widely recognized that both facial structure and the
facial expression are symmetric [41], [42]. Based upon this
observation, we can use the mirror image of the face image
to represent more possible illumination and pose changes
which the original face image cannot provide. Inspired by this
idea, we can generate the left-mirror-image and right-mirror-
image for each face image by using the left/right half face
image. By this way, we can obtain triple training samples for
each face image. Although the method of generating mirror
images is simple, the generated mirror images are beneficial
to reflect more possible variations of the original face image
in both illumination and pose. As a result, the proposed RME
algorithm is robust to the variations of illumination and pose.

The objective function of the proposed RME algorithm is
minimized as follows.

obj(W ,F) =
1
2

n∑
i,j=1

∥∥Fi − Fj∥∥22 Sij + λ∞ u∑
i=1

‖Fi − Yi‖22

+ λ1

∥∥∥XTW − F∥∥∥2
F
+ λ2 ‖W‖2F

+ λ3(
∥∥∥ZT1 W − F∥∥∥2F + ∥∥∥ZT2 W − F∥∥∥2F ) (12)

where Z1 and Z2 are the data matrices consisting of the left-
mirror-images and the right-mirror-images corresponding to
the original training samples from training setX , respectively.
λ∞, λ1, λ2 and λ3 are the balance factors. Equation (12) can
further be reformulated as follows.

obj(W ,F) = trace(FTLF)

+ trace((F − Y )TU (F − Y ))

+ λ1

∥∥∥XTW − F∥∥∥2
F
+ λ2 ‖W‖2F

+ λ3

∥∥∥ZT1 W − F∥∥∥2F + λ3 ∥∥∥ZT2 W − F∥∥∥2F (13)

In order to get the optimal solution to Equation (13),
we respectively make the derivatives of the objective function
in Equation (13) with respect toW and F , and set them to be
zero. The analytic solutions of W and F can be represented
as follows.

W = (λ1XXT + λ2I + λ3Z1ZT1 + λ3Z2Z
T
2 )
−1

×(λ1XF + λ3Z1F + λ3Z2F) (14)

F = (L + U + λ1I + 2λ3I )−1

×(UY + λ1XTW + λ3ZT1 W + λ3Z
T
2 W ) (15)

In our algorithm, we assume that there are n samples for
all objects, which includes u labeled samples (called the
training samples) and l = n − u unlabeled samples (called
the test samples). The proposed RME algorithm is outlined
as follows.

IV. EXPERIMENTAL RESULTS
In this section, we carry out extensive experiments to evaluate
the performance of the proposed RME algorithm by com-
paring with other five state-of-art algorithms: MSEC [52],
CRC [35], FME [39], SOSI [24], MDRL [25], the method
presented in [42], GFHF [43], and NLDLSR [53]. In our
experiments, six public face databases including the PIE,
YaleB, FERET and GT face databases under large variations
of illuminations and poses are used as the benchmark to show
the promise of the proposed method.

A. PARAMETERS SELECTION
In our RME algorithm, there are four parameters: the balance
factors λ1, λ2 and λ3, and the number of nearest neighbors k .
The average recognition rates of RME respectively vary with
the parameters λ1, λ2, λ3 and k in Fig. 1. From Fig. 1, we can
find that the value of λ1 should be more than 10, the value of
λ2 should be between 1 and 10, the value of λ3 should be less
than 4, and the value of k should be between 3 and 5.

B. EXPERIMENTS ON CMU PIE FACE DATABASE
The CMU PIE face database contains 41368 face images
from 68 subjects as a whole. The face images were under
variations in poses, illuminations, and expressions. In this
paper, we fixed the pose and expression, andwe got 21 images
under different lighting conditions for each subject. The size
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FIGURE 1. The performance of RME versus parameters λ1, λ2 λ3, and k . (a) YaleB, (b) Feret.
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Algorithm 2 RME Algorithm
Step 1. Generate the left-mirror and right-mirror images

for each face image. Let z ∈ Rp×q be a given face image,
and z1 and z2 denote the corresponding left and right mirror
face images, respectively. Along the center of the face image,
the left-half image zL and right-right image zR are firstly
produced from the image z. Then the obtained two half face
images are respectively mirrored to generate two other half
images z′

L
and z′

R
. The obtained mirror images are represented

as.

z1 = [zL , z′L]

z2 = [z′R, zR] (16)

where zL = z(:, 1 : q/2) and zR = z(:, q/2 + 1 : end). The
corresponding left mirror image z′L and right mirror image z′R
can be gotten respectively using the following equations.

