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ABSTRACT One of the missions of fifth generation (5G) wireless networks is to provide massive
connectivity of the fast growing number of Internet of Things (IoT) devices. To satisfy this mission,
non-orthogonal multiple access (NOMA) has been recognized as a promising solution for 5G networks
to significantly improve the network capacity. Considered as a booster of IoT devices, and in parallel with
the development of NOMA techniques, multi-access edge computing (MEC) is also becoming one of the
key emerging technologies for 5G networks. In this paper, with an objective of maximizing the computation
rate of an MEC system, we investigate the computation offloading and subcarrier allocation problem in
Multi-carrier (MC) NOMA based MEC systems and address it using Deep Reinforcement Learning for
Online Computation Offloading (DRLOCO-MNM) algorithm. In particular, the DRLOCO-MNM helps each
of the user equipments (UEs) decides between local and remote computation modes, and also assigns the
appropriate subcarrier to the UEs in the case of remote computation mode. The DRLOCO-MNM algorithm
is especially advantageous over the other machine learning techniques applied on NOMA because it does not
require labeled data for training or a complete definition of the channel environment. The DRLOCO-MNM
also does avoid the complexity found in many optimization algorithms used to solve channel allocation in
existing NOMA related studies. Numerical simulations and comparison with other algorithms show that our
proposed module and its algorithm considerably improve the computation rates of MEC systems.

INDEX TERMS 5G networks, deep reinforcement learning (DRL), multi access edge computing (MEC),

non-orthogonal multiple access (NOMA), online computation offloading.

I. INTRODUCTION

In 5G and beyond, user equipments (UEs) are expected to
run compute-intensive, latency-sensitive, and energy-hungry
applications. Some examples include online gaming, virtual/
augmented reality, real-time media streaming, natural lan-
guage processing, online healthcare services, vehicle to vehi-
cle applications and so on [1]-[6]. In addition, with the
emerging IoT technologies and intelligent transportation sys-
tems, a huge amount of sensory data also needs high mem-
ory and strong battery-equipped devices [7]. Nevertheless,
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most of those UEs have some limitations like low processing
capabilities and weak energy storage battery. These defects
would hinder them from accomplishing the task-intensive
applications that come with the mentioned applications
(21, [31, [51, [7].

To cope with those challenges, MEC has been coined and
developed by the European Telecommunications Standards
Institute (ETSI). This MEC was developed as a new plat-
form to provide information technology and cloud computing
capabilities within the radio access network in close prox-
imity to mobile subscribers [8], [9]. With this technology,
UEs can migrate their intensive tasks to the edge of network
where computation resources are sufficient to process those
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applications [10]. As opposed to mobile cloud computing,
MEC is able to achieve lower latency and higher reliability
and energy efficiency, which are suitable for ultra-reliable
and low-latency applications in the emerging 5G networks
(21, [6], [9], [111, [12].

Practically, MEC involves wireless links through which
the UEs offload their tasks to the MEC server or download
the results processed by it. With an exponential increase
in the mobile Internet traffics over the past and the cur-
rent decades [13], even some analyses show that there
will be 80 billions of devices connected to the Internet by
2025, resulting in a tenfold traffic growth compared with
2016 [14], so equipping MEC with technologies which enable
it to accommodate a large number of UEs is indispensably
required. At this end, a number of researchers have devoted
their efforts to this field to mainly solve offloading deci-
sions and resource (communication and computation) sharing
among UEs [5], [9], [15]-[19].

Pham et al. in [9] with an objective to minimize the
system-wide computation overhead, studied a novel frame-
work for joint computation offloading and resources alloca-
tion in MEC networks with wireless backhaul. They jointly
considered offloading decision and computation resources.
Yu et al. in [20] studied a joint subcarrier and central process-
ing unit (CPU) time allocation for MEC. Specifically, they
considered a cloudlet in an orthogonal frequency-division
multiple access (OFDMA) system with multiple mobile
devices where they studied a coordinate management of
subcarriers and CPU of the cloudlet. Each subcarrier was
allocated at most one and only one UE. Their coordinate
scheduling of both subcarriers and CPU resources paid off
a huge amount of energy saving. However, it could be easily
inferred that the scheme resulted in a waste of bandwidth as
each subcarrier is occupied by only one UE.

Many more other researchers worked on the problem
of offloading decisions and resources allocation in the
orthogonal multiple access (OMA) settings. Chen et al
in [15] deployed a deep reinforcement learning (DRL) based
decentralized dynamic computation offloading strategy. They
adopted deep deterministic policy gradient (DDPG) to enable
each UE to leverage only local observation of the MEC
system. This leverages gradually learn efficient policies for
dynamic power allocation of both local execution and com-
putation offloading in a continuous domain. Huang et al.
in [16] with an objective to acquire an online algorithm
under time-varying wireless channels, jointly optimized the
task into offloading decision and wireless resource allocation
to maximize the system-wide computation rate of all UEs.
Li et al. in [21] dedicated their efforts to design a rein-
forcement learning (RL)-based MEC computation offload-
ing system as a replacement of Markov decision process
(MDP). This MDP can obtain an optimal policy by dynamic
programming methods, which require a fixed state transi-
tion probability matrix p. However, as the number of users
increases and when the environment is not explicitly defined
(channel dynamism), the MDP becomes impractical. With a
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goal to reduce the system-wide sum cost, they first designed
a Q-learning and then improved their model by using deep Q
network (DQN).

