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ABSTRACT Template based learning, particularly Siamese networks, has recently become popular due
to balancing accuracy and speed. However, preserving tracker robustness against challenging scenarios
with real-time speed is a primary concern for visual object tracking. Siamese trackers confront difficulties
handling target appearance changes continually due to less discrimination ability learning between target
and background information. This paper presents stacked channel-spatial attention within Siamese networks
to improve tracker robustness without sacrificing fast-tracking speed. The proposed channel attention
strengthens target-specific channels increasing their weight while reducing the importance of irrelevant
channels with lower weights. Spatial attention is focusing on the most informative region of the target feature
map. We integrate the proposed channel and spatial attention modules to enhance tracking performance
with end-to-end learning. The proposed tracking framework learns what and where to highlight important
target information for efficient tracking. Experimental results on widely used OTB100, OTB50, VOT2016,
VOT2017/18, TC-128, and UAV123 benchmarks verified the proposed tracker achieved outstanding perfor-
mance compared with state-of-the-art trackers.

INDEX TERMS Deep learning, Siamese architecture, stacked channel-spatial attention, visual object
tracking.

I. INTRODUCTION
Visual object tracking is a fundamental and challenging task
for a wide range of computer vision applications, including
intelligent surveillance [1], autonomous vehicles [2], game
analysis [3], and human-computer interface [4]. An object
bounding box is usually provided in the first frame of a video,
and the tracking algorithm predicts new object locations in
succeeding frames. Although many frameworks have been
proposed, it remains an arduous task to develop a generic
object tracker to handle various tracking challenges such as
scale variation, illumination variation, fast motion, motion
blur, occlusion, deformation, and background clutter.

Generative and discriminative strategies are commonly
employed to solve the visual tracking problem. Generative
strategies construct an analogous appearance representation
for the target to find candidate positions in successive frames
using neighborhood location searches around the existing
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target [8]. Discriminant strategies consider classification or
regression frameworks to discriminate foreground from back-
ground for solving the tracking problem [9].

However, predicting target locations using discrimina-
tive methods classically requires large datasets for train-
ing or updating online to ensure acceptable classifier
performance. This situation has altered somewhat with
the introduction of the minimum output sum of squared
error (MOSSE) [10] filter, which allows adaptive training
schemes to perform robust and efficient object tracking.
The MOSSE filter uses a Fourier transform to minimize
the sum of the squared error between actual and desired
output. Several previous studies have proposed approaches
based around the MOOSE filter, e.g. CSK [11] used ker-
nel methods to improve the underlying MOSSE filter, and
CN tracker [12] employs color attributes to improve input
data representation. However, handling challenges using
hand-crafted features, such as histogram of oriented gradi-
ents (HOG) and color histograms with discriminative corre-
lation filters (DCFs) significantly reduce performance due to
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circular boundary effects, hence they are unsuitable for active
tracking.

Recently, due to the powerful feature representation ability
of the Convolutional neural networks (CNNs), have gained
considerable research attention recently in many computer
vision fields, such as semantic segmentation [13], object
detection [14], and activity recognition [15]. Deep fea-
tures are exploited within DCF based trackers to address
these challenges, including HDT [16], deepSRDCF [17],
and ECO [18]; or deep tracking frameworks MDNet [19],
CNNSI [20], and FCNT [21]. However, using the pre-trained
model as the tracker backbone for feature extraction is
unsuitable due to inconsistencies between tracking and other
visual tasks. Although CNNs provide better tracking, their
data-hungry characteristics require considerable effort to col-
lect sufficient data to train the end-to-end network. Ultimate
tracking in real-time with good accuracy also needs to be
considered when designing the tracker.

Several trackers have been proposed to overcome these
difficulties. For example [5], [22], [23] consider track-
ing as a matching problem to learn similarity measures
in end-to-end learning. The main advantage of similar-
ity learning is that it employs offline end-to-end training
to balance between speed and accuracy. Superior Siamese
network matching can match the most analogous patch
based on the target template, hence Siamese networks have
shown great success in tracking. Recently, SiamFC [5] has
gained enormous popularity for tracking due to its bal-
anced performance using a simple Siamese architecture.
Other siamese based trackers, for example, DsimaM [7]
learns background suppression and appearance variations
from earlier frames using a fast transformation learning
model; whereasDCFNet [6] integrates a discriminant correla-
tion filter (DCF) within a lightweight architecture and drives
back-propagation to adjust the DCF layer using the probabil-
ity heat map of the target location. However, these approaches
lack robustness and are weak for handling challenging sce-
narios, particularly when for object appearance changes, as
shown in Fig. 1.
To handle the aforementioned tracking challenges, we