z′L(:, (1 : q/2)) = zL(:, q/2+ 1− (1 : q/2)) (17)

z′R(:, (1 : q/2)) = zR(:, q/2+ 1− (1 : q/2)) (18)

Step 2. Set t = 0 and all the elements in the matrix F0 ∈
Rn×c are set to 1.
Step 3. Compute matrix Wt using Equation 14.
Step 4. Compute matrix Ft using Equation 15.
Step 5. Set t = t + 1.
Step 6. Checking convergence: if
|obj(Wt+1,Ft+1)− obj(Wt ,Ft )| < 0.01, stop the iteration
procedure and output the optimal F∗ = Ft and W ∗ = Wt .
Otherwise, go to Step 3.

Step 7. Obtain the class labels by test_Label = F(u + 1 :
end, :).
Step 8. Use the nearest neighbor classifier for

classification.

FIGURE 2. Some sample face images from the PIE database.

of each image in CMU PIE was 32× 32 pixels. Fig. 2 shows
some sample images of one person.

In the experiment, the first l(l = 1, 2, 3) face images
of each object are respectively selected for the training set,
and the rest for the test set. In order to truly reflect the
performance of each algorithm, we seek the optimal parame-
ters of each algorithm by manual experiments. In the FME
algorithm, we set k = 10, λ1 = 40, and λ2 = 5. In the
RME algorithm, we set k = 10, λ1 = 40, λ2 = 5, and
λ3 = 3, respectively. The recognition performance of MSEC,
CRC, FME, MDRL, SOSI, and the proposed RME is shown
in Table 1.

From Table 1, we can see that the recognition performance
of the proposed RME is significantly superior to that of

MSEC, CRCMDRL, and SOSI, especially when the number
of training samples is 1 or 2. In addition, the recognition
rates of both the FME and the proposed RME are 100%
irrespective of the variation of the training sample sizes.

C. EXPERIMENTS ON THE EXTENDED YALEB FACE
DATABASE
The Extended YaleB database contains images of 38 distinct
persons, and each person has his/her frontal images taken
under 45 different lighting directions. In our experiments,
each image is resized to 48 × 42 pixels. Fig. 3 shows some
sample images of one person.

For this experiment, we respectively select the first
l(l = 1, 2) images of each object as the training set, and the
rest is taken as the test set. In FME algorithm, the optimal
neighbor number k is set to 6, and the optimal balance coeffi-
cients λ1 and λ2 are set to 40 and 5, respectively. The optimal
neighbor number k and balance coefficients λ1, λ2 and λ3
are respectively set to 6, 40, 5, and 3 in the proposed RME
algorithm. The recognition rates of the comparedmethods are
shown in Table 2.

It can be seen fromTable 2 that the proposed RME achieves
the best recognition rate among the compared approaches.
Its recognition rate is far higher than MSEC, CRC, FME,
MDRL and SOSI. Note that FME and RME can obtain the
same recognition performance on CMU PIE face database,
and this is because that they are not sensitive to the variations
of illumination. However, when the two methods are applied
to Extended YaleB face database with large illumination vari-
ation, the recognition rates of our method is superior to that
of the FME algorithm, which means that the proposed RME
is more robust to lighting variations.

D. EXPERIMENTS ON FERET FACE DATABASE
The FERET database [54] contains a total of 13,539 face
images of 1,565 subjects. The images vary in size, pose,
illumination, facial expression, and age. We selected 1400
images of 200 individuals (each one has 7 images). Each
image was resized to 40 × 40 pixels. Fig. 4 illustrates the
sample images of one individual.

In this experiment, the first l(l = 1, 2, 3, 4) face images
are respectively taken as training set, and the rest as test
set. The optimal neighbor number k and balance coefficients
λ1 and λ2 are respectively set to 10, 100 and 5 for FME
algorithm. For the proposed RME algorithm, the optimal
neighbor number k and balance coefficients λ1, λ2 and λ3
are respectively set to 10, 100, 5 and 3. Table 3 tabulates the
recognition rates of each method.

Based on the results in Table 3, we can see that the
proposed RME algorithm perform better than MSEC, CRC,
FME, MDRL, and SOSI algorithms irrespective of the vari-
ation of training sample size. With one training sample for
each object, the recognition rates of six compared algorithms
are 43.67%, 43.97%, 47.50%, 47.12%, 46.53%, and 50.58%,
respectively.
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TABLE 1. Recognition rates of different methods on the PIE database (%).