In the above papers, the deployed techniques in MEC are
in the OMA settings, where multiple UEs share a wireless
channel by yielding one another in either time (e.g., TDMA)
and frequency (e.g., OFDMA). In contrast with OMA where
radio resources are allocated orthogonally to multiple users,
NOMA allows multiple users to share the same resources
[22]-[24]. By serving multiple users simultaneously over
the same radio resources, more users can be supported, thus
leading to a significant increase in the network capacity and
system throughput [17], [24]. To this end, NOMA technique
has been recognized as a promising solution for 5G and have
attracted extensive research recently. These advantages of
NOMA are nevertheless available at the expense of intra-cell
interference as well as additional complexity at the receiver
side. To deal with this intra-cell interference and the com-
plexity, NOMA splits the users in the power domain based
on their respective channel conditions. At the receiver side,
it employs efficient multi-user detection techniques such as
successive interference cancellation [23].

Kiani et al. in [17], as the very first attempt to reap the
potential gains of NOMA in the context of MEC, proposed
an edge computing aware NOMA technique. Wang et al.
in [18] studied MEC system with multi-antenna NOMA-
based computation offloading. They considered the partial
offloading case, such that each user can partition the com-
putation task into two parts for local computing and offload-
ing. Under this setting, they minimized the weighted sum
of energy consumption of all users subject to computation
latency constraints. Ning et al. in [25] used a hybrid computa-
tion offloading framework for real-time traffic management
in 5G networks. Specifically, they considered both NOMA
enabled and vehicle-to-vehicle (V2V) based traffic offload-
ing. The problem was formulated as a joint task distribution,
subchannel assignment, and power allocation problem, with
the objective of maximizing the sum offloading rate. It is
worth noting that in our paper subchannel and subcarrier
terms have the same meaning and can be used interchange-
ably. Gui et al. in [26] proposed a novel and effective deep
learning (DL)-aided NOMA system, in which several NOMA
users with random deployment are served by one base station.
They proposed it as a remedy to the fundamental limits of the
existing NOMA systems such as high computational com-
plexity and sharply changing wireless channels. These limits
make exploiting the channel characteristics and deriving the
ideal allocation methods very difficult tasks. Even though
this paper tried to address the issue of variability of chan-
nel environment, it still needs deep neural network (DNN)
labeled training processes which also increase the complexity
of NOMA systems especially when there is a large number of
UEs as it is the case in 5G and IoT technologies [27], [28].

After analyzing all the improvement made on MEC, and
also the benefits of NOMA as an effective solution to increase
MEC capacity, we aim at investigating a NOMA-based
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MEC computation offloading scheme that uses DRL and
can adapt the changeability of wireless channel, and can
also work in the settings without necessarily proving labeled
data samples to train DNN. To the best of our knowledge,
this work is the first attempt to exploiting the benefits
of DRL for MC-NOMA-based MEC computation offload-
ing where environment (channel gains) cannot be modeled.
Differently from other reinforcement learning algorithms like
DQN or Q-learning [29], we do not necessarily need to
store Q values, and the training of DNN is accomplished
following experience replay as is in [30], [31]. Recently,
Yang et al. in [32] considered a cache-aided NOMA MEC
system. They employed a long-short term memory network
to predict the traffic patterns and task popularity. They
also applied single- agent Q-learning algorithm for resource
allocation and multi-agent Q-learning algorithm for task
offloading decisions. In [33], Doan et al. investigated two
methods for optimizing power allocation in cache-enabled
NOMA systems: a divide-and-conquer-based method and a
DRL-based scheme. Differently from the studies in [32], [33],
our work considers multi-carrier NOMA enabled MEC sys-
tems and proposes a DRL algorithm, by which both offload-
ing decisions and subcarrier assignment are optimized.

With an objective of maximizing the system computation
rate (in terms of bits processed over a given time duration),
we propose an Online Computation Offloading using DRL
algorithm to solve the problem of offloading decision and
subcarrier allocation in Multi-carrier NOMA-enabled MEC
systems (DRLOCO-MNM). The novel contributions of our
paper can be summarized as below.

1) By establishing an MC-NOMA system, we attempt to

solve the problem of subchannel allocation by using
DRL for the first time. We apply this technique instead
of the traditional DL algorithms which require fre-
quent parameter updating (training) such as Gui et al.
in [26] and complete awareness of the channel envi-
ronment, and other traditional optimization-based algo-
rithms which are complex and hard to solve.

