IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received April 25, 2020, accepted May 14, 2020, date of publication May 27, 2020, date of current version June 18, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2997944

Scalable Hyper-Ellipsoidal Function With
Projection Ratio for Local Distributed
Streaming Data Classification

PERASUT RUNGCHARASSANG ~ AND CHIDCHANOK LURSINSAP, (Member, IEEE)

Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand

Corresponding author: Perasut Rungcharassang (perasut.r @gmail.com)

This work was supported by the Thailand Research Fund under Grant RTA6080013.

ABSTRACT Learning streaming data with limited size of memory storage becomes an interesting problem.
Although there have been several learning methods recently proposed, based on the interesting concept of
discard-after-learn, the performance of these issues: the learning speed, number of redundant neurons, and
classification accuracy of these methods can be further improved in terms of faster speed, less number of
neurons, and higher accuracy. The following new concepts and approaches were proposed in this paper: (1)
a more generic structure of hyper-ellipsoidal function called Scalable Hyper-Ellipsoidal Function (SHEF)
capable of handling the problem of a curse of dimensionality by introducing a regularization parameter into
the covariance matrix of SHEF; (2) a new recursive function to update the covariance matrix of SHEF based
on only the incoming data chunk; (3) a fast and easy conditions to test the states of being overlapped, inside,
and touching of two SHEFs; (4) a new distance measure for determining the class of a queried datum based
on the projected distance on only one discriminant vector, namely the Projection Ratio. The experimental
results show the significant improvement when compared with the results from VLLDA, ILDA, LOL, VEBF,
and CIL in terms of classification accuracy, the number of generated neurons, and computational time.

INDEX TERMS Streaming data classification, discriminant analysis, discard-after-learn, incremental

learning, projection ratio.

I. INTRODUCTION

Classifying or learning streaming data has been an interesting
topic and existed in many fields such as business (finan-
cial data [1], credit card fraud detection [2]), academia, and
medical information (health care sensor [3], EEG signal [4],
[5]). Streaming data refers to the data that are continuously
generated without any time bound. The amount of generated
data at any point in time may be varied according to their
environment. The data flow into a learning process in forms
of either one datum at a time or one chunk of unfixed size
at a time. One of the obvious examples of streaming data is
the data temporally generated throughout the internet in every
unit time. It is remarkable that the speed of data generation
goes beyond the speed of developing the technology for
memory capacity per unit area. Due to this technology lag, the
streaming data cannot be entirely stored inside the memory
causing the problem of how to accurately learn these data

The associate editor coordinating the review of this manuscript and

approving it for publication was Claudio Cusano

VOLUME 8, 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

in real time and online applications. Generally, this type of
data has many names such as streaming data, data streams,
online data, and real-time data. This situation leads to a very
challenging development of new neural learning algorithms
to cope with the problems of learning streaming data under
the constraints of memory overflow, fast learning speed,
as well as limited computing resources such as low energy
consumption [6]-[8]. Moreover, the neural learning speed
must be faster than the speed of incoming data in order to
avoid any data loss and to achieve the classification accuracy
with respect to the occasional testing data.

Streaming data can be in various forms but this study
concerns only the numeric data in the form of continuous
chunks of vectors representing a set of features extracted from
some learning objects such as images, characters. The process
of how to extract important features is not considered in this
study. In addition, some specific characteristics of data and
targets such as concept drift [9]-[12] and time series are not
involved because these characteristics occur only in some
applications.

106993

https://orcid.org/0000-0002-9914-6178
https://orcid.org/0000-0001-9365-8167

IEEE Access

P. Rungcharassang, C. Lursinsap: SHEF With Projection Ratio for Local Distributed Streaming Data Classification

Traditional classification methods such as k-Nearest
Neighbors (k-NN), Support Vector Machine (SVM), Linear
Discriminant Analysis (LDA) were built on the condition
that the entire data set must be kept in the memory during
the training process. These traditional methods can also be
applied to streaming data but the results are not accurate
because the entire training data set is not known during the
training period. Only those incoming data are involved in
the training process. Besides, the new incoming data must be
combined with the previously trained data in order to retrain
the network but this creates the consequence of memory
overflow. Some new incoming data are lost after the memory
overflow crisis. The retraining of augmented training data
set makes the number of epochs uncontrollably increase.
However, some attempts such as incremental learning were
introduced to solve the memory overflow constraint by con-
trolling the number of deployed neurons.

Incremental learning method gradually learns the data
from small portions of a whole data set by adding one or more
neurons at a time. It is suitable to learn big data or streaming
data when memory overflow may occur. This approach has
been applied and combined with various classification meth-
ods such as LDA [6], [13]-[15], Neural Network [16], ILDA
[17], and SVM [18], [19]. Although incremental learning
achieved some success, the constraint of memory overflow
still exists and the learning time is still uncontrollable. There
are several structures of mathematical functions behind the
incremental learning based on the data distribution which can
be either linear or non-linear.

Handling a nonlinear classification problem may be
divided by three main approaches which are (1) a nonlinear
kernel classifiers such as a Radial Basis Function kernel [20],
(2) alocal hyperplane [21], and (3) a mathematical structure
based on local data distribution such as Hyper-ellipsoidal
function: the family of Versatile Elliptic Basis Function
(VEBF) [22], [23], k-Nearest Neighbors [24], and k-mean
clustering [25]. Some approaches [24], [25] require param-
eters such as the center and the variance of data distribution
of each class to be computed before the training process. This
implies that the entire training data must be known in advance
but it is impossible to do so in case of streaming data.

Although the VEBF-based structure is rather convenient
and efficient for the new learning environment and con-
straints, the learning accuracy depends upon the initial values
of VEBF parameters. The problem is that the incoming chunk
of data is not the actual population of the whole training
data. Thus, the initial values computed from only the incom-
ing data chunk may be inaccurate. Furthermore, updating
these parameters must be continuously done during the learn-
ing process which makes the time complexity unavoidably
increases. Besides the problem of initializing parameters, the
procedure to identify the classes of a queried testing datum
is mainly based on the distance between the datum and the
center of VEBF. This distance works well for some applica-
tions but it gives inaccurate classification results in most cases
because the data density and distribution inside the VEBF is

106994

not involved. The data density and distribution can be viewed
as the information stored inside the VEBF. Identifying the
class of a queried datum must minimum interfere the data
information of the corresponding VEBF. Another problem
not studied in those VEBF-based structure is the situation
when the number of feature dimensions is larger than the
number of training data. This implies that the eigenvectors
and eigenvalues of the covariance matrix of a VEBF cannot be
uniquely computed. Many applications, especially for medi-
cal data, face this crisis.

A new classifier method named Scalable Hyper-Ellipsoidal
Function (SHEF) method is proposed to solve the above
mentioned problems in VEBF-based structure learning pro-
cess. Our approach concerns the direction of data distribution
inside any local cluster. The local characteristics imply the
local importance of each dimension which can be used to
compute the nearest distance between a VEBF and a queried
datum in order to identify its correct class. Several new con-
cepts are introduced to solve the problems such as projection
ratio, checking overlap, being inside, and touching of two
hyper-ellipsoids.

The rest of paper is organized as follows. Section II
addresses the constraints and studied problems. Section III
summarizes the relevant concept and background used in
this study. Section IV discusses the new structure and the
equations for updating the parameters of SHEF. Section V
explains the proposed new learning method using scalable
hyper-ellipsoidal function and illustrates our algorithm step-
by-step. Section VI proposes our new distance measure and
its concept in order to determine class of queried datum.
Experimental data and set-up hyperparameters are men-
tioned in Section VII. Section VIII reports the experimental
results and performance comparison with the other meth-
ods, also shows effects of our hyperparameters on classifi-
cation accuracy and number of SHEFs in Grid Search dia-
gram. Section IX discusses the rationale behind the results.
Section X concludes the paper.

Il. CONSTRAINTS AND STUDIED PROBLEMS
The proposed method in this study is based on the
hyper-elliptical structure similar to those methods in Versatile
Elliptic Basis Function (VEBF) [22], Class-wise Incremen-
tal Learning (CIL) [23], Versatile Hyper-Elliptic Clustering
(VHEC) [26], and Dynamic multi-Stratum (Dstratum) [27].
These methods solve the problem of memory overflow occur-
ring in streaming data environment by deploying the concept
of discard-after-learn, where either one datum or one data
chunk of several classes are learned at a time and completely
discarded after that. To improve some inferior capabilities
of these methods, few new concepts are introduced to speed
up the computation of parameter updating of the structure,
to relief the curse of dimensionality, and to measure class
distance for testing data.

The structure of hyper-ellipsoid is simple and versatile
enough for classification but the accuracy of classification of
this structure depends upon the initial width of each created

VOLUME 8, 2020

P. Rungcharassang, C. Lursinsap: SHEF With Projection Ratio for Local Distributed Streaming Data Classification

IEEE Access

Sparse-dense data Faraway4 data

Spiral data Gaussian data

Original data

VEBF method
0
QOOO 0
OOQO 0

. ~ ’
B - o ’ SO
40-5 ? 20
E S :
3 X v 18D

2

FIGURE 1. Examples of unfavorable results of VEBF and CIL due to initialization of parameters and some steps of learning process. (see online

version for color figure).

hyper-ellipsoid. To elaborate how initial width effects the
accuracy of classification, Fig. 1 illustrates an example of
how VEBF and CIL methods capture four synthetic data
sets in the second and the third row, i.e. Sparse-dense data,
Faraway4 data, Spiral Data, and Gaussian data, in terms of
the number of hyper-ellipsoids and their directions. Orginally,
VEBF [22] was designed to learn one vector at a time in
order to reach the lower bound of learning time complexity.
It explores only the entire training set to compute the average
pair distance and uses this distance as the initial width of each
hyper-ellipsoid without touching any vectors in the testing
set. But CIL [23] extended the concept of VEBF by deploying
only the first 20% of the training data. Note that if the initial
width is not properly initialized, then hyper-ellipsoids from
different classes may overlap. Moreover, if the initial width is
too small, then too many redundant hyper-ellipsoids are also
created during the learning period.

A. CONSTRAINTS

This study focuses only on streaming data environment. Each
datum consists of a feature vector and a target. The following
constraints are considered in this study.

1) New incoming data gradually flow into the learning
process as a chunk of data. The memory size is large
enough to hold the incoming data chunk.

2) The probability of data distribution in each class is
unknown in advance.

3) Each chunk may contain one or more classes. The
number of incoming classes is unknown in advance.

VOLUME 8, 2020

4) The size of each class in each incoming chunk at any
time is arbitrary.

5) Learned data are assumed to have no class drift or class
change characteristic.