FIGURE 3. Some sample face images from the YaleB database.

FIGURE 4. Sample face images from the FERET database.

E. EXPERIMENTS ON GEORGIA TECH FACE DATABASE
Georgia Tech face database contains images of 50 people
taken in two or three sessions, which were built at Georgia
Institute of Technology. For each individual in this database,
15 color JPEG images with cluttered background were taken
at the resolution of 640×480 pixels. Faces illustrated in these
imagesmay be frontal and/or tiltedwith different expressions,
illuminations, and scales. Each image was resized to 60× 50
pixels. The images are converted to grayscale. Fig. 5 shows a
set of sample images of one person.

In this experiment, we respectively select the first one
to six images per individual as training set and the rest as
test set. In FME algorithm, the optimal neighbor number
k and balance coefficients λ1, and λ2 are respectively set
to 5, 40 and 5 for FME algorithm. For the proposed RME
algorithm, the optimal neighbor number k and balance coef-
ficients λ1, λ2 and λ3 are respectively set to 5, 40, 5 and 3.
Table 4 presents the recognition results of comparedmethods.

From Table 4, we can see that the recognition rates of the
proposed RME are much higher than that of MSEC, CRC,
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TABLE 2. Recognition rates of different methods on the Extended YaleB database (%).

TABLE 3. Recognition rates of different methods on the FERET database (%).

TABLE 4. Recognition rates of different methods on the Georgia Tech database (%).

FME, MDRL, and SOSI algorithms. Especially when there is
only one training sample for each object, the proposed RME

can obtain better recognition performance than other com-
petitors. The results further indicate that our RME algorithm
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TABLE 5. Recognition rates of different methods on UMIST database (%).

TABLE 6. Recognition rates of different methods on Yale database (%).

is not sensitive to the variation of illumination, expression,
and pose.

F. EXPERIMENTS ON UMIST FACE DATABASE
The UMIST database consists of a total 575 face images
of 20 people. The individuals are a mix of race, sex, and
appearance and are photographed in a range of poses from
profile to frontal views. The number of different views per
subject varies from 19 to 48. The size of each face image is
56× 46 pixels.

In this experiment, the l(l = 1, 2, 3, 4, 5) face images
of each person are respectively used to take as training
set and the rest to be test set. All algorithms are repeated
for 10 times. In FME algorithm, the optimal neighbor number
k and balance coefficients λ1, and λ2 are respectively set
to 5, 35 and 6 for FME algorithm. For the proposed RME
algorithm, the optimal neighbor number and balance coeffi-
cients λ1, λ2 and λ3 are respectively set to 5, 35,5 and 2. The
recognition results are shown as Table 5. It can be known
from Table 5 that our LRE achieves the best recognition
performance irrespective of the variation of training sample
size.

FIGURE 5. Sample face images from Georgia Tech face database.

G. EXPERIMENTS ON YALE FACE DATABASE
The Yale face database includes 165 images from 15 objects,
and each object has 11 images under various lighting condi-
tions and facial expressions. In this experiment, we manually
crop each image and make them to 50× 40 pixels.
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In this experiment, 2, 3, and up to 5 images per individual
are respectively selected for training set and the rest images
are used for testing images. All algorithms are repeated
for 10 times. In FME algorithm, the optimal neighbor num-
ber k and balance coefficients λ1, and λ2 are respectively
set to 5, 20 and 4 for FME algorithm. For the proposed
RME algorithm, the optimal neighbor number k and balance
coefficients λ1, λ2 and λ3 are respectively set to 5, 25,5
and 3. Table 6 shows the recognition results. From Table 6,
we can know that our method has better performance than the
compared algorithms.

V. CONCLUSION
In this paper, we propose a novel robust manifold embed-
ding algorithm (RMF). The label information and manifold
smoothness from the training samples and test samples are
both used in the proposed RME algorithm. In order to accu-
rately capture the manifold structure of the data, plenty of
samples are needed. However, there are not enough samples
in face recognition applications. Based on the symmetry of
the face, the left/right mirror images of all face image sam-
ples are generated and applied to the proposed RMF. The
advantages of the proposed RMF are as follows. Firstly, the
label information and manifold structure are fully utilized in
our RMF. Secondly, the RMR algorithm is more robust to
variations of illuminations and poses. The experiments on six
public face databases prove that the proposed RMF algorithm
has a good performance.
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