2) With the DRLOCO-MNM module, the NOMA-based
MEC system can afford to accommodate considerable
high capacity. In fact, NOMA is able to accommodate
many UEs. Defining their offloading decisions could be
obviously difficult if algorithms other than heuristics,
using for instance Branch and Bound such as [34],
are used. Interestingly, our proposed DRLOCO-MNM
algorithm helps many UEs decide their offloading
modes by considering few actions, and also assigns
subcarriers without complex optimization problems.
Therefore, it can easily serve more UEs by solving their
computation modes (i.e., local computing at the UE
or edge execution at the MEC server) and subcarrier
allocation by considering only two binary actions 0
or 1 for each UE.

3) We simulate the results of our proposed DRLOCO-
MNM algorithm, and the results witness that our
model contributes to a remarkable increase of MEC
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computation rate. The system-wide weighted sum com-
putation rate increases as the number of subchannels
also increases.

4) We evaluate the performance of our DRLOCO-MNM
algorithm by comparing it with OMA (TDMA)-based
algorithm, optimal (exhaustive search) algorithm, edge
computing and local computing algorithms. The results
show that our algorithm achieves near-optimal perfor-
mances and outweighs the other algorithms.

5) Moreover, with this DRLOCO-MNM module we can
adjust the proportion of the UEs which can upload their
computation tasks through NOMA to the MEC server
and those which can run their computation locally.
This is especially beneficial to NOMA as it, in some
circumstances, is subject to changes of bandwidth or
experiences a high level of noise.

The remaining part of this paper is organized as follows.
In Section II, we describe the system model and prob-
lem formulation. In Section III, we describe in details the
DRLOCO-MNM algorithm used in the MC-NOMA MEC
system. Section IV is dedicated for the numerical results
presentation and finally we conclude our paper in Section V.

Il. SYSTEM MODEL

A. NETWORK MODEL

In our work, an MEC architecture with N UEs and one
Macro-eNodeB (MeNB) is considered as shown in Fig. 1,
where an MEC server is co-hosted with the MeNB. We define
twosets N = {I,...,N}and S = {1, ..., S} denoting the
set of UEs and orthogonal subcarriers, respectively. Since in
NOMA a subcarrier can be shared by many UEs, the received
signal of the n-th UE at the MeNB contains not only desired
signal but also interfering signals from co-sharing UEs.
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FIGURE 1. The illustration of an MC-NOMA MEC system, where more than
one UE can utilize the same spectrum resource for computation
offloading.
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Let U denotes the set of orders of UEs sharing subcarrier s.
It is assumed that each UE can utilize at most one subcarrier
to offload its computations to the MEC server. We have

UsNUy =8, ¥s # ', and e slhs = N.

B. COMMUNICATION MODEL

Let X = {xguls € S,n € N} denotes the offloading
decision profile. If the n-th UE does not utilize subcarrier s,
Xs; = 0 whereas x5, = 1 otherwise. Since each UE can
share the uplink spectrum resource from no more than one
subcarrier, we have the following constraint:

Y xm <1, Vnel. (1)
seS
If U] = 1,¥Vs € S, NOMA-enabled MEC becomes

OMA-enabled MEC, where each subcarrier is assigned to
at most one UE. From the above offloading profile, we can
deduce another variable x, for each UE to characterize
whether the local computing or remote execution mode is
utilized. x,, = 1 if the n-th UE decides to offload its com-
putations to MEC or x, = 0 when the n-th UE runs its
computations locally. We can easily deduce from Eq. (1) the

following equality:
3 o = 2)

seS

Let hg,(¢) denotes the uplink channel gain between the
MeNB and the n-th UE at the time frame ¢ and py, denotes
the transmit power of the n-th UE, both on subcarrier s. The
channel gains on the subcarrier s are sorted in the ascending
order and the bijection bg(-) represents this order, where
bs(j) denotes the position of UE j in the sorted sequence
on subcarrier s. This is in accordance with the fact that in
power-domain NOMA [23], the decoding order for uplink
NOMA follows the decreasing order of the channel gains
normalized by noise, while that of downlink NOMA is the
increasing order [35]. In the uplink NOMA, the MeNB will
start by decoding the powerful N-th UE’s signals and perform
SIC to cancel the resulted interference. Then it will proceed
on decoding the (N — 1)-th UE’s signal and so on. Therefore,
when decoding UE j’s message, the signals intended for all
UEs i, where i > j, are canceled whereas the signals of
the UEs with i < j are treated as noise. Without loss of
generality, the received signals from UEs with bs(j) < by(i)
is not decoded by UE i and thus is treated as noise [36]-[38].
The signal-to-interference-plus-noise ratio (SINR) of UE n
on subcarrier s is expressed as follows:

pS}’l hsn (t)

Z psjhxj(t) + no '
jeJ (s,n)

SINR,(t) = 3)

where 7 (s, n) denotes the set of UEs, on subcarrier s, whose
signals are treated as noise at the n-th UE. That noise is
defined as J(s,n) = {j € Us : bs(j) < bs(n)}. For a more
simplified presentation we encourage the interested readers to
read [39] where two-user decoding scheme has been studied.
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This interference combines both the channel intrinsic noise
power ng, and the sum Zje J(s.m Psjltsj(t) which is the inter-
ference introduced by co-subcarrier UEs. For UE n on subcar-
rier s, the achievable data rate is Ry, = Blog,(1 + SINRs;,),
where B is the bandwidth of an orthogonal subcarrier.