6) Incoming data are completely discarded from the learn-
ing process after being leaned (discard-after-learn con-
cept).

7) The size of working memory is assumed to be fixed
throughout the learning and testing processes.

8) The learning process is executed by one single process-
ing unit.

B. STUDIED PROBLEMS

The following problems are studied to increase the classifica-
tion accuracy, to reduce the number of neurons, and to solve
the condition of curse of dimensionality due to insufficient
amount of data which remains existent in those VEBF-based
approaches.

1) How to handle the singular covariance matrix problem
due to the condition of curse of dimensionality?

2) How to compute the appropriate initial width without
using the whole training data in advance?

3) Is there any new distance measure to select the nearest
hyper-ellipsoid with respect to the queried datum?

Some relevant backgrounds used in this study will be given
in the next section.

lll. RELEVANT BACKGROUND
Our proposed method is related to the structure of
hyper-elliptic function introduced in [22], [23] and the

106995

IEEE Access

P. Rungcharassang, C. Lursinsap: SHEF With Projection Ratio for Local Distributed Streaming Data Classification

concept of linear discriminant analysis. The summary of each
related issue is given in the following subsections.

A. BASIC CONCEPT OF STANDARD HYPER-ELLIPSOID
FUNCTION

Letx; € Rd, 1 < i < N, be the i d-dimensional data
vector written in the form of column vector. Suppose a set
of data vectors X = {xi,Xp,...,Xy} belongs to class A.
The distribution directions of all vectors in set X and the
variance of data in each direction can be captured by using
the covariance matrix of set X. This covariance matrix can be
easily computed by the following equation. Let S denote this
covariance matrix.

S = E[(X — E[X])(X — E[X])'] (1
where E[-] represents the expected value. To realize the con-

cept of discard-after-learn, it would be better to compute
matrix S in the form of summation as defined in (3).

| N

T N i=1 B ?
| N

S = N E x; —o)x; —¢)f 3

i=1

where ¢ € R? is the mean or centroid of data vectors in X.

The distribution directions of all data vectors in set X are
the set of eigenvectors of S, denoted by U = {uy, uy, ..., uy}
such that each ||u;|| = 1. The data variances of all eigen-
vectors are the set of corresponding eigenvalues, denoted
by A = {A1, A2, ..., Ag}. The covariance matrix S can be
diagonalized in terms of its eigenvalues and eigenvectors as
S = UAU”. The generic equation of hyper-ellipsoid can
be written in terms of covariance matrix S, center ¢, and a
constant £ as follows. Constant £ is for adjusting the size of
the hyper-ellipsoid, usually set to 1.

x-0'S'x—e¢)=¢)

B. CONCEPT OF LDA WITH MULTIPLE CLASSES AND
DICHOTOMOUS CLASSES

Suppose X = {x1,X2,...,Xy} is a set of N data vectors
with K classes. Let C; denote class k and n; be |Ci|,for
1 < k < K. The covariance matrix of each class Cj is
denoted by Si. The centroid of X is at ¢ and the centroid
of each class k is at ¢;. The traditional LDA aims to find
(K — 1) discriminant vectors formed as a d-by-(K — 1)
projection matrix W = [wy - - - wg_1] in order to maximize
the following Fisher criterion [28].

[WTSEW|

IWTSyW|
wherei=1,..., K —1. (5)

maximize J(W) :=
w
subject to ||w;|| = 1

Between-class scatter matrix Sp and within-class scatter
matrix Sy are defined as follows.

K
Sp =) m(ex —o)ex — o) 6)

k=1

106996

K
Sw=>_ Sk @)
k=1

For a special case, when LDA is only used for a dichoto-
mous class problem (two classes, K = 2), the projection
matrix W consists of only one discriminant vector w of size 1.
The value of w can be computed by the following equation.

_ Spler—e)
IS (e1 — €2

C. CHECKING OVERLAP OF TWO HYPER-ELLIPSOIDS
Checking the overlap of two hyper-ellipsoids is essential in
order to merge two hyper-elliptic structures of the same class
into a larger one. This paper modified the method of checking
touch of two ellipsoids at a single point proposed by Alfano
and Greer [29]. Their concept is as follows. Let A and B be
the represented matrices of the first and second ellipsoids,
respectively. Suppose X and Y are data vectors for the first
and second ellipsoids, respectively. The equations of both
ellipsoids can be written as follows.

®)

XAX?T =0)

YBY” = 0. (10)
Assume that X is in both ellipsoids when they touch each
other. Thus, we have

XAX?T =0 (11)

XBX” = 0. (12)
Testing touch of both ellipsoids can be transformed into the

process of formulating eigenvalue by these steps. A constant
A is multiplied to matrix A in (11) first.

XxAXT =0. (13)

Then subtract (12) from (13) to obtain these equations.
XAA —B)X! =0 (14)
XAGI—A"'B)XT = 0. (15)

Hence, the relation |AI — A~!'B| = 0 is the condition for test-
ing the touch of two ellipsoids. | - | represents the determinant
of a matrix.

IV. PROPOSED SCALABLE HYPER-ELLIPSOIDAL
FUNCTION AND PARAMETER UPDATING

The previously introduced hyper-ellipsoidal functions [22],
[23], [26], [27] were not designed to solve the problem of
curse of dimensionality which occurs in various applica-
tions. To improve this inferior capability, a new function of
hyper-ellipsoid called scalable hyper-ellipsoidal function is
proposed as follows.

A. STRUCTURE OF SCALABLE HYPER-ELLIPSOIDAL
FUNCTION

Expanding or shrinking the size of a hyper-elliptic function
requires the computations of eigenvectors and eigenvalues

VOLUME 8, 2020

P. Rungcharassang, C. Lursinsap: SHEF With Projection Ratio for Local Distributed Streaming Data Classification

IEEE Access

first. To reduce this prior computations, the following generic
form of standard hyper-elliptic function was used in our
approach. Instead of setting the right-hand side of standard
hyper-elliptic function to a constant of one, this constant is
replaced by a positive scalable constant r so that the width
of hyper-ellipsoid shape in each dimension can be easily
scaled by using only r. The equation of this new scalable
hyper-ellipsoidal function (SHEF) is defined as follows.

x-S Ix—¢)=r% (16)

x € X is a data vector. ¢ is the center of X. S is the
covariance matrix of X. Let A; be the eigenvalue of the i
dimension of SHEF when r2 = 1. If r2 # 1, then the new
eigenvalue becomes r2;, which obviously implies that the A;
is scaled by r2. Fig. 2 illustrates the geometrical structure and
its eigenvalues when the scalable constant » > 0 as defined
in (16) with radius r/A; at the i dimension. However, the
directions of eigenvectors are not scaled or changed by r.

In several applications such medical data classification, the
covariance matrix S can be singular due to less amount of data
than the number of dimensions. To avoid this condition, the
concept of regularization [30], [31] was adapted to SHEF by
adding a small positive constant € to the covariance matrix S
as shown in the following equation.

x—ofS+e) 'x—c)=r’ (17)

Iis a d-by-d identity matrix. In this paper, a regularization
parameter € is set to 0.0001.

Lemma 1: Let S and S* be two covariance matrices such
that S* = S 4 €l. Covariance matrix S* has the same set of
eigenvectors as those of S and each eigenvalue A7 = A; + €.

Proof: The covariance matrix S can be factorized in
terms of U and A as follows:

S =UAU". (18)

Substitute (18) into S* = S + €I, we obtain the following
equation.

§* = UAUT + el (19)
Since U is an orthogonal matrix, so UUT = 1. Hence,

S* = UAUT + (enuU”
= UAUT + UEenU”

= U(A + DU, (20)
A 1
A*=A+el= +€ .
Ad 1
A+ €
= (21)
A + €
O

In case of zero covariance matrix (or there is only one datum
in SHEF), S becomes singular. Hence, the initial width of
SHEF in each dimension will be set to /€ instead.

VOLUME 8, 2020

FIGURE 2. The effect of scalable constant r on the eigenvalues of
hyper-ellipsoidal shape. The eigenvectors remain unchanged.

B. UPDATING PARAMETERS OF SHEF
Each SHEF contains four parameters: the number of captured
data (n), the centroid of captured data (c¢), the covariance
matrix of captured data (S), and the class of captured data (z).
Since the training process is based on the concept of discard-
after-learn, an incoming datum will be discarded after being
captured by any SHEF. So the first three parameters of SHEF
must be updated accordingly to the recently incoming datum.
Assume that incoming datum x" € R is captured by the
j’h SHEF of the same class. Let n%, cj”ld, cj’.‘ew, Sj”ld, and Sj’.ww
be the current number of data vectors, the current centroid,
the updated centroid, the current covariance matrix, and the
updated covariance matrix, respectively. To cope with the
possibility of data overflow and to preserve the time and space
complexities when employing the concept of discard-after-
learn, [22], [23], [26] suggested the following set of recursive
functions for computing and updating the new centriod and
new covariance matrix.
en _ nqud c]qld 4 x'ew (22)
] n]qld 41

n](_}ld <Sj(~)ld + c](_)ld (C;)ld)T) + XneW(XneW)T

new __
§i" =

old
n; +1

— ()T (23)

Although these recursive functions efficiently support the
concept of discard-after-learn, it is possible to speed up the
updating process of covariance matrix by rewriting (23) as
stated in the following Theorem.

Theorem 1: A new covaraince matrix
puted by the following recursive function.

o qud (c;)ld o XneW)(c/Qld _ XneW)T
5= no 4 1) -
J

S™W can be com-

= Sold 4
old (J
n; +1

The proof of (24) is given in APPENDIX A. Note that
the time spent on computing chld (chld)T, x"w(x"")T " and
(@7 in (23) is reduced by computing only (c]‘.’ld —
x”ew)(cj‘?ld — x""T instead in (24). Although Theorem 1
addresses only one incoming datum, (24) can be adapted to

106997

IEEE Access

P. Rungcharassang, C. Lursinsap: SHEF With Projection Ratio for Local Distributed Streaming Data Classification

an incoming data chunk by updating the covariance matrix
with one datum at a time.

V. PROPOSED NEW LEARNING METHOD USING
SCALABLE HYPER-ELLIPSOIDAL FUNCTION
Streaming data flow into the learning process in one

multi-class chunk at a time. Let = XU, X® ...
X®, ...) be the sequence of streaming data chunk at different
time 7. Each X® = ((x (lt), ylt)) o (g\t,) yx))) consists of

a set of N; pairs of datum XE) and its target class ygt). The

capturing process focuses on one datum at a time with the
following main steps. Assume that class yl@ = k is being
considered.