propose an extended underlying Siamese architecture incor-
porating stacked channel-spatial attention (SCSAtt) in the
template branch with end-to-end trainable architecture. The
SCSAtt channel attention module enhances target adaptabil-
ity by utilizing different weights for channels depending
on their contribution. After computing channel attention,
we employ a spatial attention module to emphasize the most
informative region on the feature map and hence identify
the target location. The overall attention mechanism helps
to improve feature representation power and discrimina-
tive ability, ensuring high tracking performance. We employ
offline training to learn the similarity map, providing com-
putational efficiency during tracking. The overall attention
mechanism is extremely flexible to integrate with the Siamese
architecture. We validated the effectiveness of our proposed
framework using several challenging benchmarks [24]–[30]

FIGURE 1. Compared our proposed tracker with siamese based trackers
including SiamFC [5], DCFNet [6], and DsimaM [7] for MotorRolling
(left column), Soccer (middle column), and skating2-2 (right column).

and compared performance results with other state-of-the-art
trackers.

The main contributions from this study are as follows.
• We present stacked channel-spatial attention within
a Siamese framework to learn effective feature
representation and discrimination ability for high track-
ing performance.

• Rather than a single attention module, we combine mul-
tiple attention modules with residual skip connection in
a specific order to enhance feature fusion training and
target adaptability.

• We evaluated optimal attention module placement
within fully convolutional single or multiple layers
to enhance end-to-end training benefits for efficient
tracking.

• We conducted extensive experiments using OTB100,
OTB50, VOT2016, VOT2017/18, TC-128, and UAV123
benchmarks to validate the proposed approach, achiev-
ing 61 frames per second (fps) real-time pro-
cessing speed and high accuracy compared with
state-of-the-art tracking methods. To facilitate fur-
ther studies, models and results are available at
https://github.com/maklachur/SCSAtt.

II. RELATED WORK
Many visual object tracking frameworks have proposed over
the last decade. It is inconvenient to cover a comprehensive
survey of all trackers in the scope of this work. However, these
survey studies [31]–[33] help to learn a detailed overview of
the tracking frameworks for interested readers. This section
provides short outlines for deep feature based trackers [18],
[21], [34]–[36], Siamese based trackers [5], [7], [37]–[39],
and attention based trackers [22], [40]–[45].

A. DEEP FEATURE BASED TRACKERS
The superior ability of the deep neural networks boost
tracker performance by extracting significant features from
the images. These deep features are then utilized by corre-
lation filter tracking frameworks to improve performance,
including DeepSRDCF [35], CF2 [36], and HDT [16]. Fea-
tures from continuous convolution filters are also used to
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build trackers, such as ECO [18] and C-COT [34]. FCNT [21]
selects features using regression, obtaining good accuracy
but cannot perform in real-time due to high dimension con-
volutional feature representation. DeepTrack [46] consid-
ers tracking as a classification problem and learns feature
weights by online training using iterative stochastic gradient
descent (SGD) approach.

Although these trackers have outstanding feature repre-
sentation power, they are difficult to train offline on large
benchmarks. Thus, these online approaches diminish the net-
work richness, which affects overall tracking performance,
and particularly tracker speed.

B. SIAMESE BASED TRACKERS
Siamese architecture formulates a similarity learning prob-
lem where two parallel convolutional layer streams share
parameters and calculate similarity loss between two input
images to train the network through back-propagation. This
network was first developed for signature verification [47].
Siamese based trackers [5], [7], [37]–[39] solve tracking
as a similarity learning problem between target and search
images and have become popular recently within the tracking
community due to their balanced performance in terms of
accuracy and speed.

For example, GOTURN [37] formulates a relative motion
estimation solution to encounter the regression problem.
SiamFC [5] casts tracking as a template matching problem
where the network learns similarity from embedded features.
Although SiamFC is one of the most popular and pioneering
approaches for visual object tracking, due to its steady speed
and accuracy, it struggles with various challenges, including
appearance changes, background clutter, and deformations.
Therefore, many subsequent studies have improved SiamFC
to enhance tracking performance. CFNet [39] integrates the
correlation filter at the end of the template branch in a
closed-form equation. SiamMCF [38] and DSiam [7] incor-
porate cross-correlation on multiple layers to solve the simi-
larity problem.

We modify the underlying Siamese architecture to include
input image sizes and embedded more feature channels pro-
viding an appropriate complement for incorporating attention
mechanisms.