C. COMPUTATIONAL MODEL

Each UE n has a computational task of /, = (D,,, C;;) where
D,, denotes the input data size (in bits) and C, denotes the
computation workload (CPU cycles per bit) of UE n.

In the local computation mode, i.e., x, = 0, the UE relies
on its capability and processes its applications. Let f,f denotes
the computing speed (CPU cycles per second) of UE n where
the superscript / symbolizes the local computation mode. The
task I, completion time can be computed as 7! = (D, x
Cn) /fnl and it can be easily shown that the computation rate
achieved by the n-th UE in the local mode depends on its CPU
computing speed and is expressed as follows:

1
1 f;z
r n — C_n (4)
In the case of remote computation, i.e., x, = 1, the pro-

cessor’s computing speed of the n-th UE is supposed to
be unable to accomplish the task given, therefore it seeks
help on the MEC server to run its heavy computations.
Consequently, it uses one of the subcarriers to send its task
to MEC server. The computation rate of the n-th UE in
offloading mode can be expressed as follows:

psnhm(t)

Z psjhsj(t) + no
jeJ (s,n)

&)

6 =BY xmlogy | 1+
seS

The metric “computation rate” has been considered and
evaluated in many existing studies on MEC, e.g., compu-
tation rate maximization in wireless powered MEC system
with partial offloading and binary offloading [40], [41], and
in UAV-enabled wireless powered MEC system with both
partial and binary offloading [42]. It is worth mentioning that
other performance metrics can be used in our DRL frame-
work, such as, energy efficiency and completion latency [43],
and computation overhead [4], [9].

D. PROBLEM FORMULATION

We aim to maximize the system-wide computation rate of the
MC-NOMA based MEC network in a tagged time frame .
We define the matrix of channel gains at the time frame ¢
as H(t) = [h((¢),hy(), ..., hs(t)] and each element of
H(t) is defined as hy(t) = [hs1(2), hy(2), ..., hgy(2)] that
denotes the time-varying wireless channel gain of the N UEs
on subcarrier s at the time frame ¢. Thus, the weighted sum
computation rate of the MEC system is denoted as

N
OH,X) & an ((1 —x,,)r,l, +x,,r,‘,’) , 6)
n=1
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FIGURE 2. The schematics of the proposed DRLOCO-MNM algorithm.

where w,, > 0 denotes the weight assigned to the n-th UE
and r; is the computation rate of the n-th UE in the chosen
subcarrier s out of all other subcarriers calculated using
Eq. (5). For each channel realization H, we are interested
in maximizing the total weighted sum computation rate as
follows:

O*(H,X) = m;le(H,X)

subjecttonmfl, VneN, se€S. (1)
seS

The primordial step to solve this system-wide computation
rate is to determine the value of x,, and deduce x;,, which are
subcarrier allocation and offloading decision, respectively.
To solve it, we adopt the algorithm in [16] and modify it so
that our proposed algorithm not only solves the offloading
decision as it did in the original work but also assigns subcar-
riers to UEs, along with other tasks in the MC-NOMA based
MEC settings considered in our work.
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Ill. THE DRLOCO-MNM ALGORITHM

Deep reinforcement learning shares the same basic con-
cepts with reinforcement learning in that it is also an
agent-environment interaction process. However, reinforce-
ment learning becomes less effective when dealing with
actual complicated problems of high dimensional-state and
action spaces. To overcome this challenge, DRL is built in
two components: offline DNN and online Q-leaning [44].
In the offline phase, a DNN is constructed, which can infer
for each state-action pair its Q value to be used for the online
phase. Sufficient training data is needed for the offline DNN
construction. In the online phase, deep Q-learning is adopted
for the action selection (i.e., the e-greedy policy, in our case
this is the computation of Q*(H, X)) and Q value update.
In an online learning case, the agent gradually gathers expe-
rience in the environment. The online offloading property of
the DRL lies on the fact that its interaction with the channel
environment is on the go basis, without prior training of
data [44], [45].
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The detailed schematic diagram of our DRLOCO-MNM
algorithm can be seen in Fig. 2. It is composed of three
main consecutive stages namely offloading action generation,
offloading policies update, and subcarrier selection for UEs.
At each time frame ¢, the DNN receives S subcarriers’ chan-
nel gain vectors in the form of H(¢) as inputs ag\d each of its
elements generates relaxed offloading actions X (7). As the
output of the DNN, the offloading action value of each UE
is not a binary O or 1. This relaxed value is represented by
a parameterized function fj(,) such that X s(t) = fo) (hs(2)),
where

X (1) = Gan()IEm(@) €10, 11,n=1,...,N},

and X;,(7) denotes the n-th entry of X s(t). By parameterized
we mean that its values depend on the parameters 6(¢) of
the DNN and those parameters change when experiment
replay training is performed which also means that the relaxed
values change whenever we train the DNN.