1) Capturing an incoming data chunk by introducing a
new SHEF or by expanding some existing SHEF of
the same class k. The criteria for performing each
operation depend upon: (1) the minimum distance and
median distance among data within each class and (2)
an adaptive threshold distance based on the number of
SHEFs of the same class k and the amount of data in
each SHEEF of class k.

2) Merging two SHEFs of the same class k into one
larger SHEF to reduce the number of SHEFs of class
k. The merging criteria is based on degree of overlap
between two nearest SHEFs of the same class k based
on Euclidean distance.

Prior to the learning algorithm based on these two main steps,
the computational detail in each step is discussed first in the
following sections.

A. INITIALIZING SHEF WIDTHS AND THRESHOLD
DISTANCE FOR INTRODUCING NEW SHEF

At the starting step of learning process, the initial size of the
first SHEF for capturing the first data chunk of a class, say
class k, must be defined. If the class has only one datum,
then a constant € as introduced in Lemma 1 is deployed as the
initial width of SHEF in all dimensions. Otherwise the width
of SHEF in each dimension is computed by the following
equation. Suppose XJ(-I) is in class k and the amount of data

in this class is ny. Let dist(xj(.l)) be the Euclidean distance

from x}l) to its nearest neighbour of the same class in the
first incoming chunk, where j = 1,2,..., nt. The initial
width, denoted as dist_inity, of SHEF in class k is set up as
follows.

median (1) < class k(dlSt(X()) ng > 1

dist_inity = { (25)

J€ in Lemma 1 n =1

Note that this initial width is used for each dimension i of
SHEF in class k. The initial width of all new classes appearing
after the first chunk will be set to /€.

The value of threshold distance is used to determine
whether a new SHEF in the same class should be introduced
to capture a new incoming datum or not. This threshold
distance is used to control the number of SHEFs generated

106998

during the learning process. If there are too many SHEFs,
then the over-fit problem is occurred and the computational
time obviously is increased. But if there are too few SHEFs,
then the misclassification of queried data may result. The
distance concerns two factors. The first factor is the amount
of data in each SHEF of the same class. The second factor is
the number of existing SHEFs of the same class. A merging
threshold distance is defined based on these two factors in the
the following paragraph.

Let M be the predefined minimum amount data allowed
within each SHEF of class k. Suppose there are m; SHEFs
whose amount of data in each SHEF is less than M. The
threshold distance of class k, denoted as dist_thsy, is defined
as follows. For the first chunk, dist_thsy is set to dist_inity.
But for the other incoming chunks, the threshold distance is
set by (26).

dist_thsy if my < half of

existing SHEFs in class k
dist_ths;, = X g

2 x dist_thsy if mg > half of

existing SHEFs in class k
(26)

From (26), its concept is that if there exist many inefficiently
generated SHEFs (each SHEF captured data less than M), the
threshold distance should be scaled up.

B. CONDITION OF INTERSECTION OF TWO SCALABLE
HYPER-ELLIPSOIDS

The structure scalable hyper-ellipsoids in this paper is differ-
ent from the structure studied by Alfano and Greer [29]. Their
structure is based on the standard elliptic function, where the
right-hand side of elliptic equation is set to zero but SHEF
employs a scaling positive constant r2 as defined in (16)
instead. However, their technique of deriving the intersecting
condition was adapted to our scenario.

Suppose two SHEFs of the same class, SHEF,, and SHEFg
intersect. The following theorem states the conditions of
intersection of two scalable hyper-ellipsoids.

Theorem 2: Both of SHEF, and SHEFgz do not overlap
each other if all eigenvalues of the following matrix P are
all distinct real numbers and some of them are negative. Oth-
erwise they are in one these states: overlap, inside, or touch.

| D|=Dcg + ¢o
P_[F —Fc;;—i—l}’ @7

where F = (—c + ¢)S;', D = 5,8;" + ¢, F. S = /2,
and S~ = S~ Lr. Centr01ds ¢ and Cﬂ are of SHEF,, and
SHEFg, respectively. S will be derived in Section VI-C.

The proof of Theorem 2 is given in APPENDIX B. If two
SHEFs of the same class satisfy the conditions in Theorem 2,
then both of them are merged into a larger SHEF,, and all
relevant parameters are updated as follows.

ny, = ng +ng (28)

VOLUME 8, 2020

P. Rungcharassang, C. Lursinsap: SHEF With Projection Ratio for Local Distributed Streaming Data Classification

IEEE Access

NngCy + ngce
cyzw (29)
ny

ngng

1
S, _— (naSa—}—nﬂSﬂ—i—

(co—cp)(cq —cmT). (30)
Y

ny
C. PROPOSED LEARNING ALGORITHM OF SHEF

The learning process of SHEF consists of three main pro-
cedures. The first procedure (Steps 1-3) is initializing the
width of the first SHEF based on the condition stated in
Section V-A and (25). The second procedure (Steps 6-12)
is checking the condition for introducing a new SHEF to
capture new incoming data based on the threshold distance
discussed in Section V-A and defined in (26). The last pro-
cedure (Steps 14-21) is merging two SHEFs of the same
class according to the overlap constraints in Section V-B and
Theorem 2 by using (28), (29), and (30). The detail of learning
algorithm is in Algorithm 1.

An example of how SHEF learning algorithm according
to Algorithm 1 works is illustrated in Fig. 3. There are two
incoming chunks. The first chunk is shown in Fig. 3a. There
are 11 streaming data belonging to two classes. Five circles
are data in class 1 and six squares are data in class 2. For the
first chunk, one datum at a time in each class is captured by
a SHEF as shown in Fig. 3b - Fig. 3i. A dotted-line SHEF
denotes the state of SHEF after capturing the data while a
solid-line SHEF denotes the state of SHEF when its shape is
expanded and rotated to capture new data. An opaque circle
and an opaque square denote the data before being discarded
from a SHEF. Four SHEFs are used to capture the first chunk.
The second chunk is shown in Fig. 3j. There is only one
datum of class 2 in this chunk. Fig. 3j - Fig. 31 illustrate how
this datum is captured by SHEF,. After capturing this datum,
SHEF, and SHEF; are merged and replaced by SHEFs.

V1. IDENTIFYING CLASSES OF TESTING DATA
Determining the class of queried datum is also a very essential
step to achieve the highest classification accuracy. Generally,
the class of queried datum is decided by finding a cluster
having the nearest distance measured from either the cen-
troid (center) of the cluster or the boundary of the cluster to
queried datum. Although this approach is very practical and
rather efficient, the accuracy of classifying datum depends
strongly upon the shape of data distribution of the cluster.
A new improvement of measuring the nearest distance based
on local LDA is proposed in this study. Some of the popular
distance measures for class identification are briefly summa-
rized as follows. Let x is a queried vector in d-dimensional
space, S be a covariance matrix of the considered SHEF in
d-dimensional space, and ¢ be a centroid of the SHEF.

A. DISTANCE METHODS
1) EUCLIDEAN DISTANCE
EDx,¢) :=||x—¢|| =vVE—)T(x—¢) 31

where || - || represents Euclidean norm and T represents a
transpose.

VOLUME 8, 2020

Algorithm 1 Learning Procedure of SHEF for Current
Incoming Data Chunk

Input: (1) a set of N pairs of datum and target
X =((x1,y1), -, (Xn, yn)) for incoming data
chunk at any time.
(2) a constant €.
(3) a set of SHEFs from previous learning procedure
(if the incoming chunk is not the first chunk.)
(4) a constant M denoting the minimum of data
in any SHEF.
Output: a set of SHEFs and their updated parameters.

1. If the first data chunk then
2. Initialize dist_thsyj = dist_inityj using (25)
for every class y; in chunk X.

3. EndIf

4. For each pair (x;, y;) € X do

5. If there exists a set of SHEFs of class y; then

6. Let ¢;, nj, and S; be the centroid, amount data,
and covariance matrix of captured data of SHEF;
of class y;, respectively.

7. Let & = argmin(||x; — ¢;|)).

J
8. If ||x; — c¢|| > dist_thsy, then
9. Introduce a new SHEF of class y; to capture
x; and update dist_thsy, using (26).
10. else
11. Put x; in SHEF¢ and update parameters by

using (22) and (24). Update n; = n; + 1.
12. EndIf

13. Discard pair (x;, y;) from the training set.
14. Let SHEF,, be SHEF capturing x;.
15. If n, > M then
16. Deploy the conditions in Thm.2 to test overlap
SHEF,, and the nearest SHEFy of class y;.
17. If SHEFg overlaps SHEF,, then
18. Merge SHEF,, and SHEFg into a larger
SHEF,, .
19. Update parameters of SHEF, using
(28), (29), and (30).
20. EndIf
21. EndIf
22. else
23. Introduce a new SHEF of class y; to capture
x; and update dist_thsy, using (26).
24. Discard pair (x;, y;) from the training set.
25. EndIf
26. EndFor

2) MAHALANOBIS DISTANCE

MD(x, ¢, S) := v/(x —)TS~L(x — ¢) (32)
where S~! represents the inverse of S.

106999

IEEE Access

P. Rungcharassang, C. Lursinsap: SHEF With Projection Ratio for Local Distributed Streaming Data Classification

’)"\\ A training data
°® n Ay
. o
® An initial width in class 1
N |
o g

An initial width in class 2

(a) Incoming data of the first
chunk. The initial width of SHEF
is computed from this chunk.

(b) Capturing a datum in class 1
denoted by a circle.

(¢) Capturing a datum in class 2
denoted by a square.

(d) Capturing another datum in
class 1.

discarded data
P

SHEF SHEF

(e) Adjusting the shape of SHEF;
and capturing another datum in

(f) Capturing a datum in class 2.

(g) Capturing a datum in class 2
by SHEF>.

(h) Discarding the recently cap-
tured data by SHEF3 and adjusting
the shape of SHEF>.

class 2.
SHEF3

SHEF ‘

SHEF 4 SHE

SHEF,

A new training data ‘

SHEF 4 SHE

SHEF 3

l

SHEF 5

SHEF

New SHEF

SHEF,

SHEF

Overlap

SHEF, SHEF,

(i) Capturing the rest of data in the
first chunk by SHEF3 and SHEF,.

FIGURE 3. An example of how Algorithm 1 works.

3) THE VERSATILE ELLIPTIC BASIS FUNCTION VALUE
VEBF [22] and CIL [23] use their shape-function value as a
decision function to measure the closeness between a sample
point x to SHEF. Their versatile elliptic basis function of the
k™ neuron is defined as follows.
d Ty)2
Vi (x) = Z ((Xa# -1

i=1 i

(33)

where {uj,up,---,uy} are eigenvectors of a covariance
matrix of covered data and a; is the width of each axis of
VEBE.