C. ATTENTION BASED TRACKERS
Attention mechanisms within neural networks has become
an important approach for computer vision applications, such
as image classification [48], [49], object detection [50], and
segmentation [51]. Attention, or focusing on important image
features, is an effective mechanism to help solve object
tracking problems, and has attracted strong research attention
within the tracking community, with several attention based
trackers proposed [22], [40]–[45].

SA-Siam [22] integrates channel attention in the semantic
branch to compute channel-wise weights around the object
location. RASNet [41] combines three attention modules to
enhance tracker discriminative competence and adaptability.

FICFNet [42] computes channel attention on both Siamese
pipeline branches to weight feature channels. IMG-Siam [43]
fuses the target foreground using channel attention and the
super pixel based matting algorithm to provide enhanced tar-
get appearance with structural information. FlowTrack [44]
uses temporal attention to capture target temporal informa-
tion. MemTrack [40] and MemDTC [45] uses a long short
term memory (LSTM) attention based controller to govern
the feature map read and write operation using memory.

In contrast, we propose an attention mechanism with the
end-to-end training facility where channel attention empha-
sizes ‘what’ informative part of the target image has to focus
and spatial attention is responsible for ‘where’ the informa-
tive part is located. Therefore, combining these two attention
modules learn ‘what’ and ‘where’ to focus or suppress the tar-
get information by refining intermediate features efficiently
during the flow into the network.

III. PROPOSED METHOD
This section describes the proposed tracker methodology.
The proposed tracking framework incorporates the stacked
channel-spatial attention mechanism in the Siamese architec-
ture target branch to improve tracker discrimination ability
that helps to locate the target object in the search region
efficiently. We also alter the underlying fully convolutional
SiamFC [5] with different input sized images and internal
architecture suitable for integrating the proposed attention
mechanism to enhance target feature representation power.
Fig. 2 shows the proposed tracker pipeline.

A. SIAMESE NETWORK FOR FEATURE LEARNING
The basic SiamFC framework generally includes two fully
convolutional symmetric branches for learning features
through weight sharing. SiamFC performs cross-correlation
at the end of the feature extraction network between target and
search image features to compute the similarity score map,
where the maximum similarity score is taken as the predicted
object location on the search image. This architecture can be
expressed mathematically as

f (z, x) = ϕ(z) ∗ ϕ(x)+ b · 1, (1)

where ϕ(·) represents the fully convolutional network,
b · 1 is the bias value for every b ∈ R, and ∗ represents the
cross-correlation to compute responsemap between the target
and search image feature maps.

During the Siamese object tracking, the responsible target
branch remains stationary after taking fridge weights from
the offline trained model for the first frame of the video
sequence named template (target image). The target object’s
location is estimated for subsequent frames by matching with
the template at the highest similarity score on the response
map. The generalization ability of the target branch helps
to improve tracker quality because it is static. Since object
location in Siamese based tracking is predicated based on
similarity score, we concentrated on generating the most
robust and discriminative features for similarity learning to
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FIGURE 2. The overall architecture of the proposed tracker. The shaded region represents the stacked channel-spatial attention block where channel and
spatial attention modules are integrated after feature extractor for the target branch. The output of channel attention is forwarded as input to the spatial
attention module. Finally, attention features are fused with skip connection for efficient discriminative features. A response map is constructed using
cross-correlation between target and search image feature map. The red square in the response map resembles the highest similarity score that
represents the target location in the search image.

build efficient tracker. However, basic Siamese tracker frame-
works are unable to handle challenging tracking cases due to
their reduced discrimination ability. To improve tracker dis-
crimination ability, we used asymmetric fully convolutional
branches by integrating stacked channel-spatial attention in
the target branch. In particular, we altered the underlying
Siamese tracking architecture as follows to ensure high track-
ing performance,

f (z, x) = 3(ϕ(z)) ∗ ϕ(x)+ b · 1, (2)

where 3(·) denotes the stacked channel-spatial attention
mechanism for the target feature map ϕ(z) that learns to effec-
tively highlight appearance and refine the location feature for
the object.

B. STACKED CHANNEL-SPATIAL ATTENTION
Wewere inspired by human visual perception, which does not
require concentrating on the whole scene, but rather focuses
on the specific object for perceiving informative parts to
understanding the appropriate visual pattern [52]. Similarly,
attention mechanism prioritize important features to under-
stand salient object parts [41]. Since single object tracking
resembles focusing on the most salient feature, it is beneficial
to concentrate on crucial regions of the target image.