This relaxed value is then quantized following a quantiza-
tion function g defined as

gk Xy > fxglesk € [0, 11N, k=1,...,K}

to generate multiple binary actions among which we choose
the best offloading actions x} € [0, I]N . The quantization
adopted is the order preserving quantization (OP) method that
produces at most N binary offloading actions and has the
advantage of balancing the algorithm complexity and perfor-
mance (the more number of offloading actions K, the more
the accuracy of learning but the more the complexity). Also
more details on this quantization process and OP quantization
method can be found in [16].

Each of the subcarriers goes through the same process:
Apply the channel gain to DNN, compute the optimal reward
Q*(hy, xg) and then consider the corresponding action as the
optimal one x}. Then we deduce the reinforcement learning
policy as

7 hy > X}, 8)

This optimal reward is the highest computation rate of the
action k, out of all the other K actions, computed over all the
UEs.

All the channel gains hy(f) of H(t) at the time frame ¢
along with the best action x} are stored in the memory and
will be used to train the DNN after some interval of time §.
The n-th UE compares the possible reward in terms of com-
putation rate it may benefit from using a subcarrier s and
chooses accordingly. If the n-th UE cannot benefit from all
the subcarriers (the optimal actions of the n-th UE at time
frame ¢ seen in all subcarriers is a binary 0), the offloading
mode will be local computation. By contrast, if it realizes an
optimal reward in a subcarrier s (at least one optimal action
of the n-th UE at time frame ¢ seen in all subcarriers is a
binary 1), comparatively to the other subcarriers, it chooses
that subcarrier and offloads its computations to the MEC
server. As it can be seen in Fig. 3, at the time frame 7, each
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FIGURE 3. Subcarrier selection process.

subcarrier channel gain shall generate an offloading decision
and rewards for each UE. Then each UE shall choose one
of the subcarriers by comparing all the possible rewards in
those subcarriers. If in all subcarriers the offloading decisions
are all zero for a particular n-th UE, that user shall solve
its applications locally. By contrast, if at least a binary 1 in
the offloading decisions is found in one subcarrier or more
according to Fig. 3, the user shall use the subcarrier with
the highest reward and send its computations to the MEC
server. The detailed process can also be read in Alg. 1.

Based on the steps of our DRLOCO-MNM algorithm,
the process involved and the output desired, we devised the
Alg. 1. The algorithm runs in one time frame and runs for
all subchannels. Its inputs are the channel gains of UEs on
multiple subcarriers and the output is the offloading decisions
of UEs and their corresponding allocated subcarriers in the
case of remote computation. The proposed algorithm runs as
follows:

« Firstly, the algorithm initializes the DNN with random
parameters 61, where the subscript 1 means initial time
frame, and empties the DNN memory R. It also sets the
iteration number, which is the number of time frames it
runs, and specifies the number of subcarriers to be used
and the time interval after which the DNN memory shall
be trained.

« Secondly, the algorithm goes through the actual process
of generating outputs by running from 1 to a maximum
M times (line 4 up to 26). In a typical time frame,
the algorithm connects the DNN to a number of channel
gain vectors ofA different subcarriers (line 5 to 14), and
each produces X ;. Then, the relaxed values are quantized
into K offloading actions, each k having N binary num-
bers. Each user is assigned either O or 1, which defines

99103



IEEE Access

M. Nduwayezu et al.: Online Computation Offloading in NOMA-Based MEC: A DRL Approach

Algorithm 1 The DRLOCO-MNM Algorithm to the Offload-
ing Decision and Subcarrier Allocation Optimization in
MC-NOMA MEC Systems
1: Input: Channel gains H (¢) at the time frame 7.
2: OQutput: Offloading action xg,, Vs € S,n € N, and cor-
responding allocated subcarriers, both at the time frame
t.
3: Initialize the DNN with random parameters 6; and empty
the memory R. Set the iteration number M, number of
subcarriers S, and the training interval §.

4: fort=1,...,M do

5: fors=1,...,Sdo

6: Generate relaxed actions X s(t) = for) (hs(t)).

7: Quantize X s(t) into K binary actions gi (f S(t)).
8: Compute Q* (hy(t), xg) for all {xg,k =

I,...,K}.
9 Select x}(t) = argmax Q* (hy(t), xs).
=1,...,

10: Update the memory by adding (hy(t), x¥,) in R.
11: forn=1,2,...,Ndo

12: Compute the Q* (hs,,(t), x;"n(t)).

13: end for

14: end for

15: for n=1,...,Ndo

16: if x},(t) =0 forall s € S then

17: Xn = Y. ses¥sn = 0: local computation

mode.