4) APPROXIMATE BOUNDARY DISTANCE

Measuring the distance with respect to the boundary of any
hyper-ellipsoids is rather complex, hence an approximate
distance was proposed.

Zimmermann and Svoboda [32] proposed an approximate
distance between a sample point x to the nearest boundary
of an ellipse. It can also be applied to a high dimensional
space of the ellipse, called a hyper-ellipsoid. This distance
is measured on the line connecting the sample point and the
centroid. The line intersects the boundary of the ellipse at
a specific point. The actual distance is measured from the
intersection point to the sample point. Instead of using the
ellipse, they transformed the shape of the ellipse as a unit

107000

(j) The second incoming chunk.
There is only one datum in class 2.

(k) Capturing the datum class 2 by
SHEF;.

() Merging SHEF2 and SHEF3
and replacing them by SHEFs5.

circle by matrix transformation which is much simpler as
shown in Fig. 4.

The interesting concept of this strategy is described as
follows. First, the original ellipse and the sample point are
transformed by the inverse of the matrix L7 into a unit circle.
This matrix is obtained by factorizing the covariance matrix
representing an ellipse with a Cholesky factorization (S =
LL”). The distance from a sample point to the unit circle
can be easily computed by using Euclidean distance. After
that, the distance value will be re-transformed to the original
shape using the matrix L. Approximate boundary distance
according to the above concept is defined by the following
equation.

BDj(x. ¢ 8) = [|(x — ©) -9 i @

1x,¢,8) ;= —-¢)————
LD~ (x — o)

where (-)~! represents the inverse of the matrix and || - || rep-

resents Euclidean norm.

Wattanakitrungroj et al. [26] also proposed a method
to compute the distance between the boundary of full
micro-cluster and a data point by solving equations following
the concept in Fig. 5. Although both methods [26], [32]
deploy different definitions of ellipsoid, they end up with the
same distance approximation. However, [26] takes less com-
putation time and calculation steps than [32]. Approximate

VOLUME 8, 2020

P. Rungcharassang, C. Lursinsap: SHEF With Projection Ratio for Local Distributed Streaming Data Classification

IEEE Access

map an ellipse to a unit circle
by matrix transformation

L7y

<

\LT e

\distance to the boundary /

FIGURE 4. Approximate distance from a point to an ellipse by
Zimmermann and Svoboda.

centroid

szglmlp\e point
/X

distance to the boundary

FIGURE 5. Approximate distance from a point to an ellipse by
Wattanakitrungroj et.al.

centroid

di >dy @

SHEF,

centroid

testing datum

FIGURE 6. An example of wrong interpretation of closeness between
testing datum and two SHEFs. The closeness is determined by measuring
Euclidean distance from datum to the centroids of both SHEFs.

boundary distance according to [26] is defined by the follow-
ing equation.
1
BDs(x, ¢,8) := [|x — ¢[|(1 —). (35
Vx—oTS I(x—¢)

B. LIMITATION OF EACH DISTANCE METHOD

Usually, the closeness between a point x and SHEFs can be
easily determined in terms of Euclidean distance either from
x to the centroid or from x to the boundary of SHEFs. How-
ever, the simplicity may lead to the wrong interpretation. For
example, suppose there are two SHEFs, namely SHEF; and
SHEF,;. Fig. 6 shows an example of the Euclidean distance,
see (31), from a testing datum x to the centroids of SHEF;
and SHEF;. The distance from x to the centroid of SHEF; is
longer the distance to the centroid of SHEF;. Thus, x must be
assigned to SHEF, instead of SHEF. But in fact, the correct
closeness of the testing datum x in this example is SHEF
because it is closer to SHEF; than SHEF,.

VOLUME 8, 2020

centroid

di<dy 2 SHEF
E 2

centroid

dy testing datum

FIGURE 7. The closeness distance measured with respect to the boundary
of SHEF, and SHEF,. The datum is close to SHEF; instead of SHEF,.

To achieve the correct identification, the closeness distance
should be measured with respect to the boundaries of SHEF;
and SHEF, as shown in Fig. 7. However, measuring the
closest distance from the point x to the boundary of SHEFs in
a high dimensional space is rather complex. Although there
exists the approximate ways such as the methods of Zimmer-
mann and Svoboda [32], see (34), and Wattanakitrungroj et al
[26], see (35). They do not take the distribution of data into
account.

Since Mahalanobis distance, see (32), is a distance measure
between x and the considered SHEF at the same distribution,
it needs to update a centroid and a covariance matrix with a
new point. If the amount of data is extremely generated, it is
expensive to calculate all updates.

Using the VEBF value to measure the closeness follow-
ing (33) may lead to the wrong interpretation. Because of a
size of each hyper-ellipsoid (a;) is updated without depending
on its distribution.

In this paper, a new similarity measure (distance measure)
was designed based on the distribution of data inside each
SHEF. The details of our new distance measure are described
as below.

C. NEW DISTANCE MEASURE OF SHEF PROJECTION
WIDTH

A new distance measure, namely Projection Ratio, was pro-
posed. It relaxes the mentioned limitation of each distance.
The Projection Ratio considers the tradeoff between the dis-
tance from the data point to the boundary of SHEF with the
local data distribution of SHEF. Instead of using the direct
distance between a testing datum to the boundary of SHEF,
our closeness distance between any SHEFs and the testing
datum is defined as the distance between the projected SHEF
and the projected testing datum onto the linear-discriminant-
analysis (LDA) vector. In this section, the projections of the
SHEF boundary and its center onto the LDA vector (discrim-
inant vector) are described as follows.

Let w be the discriminant vector. Suppose that w is already
known. A considered SHEF is projected onto w as depicted in
Fig. 8. Suppose that points A and B are the projected boundary
points of SHEF onto w. The centroid ¢ is projected onto w at
position ¢’ using (36).

d=wle. (36)

107001

IEEE Access

P. Rungcharassang, C. Lursinsap: SHEF With Projection Ratio for Local Distributed Streaming Data Classification

A A\ / Projected boundary point
The projected width

FIGURE 8. Projection of SHEF onto the discriminant vector w in a
two-dimensional space.

Note that ||A — ¢'|| and ||B — ¢/|| are equal and they can
be defined as the projected width of SHEF onto the discrim-
inant vector w. Actually, without knowing the locations of
points A and B, the projected width can be computed by the
square root of the projected covariance matrix of SHEF. The
geometrical width of each eigenvector of SHEF directly cor-
relates with the covariance matrix of captured data (S) and the
scaling positive constant (r). Itis equal to r/A;, where A; is an
eigenvalue of S. This width value is actually the square root
of eigenvalue along the eigenvector of the covariance matrix
of SHEF. SHEF is just a shape hyper-ellipsoid without any
data. All captured data of the SHEF are entirely discarded.
Thus, the covariance matrix of SHEF for projection onto w
must be derived from S.

Let S be the covariance matrix of SHEF with its eigenval-
ues ii = r2); and S be the covariance matrix gf captured
data vectors with its eigenvalues A;. Since both S and S are
computed from the same data set, their eigenvectors U are
the same. From (18) we have

S = UAUT = U2 AUT = r2UAUT =128, (37)

The projected width of ||]A — ¢/|| and ||B — ¢/|| can be
computed by the following equation.

IA—¢||=[IB—¢||=vVw8w=r/wiSw (38

where w/Sw is a non-negative scalar. || - || represents
Euclidean norm. Note that, our projection method is similar
to Pope’s idea [33] using the different definition of hyper-
ellipsoid function. Deriving the discriminant vector w in our
case is different from that of LDA. LDA computes a discrim-
inant vector from two classes of data but in our case there are
only one datum and a SHEF which is representation of data.
Therefore, the method of LDA cannot be directly applied to
compute the discriminant vector in our case.

Let S and ¢ be the covariance matrix and the centroid of
captured data of SHEF, respectively. Suppose X is a single
queried datum. In order to find the discriminant vector for
both SHEF and x, datum Xx is reconsidered as the centroid
of another SHEF. By Using (8) with this circumstance, the
discriminant vector can be derived as follows.

S lx—¢)
Wp =7 -
1S~ (x — o)
Fig. 9 shows an example of discriminant vector w;, and the
projected width of SHEF as well as the projected location of

(39)

107002

SHEF data point

centroid

® X

projected

centroid on w, !
, / projected data
' point on w,

LDA of x
and SHEF

ry/WlSw, lw?(x - c)|

FIGURE 9. The concept of projection ratio distance for x and SHEF

computed from |w,7,'(x —¢)| and r‘/w},' Swp along the discriminant vector
wp defined in (39).

data point x onto w,,. There are two significant distances to be
used. The first distance |W[7; (x — ¢)] is the projected distance
from the projected centroid to the projected location of x. The

second distance r WZ;SWP is the projected width of SHEF.

The Projection Ratio distance from data point x to SHEF
is defined as follows.

Wl (x — o

wT
r W, SWp

Based on this Projection Ratio, determining whether data
point x is inside or outside SHEF can be easily done. The fol-
lowing Theorem states the conditions to indicate the location
of x with respect to SHEF.

Theorem 3: Let S and ¢ be a covariance matrix and a
centroid of captured data of SHEF in a d-dimensional space.
Suppose x is a single queried data point and a discriminant
vector w), is defined in (39).

1) If D(x, ¢, S) < 1 then x is inside SHEF.
2) If D(x, ¢, S) > 1 then x is outside SHEF.
3) If D(x, ¢, S) = 1 then x is on the boundary of SHEF.

The proof of Theorem 3 is given in APPENDIX C.

D(x,¢,S) = (40)

D. DETERMINING CLASS OF QUERIED DATUM BASED ON
PROJECTION RATIO DISTANCE
Datum x may encounter two possible scenarios when its Pro-
jection Ratio is deployed to determine its appropriate class.
Suppose two SHEFs are close to x. The projection ratios of
both SHEF; and SHEF; are D(x, ¢;,S1) and D(x, ¢2, S»),
respectively.
1) If both SHEFs represent the same class, then x is
assigned to the class of either SHEF; or SHEF,.
2) If both SHEFs represent the different classes, then the
appropriate class of x is determined as follows.
a) D(x,¢1,S1) < 1 < D(x,¢,87). This implies
that x is inside or on the boundary only SHEF;.
Thus, x should be assigned to the class of SHEF;.
b) Otherwise, Projection Ratio is deployed to both
SHEFs onto a new discriminant vector w defined
in (8) instead, as shown in Fig. 10. Denoted by

VOLUME 8, 2020

P. Rungcharassang, C. Lursinsap: SHEF With Projection Ratio for Local Distributed Streaming Data Classification

IEEE Access

testing datum

class 2
\ SHEF,

class 1 \
SHEF; :

LDA of SHEF,
and SHEF,

FIGURE 10. An example of projections of two SHEFs and x onto a
discriminant vector w defined in (8). There are two Projection Ratios, one
for each SHEF.