Unlike other attention-based trackers, we integrated the
attention mechanism only in the target branch to reduce
the overall parameters overhead. It enables us to pre-
serve fast-tracking speed and overall tracking process
simple. Our attention mechanism is easily integrable to
any convolutional layers of the network. However, during
tracking, we required only a pre-trained model and the

first frame of the video to track the sequence. On the
other hand, the existing attention-based trackers includ-
ing MemTrack [40] and MemDTC [45] maintain previ-
ous memory for the tracked object and update accordingly;
IMG-Siam [43] uses super-pixel based mating to extract
the target foreground; FlowTrack [44] utilizes the historical
frames to model update; FICFNet [42] integrates attention
module to both target and search branches.

Therefore, constructing an efficient object tracking,
we propose stacked channel-spatial attention mechanism
inside the Siamese framework named SCSAtt to enhance
feature representation power for improving tracker discrimi-
nation ability. This attention approach linearly combines two
popular attention modules, channel and spatial attention. The
channel attention module measures the weight contribution
of the channels, whereas spatial attention focuses on salient
object regions in the feature maps.

The proposed attention mechanism first employs channel
attention CA on the output feature map FM computed from
the last convolution layer. The output from CA is forwarded
to the spatial attention module, yielding the spatial attention
feature map SA. To ensure our network efficient, we fuse the
SA with FM using a residual skip connection.
We can summarize the process steps as

CA = φc(FM )⊗ FM , (3)

SA = φs(CA)⊗ CA, (4)

and

3(ϕ(z)) = SA ⊕ FM , (5)
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where 3(ϕ(z)) is the final stacked channel-spatial attention;
φc(·) and φs(·) represent channel and spatial attention, respec-
tively; and FM is the fully convolutional feature map of z.

FIGURE 3. Proposed channel attention module architecture.

1) CHANNEL ATTENTION
Each feature channel represents a particular visual pattern.
During training, convolution feature map contributions from
each channel do not represent an object equally, with some
channels representing an object’s visual pattern better than
others and vice-versa. Therefore, most previous attention
models, e.g. [22], [41], [42], and [53], use either global
average or max pooling with a multilayer perceptron (MLP)
to calculate their gain. In contrast, rather than a single pooling
operation, we consider the global average and max pooling
together to construct a channel attention module that learns
fused features. The global max-pooling operation focuses on
distinctive and finer object features, whereas global average
pooling provides overall knowledge on the feature map for
channel attention.

After computing both pooling operations, we calculate
individual MLPs using an rectified linear unit (ReLU) layer
to learn the non-linearity between two fully-connected lay-
ers with 128 and 512 nodes, respectively. Hence, we obtain
two feature vectors F1×1×C

max and F1×1×C
avg for max and aver-

age pooling, respectively. Before applying sigmoid activa-
tion for normalization, we fused both feature vectors using
element-wise summation. Finally, we calculated the product
with skip connection to propagate effects on the original
feature map, providing the ultimate channel attention feature
map CH×W×C

A , as shown in Fig. 3.
The channel attention component can be expressed as

F1×1×C
max = fc2(ReLU (fc1(GPoolmax(F

H×W×C
M )))), (6)

F1×1×C
avg = fc2(ReLU (fc1(GPoolavg(F

H×W×C
M )))), (7)

φc(·)1×1×C = σ (F1×1×C
max ⊕ F1×1×C

avg ), (8)

and

CH×W×C
A = φc(·)1×1×C ⊗ F

H×W×C
M , (9)

where σ represents the usual sigmoid function f (x) = 1
1+e−x .

2) SPATIAL ATTENTION
In contrast to channel attention, spatial attention highlights
where informative features of the object in an image [48]
for spotting the target location that provides a good comple-
mentary to channel attention. Previously, Qin and Fan [43]
constructed a spatial mask using super-pixels to exploit target

FIGURE 4. Proposed spatial attention module architecture.

representation. Li and Yang [53] utilized global max pooling
to encode the spatial attention in their model. We exploit
the relationship among channels inter-spatial features to con-
struct spatial attention. Pooling in the channel dimension
highlights the informative area [54], which helps locate the
desired target on the image by comparing overall weight
gains. To formulate this attention, we compute global max
pooling SH×W×1max and average pooling SH×W×1avg on the feature
maps and fuse them in the channel domain. Since convolution
operations consider as local operation and empirically, this
approach focuses on target information.