18: else if x (t) # O for at least one subcarrier then
19: xp = 1 and s* = argmax Q* (he (1), xJ,).
20: end if s
21: end for
22: if t mod 6 = O then
23: Uniformly sample a batch of data set

{(hsr, x3)|T € 7(t)} from the memory.

24: Train the DNN with {(h,x})|T € ©(¢)} and
update 0(t) using the Adam algorithm.

25: end if

26: end for

its computation mode. Among those different quantized
values, the algorithm selects the best (x}) based on the
calculated reward. It computes the weighted sum com-
putation rate that would be incurred by adopting each xy
and then compares them. It then selects the best action
as the one corresponding to the highest return.

o Thirdly, the algorithm updates the memory with that
optimal action and the current channel gain A;.

« Fourthly, the algorithm computes and stores the returns
of each UE on its action in the optimal quantized
value x} (lines 11 to 13) and then the loop which runs
through all subcarriers terminates.

« Fifthly, the algorithm goes through the returns of each
UE computed in all subcarriers and compares them
to choose the best return value and its corresponding
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subcarrier (lines 16 to 22) according to the concept
shown in Fig. 3. At this stage, the subcarrier is allocated.
As the optimal actions have been also stored along with
the optimal returns of all UEs, the algorithm checks the
action values binary) for each user and if they are all
zeroes, the n-th UE handles its computations locally, but
if at least one binary 1 is present, the UE uses the remote
computation mode.

o The last stage of the algorithm is the training of the
DNN memory (lines 22 till 25). It does so by retrieving
a batch of channel gains and corresponding optimal
values, which have been stored in the memory at each
channel gain realization. The output of the training is the
parameter of DNN 6 that is used to train the next time
frame.

With this training, the DNN runs from the past channel to
gain the optimal action values and then becomes smarter.
Therefore in the next realization of the channel gain, the DNN
shall generate better more actions to improve the return
(computation rate).

IV. PERFORMANCE SIMULATIONS

A. DNN MEMORY SETTINGS AND TRAINING

The DNN of the DRL we used is composed of one input layer,
two hidden layers, and one output layer. The first and second
hidden layers have 120 and 80 hidden neurons, respectively.
We implemented the DRLOCO-MNM algorithm in Python
version 3.6.4 with TensorFlow 1.4. The batch size defined
as I', was set to be 128, 256, and as high as 512 according
to the number of subcarriers used so that it can train as many
samples as they are stored in memory. The memory size was
set to be 1024. Our algorithm updates the memory S times
in each time frame. In order to avoid the risk of training the
memory (changing the parameters 6(¢)) in the middle of time
frame ¢, a risk that could cause some subcarriers to be treated
at different 0 parameters, we set the training interval to be
proportional to the number of subcarriers employed as § =
V x §, where V is a constant.

The time-varying channel gain we used h(¢) is generated
according to hg,(t) = Hgnotsn(t). Where ag,(¢) is an indepen-
dent random channel fading factor distributed exponentially
around a unit mean. In the same expression, Ay, is the average
channel gain that follows the free space path loss model /g, =

3.108 \
4\ 4xf.d,
gain, carrier frequency, path loss exponent and distance from
the n-th UE to the MeNB, respectively. In the experiment we
used Ay = 4.11, f = 915 Mhz and d, = 2.8. The value
of d,, used is in the range of (2.5, 5.2) meters with uniform
distribution [16].

, Where the Ay, f;, de, and d,, are the antenna

B. COMPUTATION RATE PERFORMANCE

Now each UE has decided its computation mode and the
offloading UEs have been allocated subcarriers to migrate
their heavy computations to the MEC server. The task to be
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accomplished by each UE is done by either the UE locally or
by the MEC server remotely.

The computation task assigned to the UEs is the face recog-
nition application, where the task / is set as I = (420, 1000);
the computation input data size (420 in kB) and the total
required number of CPU cycles in Megacycles, respectively
[9], [46]. The CPU computational capacity fnl of UE is set
to be 1.0 GHz. The noise power np = —100 dBm and the
transmit power is set to be 20 dBm for all UEs [9]. The system
bandwidth is 10 MHz and subcarrier bandwidth is assigned
according to the number of subcarriers we use. For example,
if the number of subcarriers is 5 each of those subcarriers shall
have 2 MHz. With this system bandwidth, we are expecting
more than 10 UEs to benefit from it and send their application
to MEC server because they can share subcarriers. However,
if OMA is used, at maximum only 10 UEs can be deployed
in this system. At this end, the capability of MC-NOMA to
increase system capacity is reiterated.