W (x —)|
rvwl'Sw
of x is determined as follows.
i) If D'(x, ¢1,S1) < D'(X, ¢2, S»). then x should
be assigned to the class of SHEF].
i) If D'(x,¢1,S1) = D/'(x,¢3,S). then the
appropriate class of x is indeterminate.

D'(x,¢,S) = , the appropriate class

VII. EXPERIMENTAL DATA AND SET-UP

All experiments were tested with two groups of data. The
first group has four 2-dimensional synthetic data sets (see
the illustration from the first row of Fig. 1): Sparse-dense
data, Faraway4 data, Spiral data, and Gaussian distributed
data. The second group contains seven real-world data sets
from the University of California at Irvine (UCI) Repository
of the machine learning database [34] which were selected
by varying the number of features, the number of data, and
the number of classes. For Letter, Shuttle_trn, and Kddcup99
data set, they were selected to imitate streaming data. For
Kddcup99, four symbolic features which are more than two
categories were removed. So there are 38 features in this data
set. The description of all data sets are given in Table 1.

A 5-fold cross validation was used in all experiments for
each method. Training data in each data set were divided
into several chunks of randomly different sizes in order to
simulate the environment of streaming data. These chunks
were sequentially fed into the training process. The amount of
data in each chunk was uniformly and randomly distributed
and pre-defined by a variable called chunk-size range. Table 2
summarizes the chunk-size range of each data set and the
number of training chunks in each fold. In order to study the
effect on the order of the incoming data in each data set, 10
groups of different shuffled order of training chunks in each
data set were created for each fold. Total experiments per one
data set were 50 experiments.

Since the experiments are in a streaming environment in
forms of sequential data chunks, the testing process in [6],
[8], [35] was adopted. After learning one incoming chunk, the

VOLUME 8, 2020

TABLE 1. Experimental data sets and their attributes.

Data set # of features # of data # of classes

% Synthetic data sets

Sparse-dense data 2 496 3
Faraway4 data 2 612 4
Spiral data 2 2000 2
Gaussian data 2 6000 4
% Real-world data sets
Segment 19 2310 7
Spambase 57 4601 2
Waveform 21 5000 3
Satimage 36 6435 6
Letter 16 20000 26
Shuttle_ trn 9 43500 7
Kddcup99 38 494020 23

TABLE 2. Setting the number of training data in each fold for each
streaming chunk.

of training chunks in each fold

Data set Chunk-size range
fold1 fold2 fold3 fold4 fold5

Sparse-dense [20,50] 11 12 11 12 10
Faraway4 [20,50] 13 13 15 13 14
Spiral [100,200] 11 11 10 10 10
Gaussian [100,200] 31 30 33 32 31
Segment [100,200] 12 13 12 12 13
Spambase [100,200] 24 25 25 24 24
Waveform [100,200] 26 26 28 27 25
Satimage [100,200] 35 35 35 34 35
Letter [100,200] 109 108 107 104 105
Shuttle_trn [100,200] 230 231 232 236 232
Kddcup99 [1000,2000] 263 272 260 258 268

classification accuracy is evaluated by a testing set and a new
chunk is learned next. The accuracy of each testing chunk is
called Chunk-wise Accuracy (CA).

For streaming data evaluation, assume that training data
was divided into T chunks. Let CA;, for 1 <t < T, be the
evaluation accuracy of the (r + 1)”’ chunk as a test set after
training the ¢ chunk as a train set. The following Average
Cumulative Accuracy of chunk ¢t (ACA;) is measured after
training the 7™ chunk.

1 t
ACA,=7Z:CA,-, t=1,---,T—1. 1)
=

The proposed method is also efficiently capable of learning
non-streaming data, where there is only one train set and
one test set. A 5-fold cross validation is used to evaluate
the method. To distinguish the accuracy of non-streaming
data classification from chunk-wise accuracy, this accuracy
of non-streaming data is called Population Accuracy (PA).

The experimental results were compared with the results
produced by the methods designed for learning streaming
data with the concept of one-pass learning which are VEBF
[22], LOL [21], and CIL [23] and with the concept of retained
learning which are ILDA [17] and VLLDA [24]. However,
these compared methods have similar and different charac-
teristics as summarized in Table 3. The meaning of each
characteristic is the following.

107003

IEEE Access

P. Rungcharassang, C. Lursinsap: SHEF With Projection Ratio for Local Distributed Streaming Data Classification

TABLE 3. Characteristics of the compared methods (v Yes, - No).

Incremental Tuned parameters
Methods Sequential Chunk One-pass Stream FRM Local (determiﬁed by user)

VEBF [22] v - - - v §

ILDA [17] v - v v - No tuning

LOL [21] v - v - v k, A,and C
CIL [23] - v * % - v §
VLLDA [24] - - - v v k

Proposed method (SHEF) v - v v v No tuning

* LOL is the true one-pass learning for only dichotomous classification problem. When LOL is applied to classify multi-class data,

it uses one-vs-all approach to classify one class at a time.

* % The initial width of a hyper-ellipsoid in streaming version of CIL for any class is computed from the first 20% of total training data.

1) Sequential means learning one incoming datum at a
time.

2) Chunk means learning one incoming chunk which may
have several classes of data at a time.

3) One-pass means discarding all current training data
after being learned, which may be a datum or a chunk
of data.

4) Stream means processing without knowing any prior
statistical information of data in advance and not using
that data in advance to set any initial parameters.

5) FRM means using the feature reduction method for the
classification problem.

6) Local means using only the information from the
incoming data distribution to solve nonlinear separable
problem.

The experiemntal results of proposed method were
compared to those produced by VLLDA [24], ILDA
[17], LOL [21], VEBF [22], and CIL [23]. All meth-
ods have different parameter settings. In this experiment,
the parameter setting of each method is summarized
in Table 4.

For VEBF and CIL, the constant § was set to scale the
initial width of VEBF shape function calculated from the
average distance. Parameter settings for the data sets of Seg-
ment, Spambase, Waveform, and Letter were referred from
[23]. VEBF used whole training data to calculate their initial
average distance whereas CIL used the first 20% of total
training data. Unfortunately, the number of training data in
Shuttle_trn and Kddcup99 is too huge to be calculated in a
short time. Hence, only first 10,000 training data of Shut-
tle_trn and Kddcup99 were calculated for VEBF and only
first 10,000 training data of Kddcup99 were calculated for
CIL. For LOL, the authors claimed that LOL is not very
sensitive to the parameters and suggested the settings of three
parameters, namely the number of prototypes k was set to 60;
the balancing parameter A was set to 1.0; and the aggressive
parameter C was set to 1.0 for all experiments. For VLLDA,
the parameter k must be set to be congruent with the k-nearest
neighbour method. For ILDA and VLLDA which use LDA
for classification, the number of selected discriminant vectors
was set according to the number of non-zero eigenvalues
of S},'S.

107004

TABLE 4. Parameter settings of VLLDA, VEBF, and CIL.

Data set VLLDA (k) VEBF () CIL (9)
Sparse-dense data 5 0.2 0.2
Faraway4 5 0.2 0.2
Spiral data 5 0.2 0.1
Gaussian data 10 0.4 0.5
Segment 10 1 0.7
Spambase 10 1 0.4
Waveform 5 1 0.3
Satimage 10 0.9 0.7
Letter 5 0.7 0.7
Shuttle_trn 10 20 1
Kddcup99 10 2 2

For our proposed method, the following hyperparameters
were set: constant r was set to 1.5; regularization parameter
€ in Lemma I was set to 0.0001; minimum number of data M
in SHEF was set to 3 for all experiments without tuning.

VIIl. EXPERIMENTAL RESULTS AND PERFORMANCE
COMPARISON

All experiments were conducted on a desktop PC with 8 GB
RAM, Intel Core i7-4770, 3.4 GHz with licensed Matlab
code. The dimensions of data sets vary from two dimensions
to some higher dimensions. For two dimensions, Fig. 11
shows the results obtained from proposed SHEF. Note that
these VEBF, CIL, SHEF approaches are based on the same
concept of discard-after-learn. For other methods using dif-
ferent concepts and higher dimensional data sets, the results
are compared and shown in Table 5 instead. The independent
t-test was adopted to measure the statistically significant
difference between the average value of proposed method and
other methods. The value with asterisk (*) means that there is
no statistically significant difference at the 5% significance
level (p > 0.05). The experimental results concerned the
following issues.

A. POPULATION ACCURACY (PA) AND AVERAGE
CUMULATIVE ACCURACY (ACA)

The average population accuracy and the standard deviation
of all methods in each data set are reported in Table 5.
The compared methods used different approaches to learn-
ing data. The first approach is retaining all training data

VOLUME 8, 2020

P. Rungcharassang, C. Lursinsap: SHEF With Projection Ratio for Local Distributed Streaming Data Classification

IEEE Access

1 0 n
2 Y
0 oS ©
" 3¢ 0
- -40
1 C e
L %Ogﬁ

-100
00 80 60 40 20 0 20 40 60 80 100 70 60 60 40 % 2 -0 0 10 20

(a) Sparse-dense data (b) Faraway4 data

(¢) Spiral data (d) Gaussian data

FIGURE 11. Results of four 2-dimensional synthetic data sets generated by proposed SHEF. (see online version for color figure).

TABLE 5. Comparison of average population accuracy (%) and standard
deviation (x+sd) in the five-fold validation with 10 replications.

Approach 1
VLLDA ILDA LOL

Approach 2
VEBF CIL

Data set

(# features, # classes)

SHEF

Sparse-dense data 99.798* 99.798* 91.930 86.592 89.291 99.738

(2,3) £0.408 £0.408 £9.280 +4.024 +2.863 0447

Faraway4 99.672* 99.672* 93.447 81.131 80.461 99.575
2.4 +0.662 +0.662 +8.028 +6.079 +5971 +0.744
Spiral data 99.600 67.850 50.150 97.820 97.625 98.750
2,2) +0.258 +1.602 +2.163 +1.512 +3.244 +1.680
Gaussian data 90.050 89.633 88.220 90.733 85.122 93.345
2.4 +1.055 +0.793 £2.788 +3.881 +3.537 +0.401
Segment 95.065 95.714 79.320 82.498 88.563 93.848
(19,7) +1.511 +1.479 +2.938 +2.935 +2.305 +0.846
Spambase 85.773 87.433 60.533 71.902 90.239 90.845
(57,2) 40588 40324 +1.391 +8.121 +1.847 +0.775
Waveform 81.920 82.019 80.926 84.116 81.388 86.480
(21,3) +0.679 +1.217 +2.142 +4.201 +1.139 +0.907
Satimage 88.163 86.869 80.634 83.081 58.176 84.881
(36,6) +1.037 +0.585 £2950 +4.454 +2.809 +0.903
Letter 95.552 95.723 61.205 65.985 26.432 84.841
(16, 26) +0.279 +0.328 +2332 +5.730 +16.741 +0.370
Shuttle_trn 99.862 99.883 97.753 38.343 97.280 96.331
9.7 +0.055 +0.029 +0677 +30677 +0.324 +1.425
Kddcup99 N/A N/A 99.011 78.919 19.93 99.348

(38,23) +0.2703 4038 40.189 40,055

1. Bold number indicates the maximum average accuracy in the part of approach 2.
2. Underlined number indicates the maximum average accuracy between SHEF and
approach 1.