We apply a convolution layer ψ3×3
1 after concatenating

doubly pooled features, experimentally choosing a 3 × 3
convolutional filter for best results, and down-sample the
number of feature channels to 1 to obtain the single channel
feature map. After broadcasting this convoluted feature map
through the sigmoid operation, we compute a product with the
previously acquired channel attention feature map CH×W×C

A
to obtain the ultimate effect on the spatial attention feature
map SH×W×CA , as shown in Fig. 4. This attention feature map
is calculated as

SH×W×1max = GPoolmax(C
H×W×C
A ), (10)

SH×W×1avg = GPoolavg(C
H×W×C
A ), (11)

φs(·)H×W×1 = σ (ψ
3×3
1 (concat[SH×W×1max , SH×W×1avg ]), (12)

and

SH×W×CA = φs(·)H×W×1 ⊗ C
H×W×C
A , (13)

where ψ3×3
1 is the convolution operation with 3 × 3 kernel

and stride and padding = 1.

C. IMPLEMENTATION DETAILS
We adopted an AlexNet-like [55] backbone for the proposed
tracker framework to extract the feature map, with 135 ×
135 × 3 and 263 × 263 × 3 target and search image sizes,
respectively. Table 1 shows network architectural details for
deep feature extraction.

During data curation, we use the SiamFC strategy to
crop the target and search images z and x, respectively.
We consider the target object as the center of both images
because it reflects the most challenging sub-windows that are
influential to tracker performance. Since the tracker is fully
convolutional, we need not to worry about the model learn
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TABLE 1. Proposed network architecture for convolutional feature
extraction.

a central bias [5]. We trained the model using GOT10k [56]
and ImageNet Large Scale Visual Recognition
Challenge-2015 (ILSVRC15) VID [57] benchmarks.

1) TRAINING
To train the model, we randomly selected training image pairs
(z, x) from a sequence and adopted the logistic loss function,

L(f (z, x),g)=
1
|M |

∑
m∈M

log(1+exp(−f (z, x)[m].g[m])), (14)

whereM is the set of possible locations on the response map,
f (z, x)[m] is the similarity score, and g[m] ∈ {+1,−1} is
the ground truth corresponding to location m. To learn the
Siamese network parameters θ , we used SGD to minimize
the following function over the training sample N ,

argminθ
1
N

N∑
i=1

L(f (zi, xi), gi). (15)

We experimentally selected batch size= 32 and randomly
choose 10 image pairs (z, x) from a video sequence of train-
ing benchmarks. We consider maximum distance between
z and x to be 100 frames when selecting the image pairs,
to ensure robustness to appearance changes. We used SGD
to optimize network weights with momentum= 0.9, decayed
learning rate from 10−2 to 10−5 exponentially, and set weight
decay = 5e−4.

2) TESTING
Similarly to SiamFC, we computed tracking treating the first
video frame as a stationary template, with subsequent frames
considered as search images that change. The response
map was calculated independently from template matching
between the fixed template and search images. The tracker
predicted target position in subsequent frames from the max-
imum response map score. Finally, we used bicubic inter-
polation to estimate target location more precisely. We also
considered scale penalty = 0.9745 with image scales =
1.0375{−1,0,+1} to address target scale changes.
We implemented the proposed tracker using python with

the PyTorch deep learning framework and performed all
experiments on a desktop with Intel(R) Core(TM) i7-8700
CPU @ 3.20 GHz and Nvidia GeForce RTX 2080
Super GPU. We achieved 61 fps average tracker speed during
testing.

IV. EXPERIMENTS
Before comparing results on the whole benchmark, we utilize
the response map for computing the visualization effects
of fused heatmap on the corresponding search image. This
visualization results for channel attention module and spatial
attention module with siamese architecture represented by
CAtt and SAtt, respectively, and SCSAtt, as shown in Fig. 5.
We can easily notice that the proposed SCSAtt learns well to
compute the target region efficiently than CAtt and SAtt by
reducing the distractor and background information signifi-
cantly. Thus, SCSAtt can ensure high tracking performance
than other variants of the proposed tracker.

We also found that the benefit of SCSAtt over the exist-
ing attention based trackers is the fast-tracking speed with
maintaining high tracking accuracy. Table 2, illustrates the
average tracking speed comparison among attention based
trackers where we found that our proposed method achieved
61 fpswhich is superior to others. Hence, the proposed tracker
would be more applicable to real-time tracking applications.

Furthermore, We evaluated the proposed tracker exper-
imentally on OTB100, OTB50 [24], [25], VOT2016 [26],
VOT2017/18 [27], [28], Temple-color-128 (TC-128) [29],
and UAV123 [30] benchmarks. The experimental results
computed using OTB and VOT toolkit.