Our goal is to maximize the system-wide computation rate,
which is the sum of computation rates of all UEs. We start
by plotting in Fig. 4a the computation rates of different
subcarriers when the time frame is 100 with a rolling interval
of 50. We plot it on a short time frame scale to show that
the computation rates reach stability after some time frames.
The ‘xCh’ on the legends, stands for the number of channels
or subchannels used by the MC-NOMA system. In Fig. 4b,
we then plot the computation rates under different subcarriers
when the number of time frames is 3000 and rolling interval
is 100. From that figure, we can see clearly that as we increase
the number of subcarriers, the computation rates increase.
We also notice that the computation rates have already sta-
bilized to a certain value at time frame of 3000. Moreover,
as the sum computation rates are the results of comparison
among different channel gains, we have some fluctuations in
the convergence of the optimal computation rate especially
when the number of subchannels of the NOMA-based MEC
system increases. However, what is interesting, and as the
main goal of our MC-NOMA based MEC is to have improved
computation rates by increasing the number of subchannels.

C. COST FUNCTIONS
The loss function used to train the DNN (updating the 6(¢)
parameters) is defined as an average cross-entropy loss as:

1 T
LOWO) =~ Py ( (%) " log o) (se)

+ (1 _x:)—r log (1 _f(-?(t)(hst)) )’

where |7(¢)| denotes the size of 7(¢), the superscript T indi-
cates the transpose operator, and the log function denotes
the element-wise logarithmic operation of a vector. This loss
function applies the ADAM algorithm and we direct readers
to read [47] for a more detailed explanation.

Our proposed algorithm has the advantage of increasing
the convergence speed when training DNN and this speed
increases as the number of subcarriers of our MC-NOMA
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FIGURE 4. Moving average of the system-wide weighted sum of
computation rates Q of different subcarriers.

system also increases. This can be clearly seen from the cost
functions plotted in Fig. 5. The training steps required to
converge reduce as we increase the number of subchannels
used. We can visualize that the convergence is reached at
150 training steps in the case of 1 subchannel, about only
50 training steps for 2 subchannels, and about only 10 train-
ing steps for the 10 subchannels. These observations justify
the reason why our DRLOCO-MNM algorithm learns fast.
Intuitively, this fast convergence is attributed to the fact that
the DNN memory R of the DRLOCO-MNM records many
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FIGURE 5. Training loss function of DNN for different subcarriers when
time frames is 300.

different optimal offloading actions x} of different channel
gains in a single time frame; therefore, the proposed algo-
rithm realizes the optimal offloading policy quickly. And
these optimal offloading policies are applied to every h(t)
element of H(¢). On the Fig. 5, the learning steps are 1/10
of the total time frames used. This is a result of the training
interval (§) used which is 10, 20 and 100 for single channel,
2 channels, and 10 channels, respectively.

D. COMPUTATION RATE PERFORMANCE COMPARISONS
OF DIFFERENT ALGORITHMS

In Fig. 6, we compare our DRLOCO-MNM algorithm
with four different other algorithms. We first compare with
another DRL based algorithm, namely DROO, but with
OMA (TDMA) settings [16]. Then, inorder to assess the gain
of using DRL-based algorithm, we also compare our algo-
rithm against three non-DRL based representative benchmark
algorithms:

o Exhaustive search: In this algorithm we exhaustively
enumerate all the possible combinations of UEs’ com-
putation modes and subcarrier allocation and then output
the best performer in terms of computation rate. Here,
if § = 1 we would have a binary choice; all the users
compute either locally or remotely by using a single
subcarrier. If § = 2, all UEs would have three options
namely local computation, remote computation with
subcarrier 1 or remote computation with subcarrier 2.
Thus we choose the optimal option among all those
possible for all the UEs.

« Edge computing: In this algorithm we presume that all
UEs are incapable of carrying out their computations
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therefore we force them to offload their computations
to the edge (MEC), i.e.,x, =1,n=1,...,N.

o Local computing: In this algorithm we presume that all
UEs have a sufficient computation capability therefore
we force them to carry out their computations locally by
themselves, i.e.,x, =0,n=1,...,N.

We simulate the performances of those different algo-
rithms under varying number of subcarriers. Because a high
number of users would render our simulation prohibitive,
we limit our simulation to 3 UEs. Each point in the figure is
an average computation rate calculated over 1000 different
wireless channel realizations (1000 time frames). With our
DRLOCO-MNM, offloading UEs communicate their com-
putations simultaneously by using different subcarriers dif-
ferently from the DROO (OMA) which sequences its users
over time on a single carrier. Thus from the Fig. 6 the com-
putation rate of our algorithm increases with the increase in
the number of subcarriers while that of the DROO remains
constant.

The same figure shows that our algorithm can achieve
a near-optimal performance. The computation rate of our
DRLOCO-MNM algorithm and that of the optimal algorithm
(exhaustive search) are quite similar. When compared to the
edge, our algorithm tremendously outperforms it. The first
reason for this is because all UEs in the edge computing
migrate their computations to MEC regardless of the channel
conditions, i.e., whether the channel gain is low or high, there-
fore they miss the leverage of their computation capability
when the channel environment is unfavorable. The second
reason is a high co-channel interference. This results from
the fact that all UEs need a subchannel to send their data
to MEC.