3. N/A indicates that method could not finish the learning process within an hour.
4. The value with asterisk (%) means that there is no statistically significant
difference at the 5% significance level (p > 0.05).

throughout the training and testing processes as implemented
in VLLDA and ILDA. But the second approach uses the
concept of discard-after-learn. Each datum is learned in one
pass and discarded afterwards. No need to retain any incom-
ing datum throughout the training and testing processes as
implemented in LOL, VEBFE, CIL, and our proposed method.
To obtain a clear comparison based on these two approaches,
the testing was conducted into two categories according to
each approach.

Without tuning any hyper-parameters, our method SHEF
achieved better accuracy with statistically significance
in 10 out of 11 data sets compared to the methods using
the second approach and in 4 out of 9 data set when being
compared to the methods using the first approach. The better
accuracy is shown in bold numbers and underlined num-
bers. Notice that there is a statistically significant difference

VOLUME 8, 2020

between the average population accuracy of SHEF and other
methods in the second approach (LOL, VEBF, and CIL) on
every data set. LOL has the lowest accuracy on Spiral data,
Segment, Spambase, and Waveform. VEBF has the lowest
accuracy with large standard deviation on Shuttle_trn. CIL
has the lowest accuracy on Satimage, Letter, and Kddcup99.
For Kddcup99 data set, VLLDA and ILDA could not finish
the learning process within one hour. For the first approach,
VLLDA and ILDA have quite good accuracy on all data sets,
except ILDA method on Spiral data.

Fig. 12 shows the chunk-wise accuracy for six methods
after training in each chunk on seven real-wolrd data sets. One
of 50 experiments was picked up to show the accuracy at each
chunk of streaming data. Since VLLDA and ILDA used and
retained all incoming training chunks (the first chunk to the
current chunk of streaming data) to classify the testing data,
thus they were recomputed with cumulative training data
from all previous training chunks. It is remarkable that LOL
has a wide swinging range of accuracy on Waveform, Satim-
age, and Kddcup99. VEBF has a wide swinging range of the
accuracy on Spambase and Shuttle_trn. There is a sudden
change of the accuracy value in VEBF on Shuttle_trn data set
to be discussed in the next section. CIL has a wide swinging
range of accuracy on Waveform, and Letter. For Kddcup99,
CIL has the low accuracy in every chunk of data. The average
cumulative accuracy of the results in Fig. 12 calculated by
using (41) is shown in Fig. 13. This type of accuracy indicated
the trend of accuracy as the result of incremental learning
the incoming chunk after chunk. For the proposed method
SHEEF, the average cumulative accuracy trended to increase
in all data sets when SHEFs were incrementally trained.

B. AVERAGE NUMBER OF GENERATED NEURONS

Table 6 shows the average number of generated neurons
(or prototypes). The compared methods can be grouped by
information used to generate the neurons during the learning
period. The first group consists of VLLDA and ILDA. Both
VLLDA and ILDA generated neurons based on the number
of training data in each data set. The second group consists of
LOL, VEBF, CIL, and SHEF. LOL generated neurons based
on the number of prototypes (set to 60). VEBF, CIL, and
SHEF generated neurons based on hyper-ellipsoidal shape
function to capture the incoming data. At the end of training

107005

lEEEACC@SS P. Rungcharassang, C. Lursinsap: SHEF With Projection Ratio for Local Distributed Streaming Data Classification

% W
= A
. D 2 N 2 .
7/ Sl g £
3 / z 3
gro / g g
3 / g 3 \
Foof /] § g5l
sof | 60
40 A‘ 50
0 2 4 6 8 10 12 0 5 10 15 20 25 0 5 10 15 20 25
Chunks of streaming data Chunks of streaming data Chunks of streaming data
(a) Segment (b) Spambase (¢) Waveform

A A PrREATES

N A

[N W

Accuracy (%)

20 20
0 10 20 30 0 20 40 60 80 100 0 50 100 150 200 o 50 100 150 200 250
Chunks of streaming data Chunks of streaming data Chunks of streaming data Chunks of streaming data
(d) Satimage (e) Letter (f) Shuttle_trn (g) Kddcup99
VLLDA —E— ILDA —A— LOL VEBF CIL —@— SHEF

FIGURE 12. Chunk-wise accuracy (%) for six methods after training in each chunk on seven real-world data sets.

= 90 - 2 9 2 g Siseevesetessertte
3 /""_’ﬁ 7 pote ES e meattttt
e eetecsoeien AR
£ g £y £ 00] g et AREREITITY
3 PR (oL -
2 e £ 80 & st WS
3 70 o 2 2
] ' 57 g7
g g]
E e En E 65
o o o
o 50 8 65 o 60
g FEI B
g g N\ A pesfttas 4 pok] - g
g, NG YOUPS= seo 0t -
< < <
0 2 4 6 8 10 12 0 5 10 15 20 0 5 10 15 20 25
Chunks of streaming data Chunks of streaming data Chunks of streaming data
(a) Segment (b) Spambase (¢) Waveform

%
3
8

©
&

<
8

o

o 5 10 15 20 25 30 35 o 20 40 60 80 100 50 100 150 200 50 100 150 200 250
Chunks of streaming data Chunks of streaming data Chunks of streaming data Chunks of streaming data

(d) Satimage (e) Letter (f) Shuttle_trn (g) Kddcup99

=
8

8

N
3

@
2
Average Cumulative Accuracy (%)

Average Cumulative Accuracy (%)
Average Cumulative Accuracy (%)

Average Cumulative Accuracy (%)

8

o
o

VLLDA —=— ILDA —A— LOL VEBF CIL —@— SHEF

FIGURE 13. Average cumulative chunk-wise accuracy (%) for six methods in each chunk on seven real-world

data sets.
all incoming chunks, the average number of generated SHEFs or decreased according to their approaches. Since CIL does
is less than or equal to those of the others in 10 out of 11 data not have any merging strategy, the number of neurons is

sets. There are statistically significant difference between the always increased.

average number of neurons in our proposed method (SHEF)

and the other methods in every data set, except for VEBF

on Waveform. There are six data sets, i.e. Gaussian data, C. AVERAGE COMPUTATIONAL TIME

Segment, Spambase, Waveform, Satimage, and Letter, where Table 7 reports the computational time of training and test-

our method generated the average number of neurons close ing processes. Training time is a total spending time after
to the number of classes. However, there is one data set, training all of streaming data chunks on each data set. Test-
Kddcup99 data set, where the number of generated neurons ing time is a spending time of the test set from the 5-fold
is less than the number of classes (23 classes). The detail will cross validation. There is a statistically significant difference
be discussed in the next section. between the average of computational time (both training

Fig. 14 shows the number of generated neurons for three and testing) of the proposed method (SHEF) and the other
methods (VEBF, CIL, and proposed SHEF) during training in five methods, except for the testing time of LOL on Sparse-
each chunk on seven real-world data sets. VEBF and SHEF dense data. VLLDA is processed without training so only the
merge two overlapped hyper-ellipsoids. Therefore, the num- testing time is reported. The training time of VEBF, CIL,
ber of neurons during the training process might be increased =~ and SHEF included the computational time of calculating

107006 VOLUME 8, 2020

P. Rungcharassang, C. Lursinsap: SHEF With Projection Ratio for Local Distributed Streaming Data Classification

IEEE Access

3

3

&

8

The number of generated neurons

The number of generated neurons

o = oo

el
8 & 8 8

The number of generated neurons

0 2 4 6 8 10 12 0 5
Chunks of streaming data

(a) Segment

2500

2000

3
g

1500

3
8

The number of generated neurons
o

3
8
The number of generated neurons

10

Chunks of streaming data

(b) Spambase

15 20 25

5 10 15 20 25
Chunks of streaming data

(c¢) Waveform

2000

1500

2

g

I
The number of generated neurons

°

10 20 30 0 20 40 60 80 100
Chunks of streaming data Chunks of streaming data

(d) Satimage (e) Letter

0 50 100 150 200
Chunks of streaming data

(f) Shuttle_trn

°

50 100 150 200 250
Chunks of streaming data

(g) Kddcup99

VEBF

CIL —@— SHEF

FIGURE 14. Number of generated neurons for three methods after training in each chunk on seven real-world data

sets.

o
=
f*‘»‘

@ \
s

il
A7 uW *m*‘ I ‘f \FJ‘

s h[l Md L

u
A]l'ly

filfs Tq’
iy w’xjm‘
ik

op T i t T ok,

2 3 4 5 6 7 8 9 10 o
Chunks of streamin g data

(a) Zoom in training time at the first ten chunks

100
Chunks of

(b) Training time at each chunk

20 250 o 50 100 150 200 250

150
streaming data Ghunks of streaming data

(¢) Cumulative training time at each chunk

| —A— LoL

VEBF

CIL —@— SHEF

FIGURE 15. Training time of Kddcup99 during training each incoming chunk. (see online version for color figure).

the initial distance of hyper-ellipsoids. When the number of
data is not huge, the computational time of all methods may
not be different. However, the last three data sets (Letter,
Shuttle_trn, and Kddcup99) are quite big. SHEF is obviously
faster than others methods for both training and testing data.
For example, SHEF spent about 14 seconds for 395,216
training data and about 94 seconds for 98,804 testing data in
Kddcup99 data set whereas the other methods spent a much
longer time for training and testing, especially for VLLDA
and ILDA. They could not finish the process within one hour.
Actually, VLLDA and ILDA spent about four hours and three
days for Kddcup99 data set, respectively.

Fig. 15 shows the computational time of four methods
(LOL, VEBF, CIL, and SHEF) for learning each incoming
chunk on Kddcup99 data set (263 chunks). Fig. 15a shows
the training time of the first ten chunks. For VEBF, CIL,
and SHEEF, the computational time to initialize the width of
a hyper-ellipsoidal function was included in training time of
the first chunk. Fig. 15b shows the training time of each chunk
and Fig. 15¢ shows the cumulative training time from Fig. 15b
of each chunk. Cumulative training time is the summation

VOLUME 8, 2020

of the training time of each consecutive incoming chunk,
starting from the first chunk to the current incoming chunk.