A. EVALUATION ON OTB100 BENCHMARK
The popular OTB100 [24], [25] benchmark comprises
100 annotated video sequences, including 11 challenging
attributes illumination variation (IV), scale variation (SV),
occlusion (OC), deformation (DF), motion blur (MB), fast
motion (FM), in-plane rotation (IR), out-of-plane rotation
(OR), out-of-view (OV), background clutter (BC), and low
resolution (LR). We employed one pass evaluation (OPE)
to compute success and precision plots. Success plots show
the overall percentage of the overlap score, whereas pre-
cision plots show the percentage of center error distance
between ground-truth and predicted bounding box. To keep
our comparison fair, we accumulated various trackers types,
including Siamese based trackers (SiamFC [5], SiamTri [23],
SIAMRPN [58], and CFNet [39]), attentional Siamese track-
ers (MemTrack [40] and MemDTC [45]), correlation filter
based trackers (STAPLE [59], CREST [60], SRDCF [61],
DSAR-CF [62]), and others (UDT [63], DSiamM [7], and
MLT [64]).

Fig. 6 compares the proposed with other considered tracker
success and precision outcomes for the OTB100 dataset.
The proposed tracker SCSAtt achieves the best performance
for both measurement criteria with beyond real-time speed.
The proposed model achieved 64.1% and 85.5% score for
success and precision plots, respectively, 10.14% and 10.89%
superior to the baseline SiamFC tracker. The proposed model
achieved 2.40% and 4.27%, and 7.19% and 8.37% increased
success and precision, respectively, compared with memory
attention mechanism Siamese tracker MemTrack [40] and
correlation filter based tracker SRDCF [61], respectively.
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FIGURE 5. We compared the similarity scored heatmap visualization results for the corresponding search images using CAtt, SAtt, and SCSAtt. The
response maps between target and search images are fused to the corresponding search images to produce these visualization results. The SCSAtt
framework computes the target region better than others by reducing distractor and background information significantly. The target and search image
sequences are considered from the OTB100 benchmark.

TABLE 2. Comparison of the average tracking speed among attention based trackers.

FIGURE 6. Overall precision and success for the considered trackers on
the OTB100 benchmark.

We also compared our proposed tracker with the most
recent trackers including DSAR-CF [62], MLT [64], and
UDT [63]. The proposed tracker achieved 2.76%, 7.28%,
and 12.5% improvement in precision score and 0.31%,
6.66%, and 9.20% improvement in success score compared to
DSAR-CF, MLT, and UDT trackers, respectively. Moreover,
DSAR-CF and MLT perform 16 fps and 48 fps, respectively,
whereas the proposed tracker performs at 61 fps. Therefore,
SCSAtt maintains a balanced performance in terms of speed
and accuracy, which is the main objective of the proposed
tracker.

Furthermore, to prove the effectiveness of our proposed
tracker, we present the tracker performance for 11 challenges
individually for solo comparison in Table 3 and Table 4. The
proposed tracker consistently performed outstandingly for
compared challenging attributes. Thus, the tracker provides
consistent performance even for challenging circumstances.
Fig. 10 compares frame-wise visualization, a qualitative com-
parison for visual understanding. The proposed tracker has
significantly improved performance compared with state-of-
the-art trackers in several challenging sequences.

B. EVALUATION ON OTB50 BENCHMARK
The OTB50 benchmark is a subset of OTB100, compris-
ing the 50 most challenging video sequences. Fig. 7 com-
pares overall performance for the considered trackers on
the OTB50 benchmark. We considered the same trackers
that we compared in OTB100 benchmark for evaluating
OTB50 benchmark. We observed that the proposed SCSAtt
tracker secures the first place among other trackers in the
OTB50 benchmark. It exhibits 16.67% and 19.65% increase
from the baseline SiamFC in the success and precision score,
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TABLE 3. Precision score comparison for various challenging attributes: scale variation (SV), low resolution (LR), occlusion (OC), deformation (DF), motion
blur (MB), fast motion (FM), in-plane rotation (IR), out-of-plane rotation (OR), out-of-view (OV), background clutter (BC), and illumination variation (IV) on
the OTB100 benchmark.

TABLE 4. Success score comparison for various challenging attributes: scale variation (SV), low resolution (LR), occlusion (OC), deformation (DF), motion
blur (MB), fast motion (FM), in-plane rotation (IR), out-of-plane rotation (OR), out-of-view (OV), background clutter (BC), and illumination variation (IV) on
the OTB100 benchmark.

FIGURE 7. Overall precision and success for the considered trackers on
the OTB50 benchmark.

respectively. SCSAtt also achieved 7.31%, 5.99%, 11.69%
and 7.31% progress in success score and 10.55%, 4.68%,
13.11% and 6.84% progress in precision score than theMem-
Track [40], CREST [60], SRDCF [61], and DsiamM [7]
trackers, respectively.