The weighted sum computation rate achieved by the local
computing algorithm is the lowest of the four. Indeed it is
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because the performance of this algorithm depends on the
UE’s computation capability f,,l which is lower compared
to that of MEC. However, it is also worth noting that the
UEs forced to run their computations locally miss to enjoy
the high computations that the edge offers when the channel
environment would be favorable for them. We also remind
that the computation rate is independent of the subcarriers
used as there is no channel needed. In fact, this comparison of
our algorithm against the DROO and the other non-DRL algo-
rithms shows that it can significantly increase computation
rate when the number of subcarriers is increased and that it
can adapt to the dynamism of wireless channel environment.

E. PROPORTION OF UEs IN LOCAL COMPUTATION

The proportion of UEs computing their applications locally is
relatively lower than those sending their computations to the
MEC server. That proportion depends highly on the number
of subcarriers used and the initial level of quantization (K) of
the relaxed output (i ) from DNN. As it can be seen in Fig. 7a,
where K is 10, the number of UEs in local mode is zero
except when we use 2 subcarriers where we have only one
instance of UE in local mode. By contrast, when we decrease
the value of K down to 2 as in Fig. 7b, the number of UEs
computing locally increases noticeably reaching even four
in the case of 2 subcarriers but only 1 for 10 subcarriers.
The intuition behind the decrease in the local UEs as we
increase the number of subcarriers is because UEs have more
option of subcarriers to choose from therefore a few of them
compute locally. Moreover, the UEs in local mode increase
following a decrease in K level because the DRLOCO-MNM
algorithm does not explore many combinations (actions) of
UEs, thus resulting in many zeros (the UEs in local mode
have 0 in all subcarriers). This is another advantage of our
DRLOCO-MNM algorithm because it gives option to regu-
late the number of UEs on the available number of subcarriers
(accordingly bandwidth size).

F. COMPUTATIONAL COMPLEXITY

The complexity of our algorithm in terms of time of exe-
cution depends highly on the offloading decision and sub-
channel allocation stages. Table 1 compares the CPU times

TABLE 1. Comparison of time complexity of different algorithms. The
times are measured in seconds.

Algorithm CPU time DNN train time
ISC | 5.9 x 1072
2SC | 5.2x 1072
DRLOCO-MNM 3SC | 5.1x 102 1.8 x 103
58C | 4.9x 1072
10SC | 4.4 x 10~ 2
ISC | 8.8 x 1072
2SC [ 1.3x 1071
Exhaustive search 3SC 2.1x 101 no DNN
58C | 3.2x 10T
10SC | 5.1 x 1071
DROO (OMA) 3.4 x 1072 2% 1073
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FIGURE 7. Proportion of UEs in local computation for different numbers
of subcarriers.

of the different algorithms. We can easily notice that the
time complexity of exhaustively enumerating all the possi-
ble offloading modes is the highest of the three algorithms.
The high computation rate that can be achieved by that
algorithm (optimal) comes with the cost of time. Obviously
this algorithm would be impractical with a high number of
users. In addition, this optimal algorithm is also unfavorable
with MC-NOMA because its CPU time increases when the
number of subcarriers also increases as it can be seen in the
table. By contrast, our algorithm which uses MC-NOMA has
another advantage of saving CPU time when it uses more
subcarriers. This is since the training interval as has been
defined in Subsection A. The more the number of subchan-
nels, the fewer frequencies of training. When the CPU time
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of our algorithm is compared to that of the DROO that uses
OMA (TDMA) we observe that our algorithm tends to be
slightly more time complex than DROO. This time complex-
ity discrepancy between the SC-NOMA and DROO (OMA)
algorithms, 5.9 x 1072 against 3.4 x 1072, is the result of the
fact that our algorithm requires time to decide a subchannel in
addition to the CPU time required to decide offloading status.
However, the time required to train DNN is almost the same in
both algorithms, 1.8 x 10~3 seconds to train the DNN in our
algorithm is approximately the same as 2 x 10~ seconds of
the DROO algorithm. We opt not to include edge and local
computation algorithm in the complexity analysis because
they do not run the process of choosing the computation
mode, a process which is key to the time complexity.

V. CONCLUSION

In this paper, we considered an online algorithm to maxi-
mize the weighted sum computation rate of an MC-NOMA
enabled MEC network with binary computation offloading,
and proposed a DRL-based algorithm, DRLOCO-MNM,
to solve both the computation mode and subcarrier alloca-
tion. Thus instead of requiring manually labeled data train-
ing, the proposed algorithm can learn by experience replay
to improve the computation offloading policy. Simulation
results showed that our algorithm can achieve near-optimal
results and significantly achieves higher computation rates
as compared to the OMA (TDMA) based algorithm scheme.
Also, the convergence speed of our DRLOCO-MNM algo-
rithm improved. This improvement is a result of the fact
that the proposed algorithm realizes many optimal offloading
actions in one time frame, in addition to order-preserving
quantization and adaptability of the algorithm in setting the
DNN parameters by experience replay.
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