D. EFFECTS OF SHEF HYPER-PARAMETERS ON
CLASSIFICATION ACCURACY AND NUMBER OF SHEFs

The values of two hyper-parameters r and € in (17) were
specially varied in this section to analyze how their values
effect the classification accuracy and the number of generated
SHEF neurons. Hyper-parameter € was set to 1070, 1074,
1072, 10°, and 10? and positive hyper-parameter r was set
to 0.5 to 2.5 with a step size of 0.5. Fig. 16 shows the results
in the form of Grid Search diagram by varying € and r of
SHEF on 11 data sets. The x-axis denotes the range of €
and y-axis denotes the range of r. The average population
accuracy of 50 experiments as the results of various values
of € and r is depicted by color levels varied from Blue
to Red (50% to 100% of accuracy). The number in each
box means the average number of generated neurons as the
results of different values of € and r. But the results from
all experiments in the Sections previously discussed fixed the
values of € = 10™* and r = 1.5. These results of fixed € and

107007

IEEE Access

P. Rungcharassang, C. Lursinsap: SHEF With Projection Ratio for Local Distributed Streaming Data Classification

Sparse-dense Faraway4

0.5

1.5

value of r
value of r

g
[N

1010 102 10° 10?

1010 102 10° 10?
value of e
Segment

value of €
Spambase

100
90
80
70

60

50
1010 102 10° 102
value of €
Shuttle_trn

value of r
value of r
-

o

1010 102 10° 102
value of e
Letter
100

0.5 [27.34 26.86 26.38 26.08 26 0.5
El)

27.46 26.9 26.3226.08 26
80
1.5 [27.08

26.2 26.04 26 1.5

2

70

value of r
value of r

n

26.4 26.1426.04 26 26
60
2.526.1426.08 26 26 26 25
50

1010 102 10° 10?

1010 102 10° 10?

value of e value of ¢

Gaussian

100
920
80
70

value of r
value of r

60

50

10 10% 102 10° 10?
value of ¢
Satimage

0.5 [6.06 6.06 6.06 6.06 6.06

1010 102 10° 102
value of €
Waveform

6.06 6.06 6.06 6.06 6.06

1.5 [6.06 6.06 6.06 6.04

value of r
value of r

216 6 6 6 6

60

2571 6 6 6 6 6

50
10° 10 102 10° 102
value of ¢

1010 102 10° 102
value of €
Kddcup99

value of r

1010 102 10° 10?

value of ¢

FIGURE 16. Average population accuracy and number of generated SHEF neurons in the form of Grid Search resulted by different values of ¢ vs r of

SHEF on 11 data sets.

TABLE 6. Comparison of average and standard deviation (x+sd) of the
number of generated neurons at the end of training process.

Data set Approach 1 Approach 2
VLLDA ILDA LOL VEBF CIL SHEF
Sparse-dense 397 397 60 29960 17.980 12.280
+2.878 +3431 +1.485
Faraway4 490 490 60 4380 11.680 16.940
+0.567 +8.077 +2411
Spiral 1600 1600 60 16.640 186.640 15.360
+1.120 +11.374 +1.575
Gaussian 4800 4800 60 4.260 43.720 4.08
+0.600 +3.881 0444
Segment 1848 1848 60 14.320 86.040 7.120
+0978 +3812 +0.328
Spambase 3681 3681 60 20.420 108.140 2.280
+1.500 +6.958 +0.536
Waveform 4000 4000 60 3.000* 80.300 3.000
+0.000 +2.845 +0.000
Satimage 5148 5148 60 6.500 211.780 6.060
+0.909 +3.247 +0.240
Letter 16000 16000 60 41.460 2532.380 26.74
+5.997 +30438 +1.140
Shuttle_trn 34800 34800 60 24.680 751.460 13.340
+1.253 +9.232 +2.134
Kddcup99 395216 395216 60 117.34 2328.6 16.2

+18.92 +119.14 +1.917

1. Bold number indicates the minimum average number of neurons.
2. The value with asterisk (*) means that there is no statistically signifi-
cant difference at the 5% significance level (p > 0.05).

r were depicted by the numbers in white color in the Grid
Search diagram.

The results of each data set from Grid Search in Fig. 16
can be interpreted as follows. For example, the result of
Sparse-dense set € = 10 and r = 1.5 was shown in the fifth
column and the third row. The average population accuracy

107008

was represented by Blue color meaning the accuracy is about
55 %. The average number of generated neurons was 5.1. The
same row means fixing r and varying €. The same column
means fixing € and varying r.

IX. DISCUSSION

Definitely, VLLDA and ILDA are not suitable for a stream-
ing scenario because they need to store the entire incoming
data for classification. Besides, when data are big such as
Shuttle_trn and Kddcup99, both VLLDA and ILDA methods
spent too much training time because the time obviously
depends upon the size of training data. However, VLLDA
and ILDA still hold the advantages in classification accuracy
because they employ the concept of k-NN and LDA. Both
VLLDA and ILDA may be chosen as a traditional learning
method in a streaming environment. Therefore, comparing
the performances of VLLDA and ILDA to the performances
of LOL, VEBF, CIL, and SHEF approaches is not appropriate
due to the different concepts of handle the constraint of space
complexity.

ILDA which is an incremental version of LDA also has the
same limitation as LDA. When data are non-linearly separa-
ble, it will not work properly as seen in the results of Spiral
data (accuracy 67.85%) in Table 5. The time complexity of
updating equations for both Sz and Sy affects the training
time when the training data are big. Hence, the more data are
trained, the more time is obviously spent. VLLDA based on
LDA with k-NN can improve LDA to handle the complex
distribution of data as seen in the results of Spiral data in
Table 5. But choosing k may affect the accuracy. Furthermore,
VLLDA needs to compute Euclidean distances among all

VOLUME 8, 2020

P. Rungcharassang, C. Lursinsap: SHEF With Projection Ratio for Local Distributed Streaming Data Classification

IEEE Access

TABLE 7. Average and standard deviation (x+sd) of computational time (seconds) of each method.

Data set Process Approach 1 Approach 2

(# train : # test) VLLDA ILDA LOL VEBF CIL SHEF
Sparse—dense data train - 0.149 0005 0.057 +0003 0.124 001 0.034 0016 0.099 10028
(397:99) test 0.121 +001 0.121 +0015 0.014 o001 0.039+0004 0.005 0002 0.014 +0004
Faraway4 train - 0.221 +0006 0.151 0013 0.354 0030 0.034 0004 0.095 10008
(490 : 122) test 0.152+0004 0.146+000 0.032 0003 0.008 0001 0.004 0002 0.020=+0002
Spiral data train - 2.263 0007 0.074 0001 0.584 0022 0.2500019 0.399 003
(1600 : 400) test 0.770=0037 0.614 0004 0.016 o000 0.089-0006 0.13220009 0.064 0005
Gaussian data train - 20.543 £o002 0.909 +0007 0.754 0019 1.457 +0016 0.319-0002
(4800 : 1200) test 5.744 10180 4.761 0035 0.210=0001 0.070-0.007 0.105+0.000 0.086+0014
Segment train - 4.238 0010 0.714 0005 0.399 10026 0.258 000 0.220 0027
(1848 : 462) test 0.766+0074 0.522+0010 0.179+0003 0.334 0020 0.093 0004 0.084 0005
Spambase train - 78.007 +097 0.387 10012 6.017 023 1.407 £o0ss 1.618 053
(3681 : 920) test 4.440+0.106 2.740+0.131 0.056--0.001 3.440+0264 0.334 1002 0.287 +00s8
‘Waveform train - 20.131 +0060 0.679+0003 0.862 0060 1.036+0020 0.274 0019
(4000 : 1000) test 2.083 0027 3.751 0027 0.171 20003 0.23520014 0.184 000 0.109-0006
Satimage train - 48.688+071 1.982 10000 1.887 0116 1.999 0006 0.8021021
(5148 : 1287) test 4.782+0140 6.411 1025 0.471 +000 1.45910147 0.71800n 0.383-0019
Letter train - 304.808 1095 22.495 10356 12.323 19,146 18.609+057 0.706-0.156
(16000 : 4000) test 14.72410.355 8.673i0074 5.01410091 7.691i0~)zz 24.378i0,9!6 2.2101013&
Shuttle_trn train - 1207.920+11657 12.469+00s4 124194115 76.331 41402 5.836--00%
(34800 : 8700) test 458.069 12304 359.521 +13.420 2.851 +o031 4.337 10302 13.261 +0240 1.985 0334
Kddcup99 train - N/A 854.86+14256 515.48196792 176.92 19660 14.202+1.15
(395216 : 98804) test N/A N/A 170.03 13464 804.04+11051 854.92+4858 92.835+1232

1. In VLLDA, it does not need to train the model.

2. N/A indicates that method could not finish the process within an hour.

3. Bold indicates the fastest computaional time on six methods.

4. The value with asterisk (x) means that there is no statistically significant difference at the 5% significance level (p > 0.05).
5. For VEBF, CIL, and SHEF, computational time for the initial width of a hyper-ellipsoidal function is included to training time.

training data no matter how value of k is set. Hence, the more
data are tested, the more time is obviously spent.

For LOL, the number of prototypes k set to 60 in all
experiments may not be suitable for all data sets in the term
of accuracy for the Spiral data, Spambase, and Letter. That
means using only 60 hyperplanes may not be enough to
classify those data sets. As the results, LOL is sensitive to the
parameter settings in each data set and inconsistent with their
conclusions in [21]. Moreover, the sequence of the incoming
data has an effect on updating positions of prototypes and
accuracy as seen in the results of Sparse-dense data and Far-
away4 shown in Table 5 with a large standard deviation. Their
computational time is directly proportional to the number of
the training data and the number of classes, especially the
number of classes. Since LOL adopts the one-vs-all strategy
in the multi-class problem, LOL must iteratively learn one
class at a time.