Moreover, the proposed method has shown that the per-
formance improvement of 5.34% and 2.56%, 4.28% and

3.03%, 10.99% and 8.66%, and 23.21% and 17.58% in pre-
cision and success than the most recent trackers including
DSAR-CF [62], MemDTC [45], MLT [64], and UDT [63],
respectively. SCSAtt, therefore, constantly outperform on
both success and precision scoring metric that demonstrates
the effectiveness of our tracker in terms of robustness.

C. EVALUATION ON TEMPLE COLOR-128 BENCHMARK
The temple color-128 (TC-128) benchmark [29] includes
128 video sequences for tracker performance evaluation to
address the lack of color information in visual tracking.
We compared the proposed SCSAtt tracker performance on
this benchmark with current best-practice trackers including
SSR-CCOT [65], PTAV [66], SRDCF [61], MEEM [67],
MUSTER [68], SAMF [69], DSST [70], Struck [71],
KCF [72], TLD [73], and CSK [11]. Fig. 8 shows overall
success and precision for the considered tracker frameworks.
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FIGURE 8. Overall precision and success for the considered trackers on
the TC-128 benchmark.

FIGURE 9. Overall precision and success for the considered trackers on
the UAV123 benchmark.

The proposed SCSAtt tracker achieved 54.9% and 74.4%
success and precision, respectively, significantly improved
compared with the other trackers except for SSR-CCOT [65].
But, the speed of the SSR-CCOT tracker is only 1.74 fps
whereas the proposed tracker achieved very high tracking
speed (61 fps). Therefore, we believed that our tracker would
be useful for real-time applications.

D. EVALUATION ON UAV123 BENCHMARK
In contrast with typical visual object tracking datasets includ-
ing OTB [24], [25], VOT [26]–[28], and TC-128 [29];
Unmanned Aerial Vehicle (UAV) benchmark [30] provide
low altitude aerial videos for object tracking. UAV123 is
one of the largest object tracking benchmarks, compris-
ing 123 video sequences with more than 110,000 frames;
whereas OTB100, OTB50, and TC128 together contain about
90,000 frames. UAV123 has become more popular recently
due to its real-life applications, such as navigation, wild-life
monitoring, crowd surveillance. Trackers with a good balance
between accuracy and real-time speed will be more useful
for these objectives. Since the proposed tracker operates in
real-time with high accuracy of 54.7% success score and
77.6% precision score, which are 4.19% and 4.72% increase
from one of the prominent tracker ECO for this benchmark as
shown in Fig. 9. The ECOhc (60 fps) variant of ECO (not real-
time) also performs in real-time, but the proposed SCSAtt
tracker achieved 8.10% and 7.03% success and precision,
respectively, improvement over ECOhc.

E. EVALUATION ON VOT2016 BENCHMARK
The VOT2016 benchmark [26] comprises 60 sequences.
In this evaluation, the three most important aspects accu-
racy (A: higher is best.), robustness (R: lower is best.),
and expected average overlap (EAO: higher is best.) are

TABLE 5. Comparison with the state-of-the-art trackers on the
VOT2016 benchmark in terms of accuracy (A), robustness (R),
and expected average overlap (EAO).

TABLE 6. Comparison with the state-of-the-art trackers on
VOT2017/18 benchmark in terms of accuracy (A), robustness (R),
and expected average overlap (EAO).

computed to measure the tracker performance. We com-
pared the proposed tracker with the top performing trackers
including C-COT [34], Staple [59], DNT [74], MDNet_N
(variation of MDNet) [19], SRDCF [61], SiamFC [5],
SO-DLT [75], ASMS [8] and MvCFT [76] over
VOT2016 benchmark. From the Table 5, we observed that
SCSAtt performswell than other trackers in terms of accuracy
and robustness. The proposed tracker SCSAtt ranked sec-
ond for EAO, whereas C-COT ranked best but its accuracy
and robustness are less than the proposed tracker. We also
compared with underlying SiamFC [5], proposed tracker
achieves 28.51% increase in terms of EAO score than the
baseline.

F. EVALUATION ON VOT2017/18 BENCHMARK
The VOT2017 [27] and VOT2018 [28] benchmarks are
identical, comprising 60 videos. Similar to VOT2016 [26],
we compared accuracy, robustness, and expected average
overlap for the proposed SCSAtt tracker with state-of-the-
art trackers including ECOhc [18], DSiam [7], MEEM [67],
SiamFC [5], DCFNet [6], DensSiam [77], ASMS [8],
SSKCF [78], KCF [72], and SRDCF [61] for VOT2017 and
VOT2018 challenges. The trackers compared outcomes,as
shown in Table 6. The proposed SCSAtt tracker exhibits
a large margin for robustness and accuracy compared
with all other considered trackers, aside from slightly less
accuracy than SSKCF, the highest of VOT2017 challenge
outcome.
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FIGURE 10. Qualitative comparison of different state-of-the-art trackers for several challenging sequences from the OTB100 benchmark including biker,
bird2, box, girl2, human3, and liquor.

G. ABLATION STUDY
The appropriate channel and spatial attention configuration
is important for the proposed SCSAtt tracker. To validate
the selected tracker configuration, we empirically evaluated
the performance of various alternate designs. In particular,
we measured solo performance for the proposed channel and
spatial attention modules, and then considered the integration
pattern for the modules. Finally, we investigated how best to
incorporate the stacked channel-spatial attention mechanism
in single or multiple convolution layers. To keep our compar-
ison rational on the different variants of the proposed tracker,
we utilized GOT10k and ILSVRC15 benchmarks to train all
variants including the proposed model, and measured their
performances on the OTB100 benchmark.

Fig. 11 compares success and precision for these variations
on the OTB100 challenging benchmark, where SAtt and Catt
systems achieved 62.8% and 83.0%, and 63.1% and 84.1%
accuracy and precision, respectively. For the spatial-first
attention (SFAtt) case, we first computed spatial attention
and then stacked channel attention on it. We empirically
validate the results between SFAtt and channel first attention
for concluding the stacked channel-spatial attention (SCSAtt)
module.

We also validated the proposed tracker by adding
the stacked channel-spatial attention mechanism in dif-
ferent convolutional layers. SCSAtt1-5 placed the stacked
channel-spatial attention mechanism in all convolution layers
since we consider every layer is significant to learn the target

FIGURE 11. Ablation studies for several variants of the proposed tracker
on the OTB100 benchmark.

features and we did not want to lose any layer’s important
information. However this configuration performance was
significantly lower than the other designs. We also exper-
imented with integrating stacked channel-spatial attention
in the third and fifth convolution layer (SCSAtt35), which
achieved competitive performance because the latter layers
capture the most discriminative features. Therefore, incorpo-
rating the stacked channel-spatial attention mechanism solely
in the final layer, achieved the best performance.

H. DISCUSSION
In this article, we utilized Siamese tracking framework to
exploit the importance of deep features to improve the robust-
ness of the tracker. We proposed channel attentional module
to re-calibrate the deep features channels for better target
feature representation, whereas spatial attentional module
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uses to highlight the important spatial regions in each deep
feature channel. We integrated channel and spatial attentional
modules within Siamese tracking framework using residual
skip connection (called SCSAtt), as shown in Fig. 2.
The SCSAtt learns the most discriminative features to

adapt the target features from channel and spatial atten-
tional networks. As each module of the SCSAtt has different
functions, the order of the arrangement has an impact on
the overall tracker performance. From the spatial feature
point of view, the channel attention network applied globally,
while spatial attention network responsible to work locally
on the feature map. The overall attention tells where to focus,
and also enhance the representation of interests. Therefore,
the proposed tracker improves the representation ability by
utilizing the attention mechanism: highlighting important
features and reducing unnecessary ones.

We performed ablation study to show the impact of sev-
eral tracker’s design configurations using Siamese track-
ing framework. The visualization results of CAtt, SAtt, and
ScSAtt as shown in Fig. 5, that represents SCSAtt learns
well to compute the target region effectively than CAtt and
SAtt by reducing the distractor and background information
significantly.

To prove the effectiveness, we also compared our pro-
posed SCSAtt tracker with many state-of-the-art trackers
that revealed SCSAtt showed improved performance with
real-time tracking facility at 61 fps for overall bench-
marks including OTB50, OTB2015, VOT2016, VOT2018,
UAV123, and TC128. Therefore, the proposed tracker main-
tains a balanced performance in terms of speed and accuracy.

V. CONCLUSION
This paper proposed a stacked channel-spatial attention
mechanism inside the fully convolutional Siamese architec-
ture to suppress irrelevant information and concentrate on
object appearance with effective location feature refinement
during tracking. The proposed channel attention focused
on important feature channels, whereas the spatial atten-
tion module responsible for highlighting the object loca-
tion. We used a cross-feature blending attention mechanism
to enhance feature representation power for boosting the
tracking performance. We performed extensive experiments
to validate the proposed SCSAtt method effectiveness on
several challenging benchmarks, including OTB100, OTB50,
VOT2016, VOT2017/18, TC -128, and UAV123.
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