For VEBF, there is a large standard deviation of accuracy
on Sparse-dense data, Faraway4, Gaussian data, Spambase,
Waveform, Satimage, Letter, and Shuttle_trn. Consequently,
the sequence of incoming data has an effect on the accuracy of
this method that is consistent with the conclusion in [23]. For
Shuttle_trn data set, VEBF has the unusual low accuracy at
38.343% with the unusual large standard deviation of 30.677
as shown in Table 5. To explain this situation, the accuracy
characteristic displayed in Fig. 12f should be thoroughly
analyzed. After considering all 50 experiments of VEBF on
this data set, there are 31 out of 50 whose accuracy is immedi-
ately decreased at some incoming chunks and never increased
again. This problem was found in the step of merging two

VOLUME 8, 2020

neurons of VEBF algorithm when the initial width was set
too large. After merging them, the width of the new neuron
was set by assuming the Gaussian distribution of data in both
neurons that may be smaller than the widths of two previous
individual neurons. As the result, updating the parameters of
aneuron based on the next training data may be dominated by
a larger size of neuron. The training time is directly propor-
tional to the number of the generated neurons during the train-
ing process. Whereas the testing time is directly proportional
to the number of neurons in the final process. For example of
Kddcup99 data set, there are about 117 generated neurons in
the final state, see Table 6. They took about 515 seconds for
395,216 training data and about 804 seconds for 98804 testing
data, see Table 7. Furthermore, if the number of neurons was
unnecessarily generated, they would be stored in forms of
d-by-d covariance matrices.

For CIL, the number of training data in each chunk is
inversely proportional to the number of generated neurons.
If the number of training data in each chunk is quite small,
then the number of neurons may be redundantly generated (no
merging strategy in this method). The number of generated
neurons is directly proportional to the computational time.
However, a large number of neurons may reduce the classi-
fication accuracy. Our findings show CIL is quite sensitive
to the number of training data (chunk size) in each chunk on
some data sets (Satimage and Letter). For examples, if the
determined interval of Satimage was changed from [100,200]
to [400,600], the average accuracy increased to 81.386% and
the average number of used neurons decreased to 62.6. If the
determined interval of Letter was changed from [100,200]

107009

IEEE Access

P. Rungcharassang, C. Lursinsap: SHEF With Projection Ratio for Local Distributed Streaming Data Classification

to [1000,2000], the average accuracy increased to 87.181%
and the average number of used neurons decreased to 282.94.
For Kddcup99, although CIL has the lowest average accuracy
at 19.93%, see Table 5, it is not actually sensitive to the
number of train data in each chunk due to the definition of the
decision function for determining the class label of the testing
data. This conclusion was confirmed by using the generated
neurons from CIL in the first experiment of fold 1 and our
proposed testing approach instead. The accuracy increased
from 19.61% to 99.712%. with 2,292 neurons.

For our proposed SHEEF, the performance depends on how
SHEFs and the network of SHEFs are appropriately con-
structed to capture sequential streaming data. According to
the 2-dimensional illustration in Fig. 11, it may be notice-
able that no matter how complicated the patterns of data
distribution are, SHEFs can capture them very well. The
proposed method provided the high accuracy more than 80%
on several data sets during the incremental learning in the
training process at any time stamp of streaming data (see
Fig. 12). Although there are more steps in our testing pro-
cess than the testing process of other methods, our testing
process is rather fast because fewer numbers of SHEFs were
effectively generated on all experimental data sets. More-
over, our method also spent less training time than the oth-
ers because the merging step helped reduce the number of
generated SHEFs during the training process. For Kddcup99
data set, about 16 SHEFs were generated because there are
only 15 classes out of 23 classes that have the number of
data more than 20. Before testing the data set, any SHEFs
containing the number of members fewer than M (M = 3)
were eliminated. Therefore, some classes might be ignored
as noisy data. The number of training data in each chunk did
not affect massively to our accuracy. Even though the input
data were fed as the chunk, our algorithm still sequentially
learns each datum. The sequence of incoming data has a slight
effect on the accuracy of SHEF compared with other methods
by considering from our quite small standard deviation of all
data sets in Table. 5.

Fig. 16 describes the effect of two hyper-parameters on
the accuracy and the number of generated SHEF neurons.
The preliminary experiments (see Fig. 16) found that when
€ and r increased, the average number of generated neurons
tended to decrease. The constants € and r in the learning
algorithm are directly proportional to the size of SHEF which
can indirectly effect the merging strategy. Due to small values
of € and r, the size of SHEF was too small. As a result, any
two SHEFs of the same class may not be merged, it may
lead to many redundant SHEFs generated. Whereas the size
of SHEF with large values of € and » makes many SHEFs
overlap. As a result, many SHEFs may be unnecessarily
merged. Therefore, if we consider only the high accuracy, the
value of € and r should be chosen in the range of 107° to
1072 and 0.5 to 1.5 respectively, such as the experiments on
the 11 data sets.

Three synthetic data sets (except Gaussian) were gener-
ated with a complex distribution. The number of generated

107010

neurons has an effect on the classification accuracy. Hence,
choosing € and r has an important factor. Whereas Gaussian
data set was generated with a normal distribution (a simple
distribution), € and r may have a slight effect on the accuracy.
However, they have a major effect on the number of generated
neurons and the computational time on Gaussian data. Con-
sider on seven real-world data sets, it was found that when
r was fixed, varying € has a slight effect on accuracy but it
has an effect on the number of generated neurons. Especially,
on Kddcup99 data set, € has an obvious effect on the number
of generated neurons. On the other hand, when € was fixed,
varying r has an effect on the accuracy.

The upper bound of time complexity SHEF learning algo-
rithm can be analyzed as follows. Assume that there is only
one class in the first chunk of streaming data with N; vec-
tors in d dimensions. Initializing the width takes O(lez).
In learning steps, the time complexity was analyzed for one
datum at a time. Assume a datum is in class k and there are &
SHEFs in this class. the time complexity of Algorithm 1 from
steps 7, 9, and 15-21 is O(dNy) + [O(dh) + O(h) + O(d>)] =
O(dN;) + [0(dh) + Od?)). Suppose there are N training
data points, Ny < N,d < N,and h <« N. So the time
complexity becomes O(dN7) + Zfl: 1[0(dh) + 0d?)] =
O(dNy) + O(dhN) + O(d>N) = O(N).

X. CONCLUSION

This paper contributed the following issues to cope with
learning streaming chunk data and determining the class of
queried data in order to achieve higher classification accuracy
and less number of neurons:

1) A generic structure of Scalable Hyper-Ellipsoidal
Function (SHEF) with a regularization parameter € and
a scalable constant r to solve the problem of curse of
dimensionality.

2) A new recursive function to update the covariance
matrix of SHEF with less computational time than
those of the other methods.

3) A fast and easy conditions to test the interacting states
including overlap, inside, and touch of two SHEFs.

4) A new distance measure named Projection Ratio based
on the projected distance on LDA discriminant vector.

The proposed concepts can achieve higher accuracy, less
computational time, and less number of generated neurons.
However, this approach has not been tested with more com-
plex data characteristics such streaming data with dynamic
class drift.

APPENDIX A

PROOF OF THEOREM 1
Proof: To ease the complication of notations, the follow-

ing simplified notations are used in the proof. Let X', n/, ¢/,

and S’ represent X", nj‘?ld + 1, ¢, and S}”W, respectively.

Let n, ¢, and S represent nold

e cj”ld], and Sj?ld, respectively.

n@S + ce’) + x'x)HT .

§ = / ()’ (42)

n

VOLUME 8, 2020

P. Rungcharassang, C. Lursinsap: SHEF With Projection Ratio for Local Distributed Streaming Data Classification

IEEE Access

_ S+ ccT)/—l- x'(x')I B (nc —|/— x’)(nc —|/— x’)T “3)
n n n
/ T NT 1T T
=nnS+nc(c - X)) +nx'(x) —¢') (a4
(n)?
_ n'nS+nc—x)e—x)"
- (n')?)
(46)
— _w"\T
= Dgq o XNemx), 7)
n n
O
APPENDIX B

PROOF OF THEOREM 2 _
Let d be the dimensions of data; Sl._1 of size d x d be the
scaled covariance matrix S~! / r2 of i SHEF; R; of size
(n+ 1) x (n+ 1) be the translation matrix of the centroid of
the " SHEF; x be any data point, ¢; be the center of data in the
i"SHEF. Then the representation of SHEF in [29] would be
S-1
X R7 [Si odxl] Rix =0 (48)
01 xd -1
where gfl is the inverse matrix of §,~, 0,1 is a zero vector,
014 is the transpose of 041, and I ;x4 is an identity matrix,

X1
) Cil
I —¢i ciz
x=|:1], R=|[" L= .
: Opxg 1 :
Xn
c:
1 id

From (48), two candidate SHEFs should be checked for
overlap if they satisfy the following conditions.

x'Ax = 0 (49)
x'Bx =0 (50)
where
e [L B R
From (49) and (50), we get the following equations.
x'AA-B)x =0 (51)
x'AML—A"'B)x =0 (52)

where I is an identity matrix. Term AI — A~!B can be used
to determine the states of touch, overlap, and inside. In [29],
the intersection of SHEF, and SHEFg can be described with
an eigenvalue of the matrix A~'B or B"'A where

~ —1 ~

_ S;' o S;! o

A 1B: RT|: A dX1i|R> RT[B d><l:|R
<A O1xg —1 4 B O1xa —1 b

(53)
for SHEF, and SHEFp, respectively.

“lp _ p-1 Sa 0017 o 1nT §gl 04x1
A B_RA [led —]:|(RA) RB |:01><d -1 RB'

(54)

VOLUME 8, 2020

Since for any SHEF;

_ I [

1 _ | Mdxd Ci

R —hudJ'

Hence, the matrix A~ !B can be simplified to our block matrix
as

A-'B = [g _rl’fB + ﬂ (55)
—Xes 1 ginx@+n
where
Fixa = (—ca + CB)T§§1
Dixa = SaSz" + caF. (56)
O
APPENDIX C

PROOF OF THEOREM 3

Proof: Suppose the projected x is inside the projected
SHEF (D(x, ¢, S) < 1) on the discriminant vector w, defined
in (39). The projection must satisfy the following inequality.

lwh(x — o) < r /wlSw,. (57)

S~lx—¢)
[S~1(x —¢)l|

Ix—o)S'x—¢) < r/x—oTSI(x—c). (58)

Substitute w, = in (57) to obtain

It is obvious to see that
0<x—0fSx—c)<r’ (59)

Equation (59) implies that x is inside SHEF scaled by r in the
original space following (16).]

The conditions of outside and boundary can be proved by
the similar argument of these inequalities |W17; x -0 >

r/WhSw), and |w;(x — ©)| = r,/wl'Sw), respectively.

ACKNOWLEDGMENT
The authors would like to thank all the anonymous reviewers
for their valuable suggestions.

REFERENCES

[1] M.Zakrzewicz, M. Wojciechowski, and P. Glawiriski, ““Solution pattern for
anomaly detection in financial data streams,” in New Trends in Databases
and Information Systems. Cham, Switzerland: Springer, 2019, pp. 77-84.

[2] A. Shen, R. Tong, and Y. Deng, “Application of classification models
on credit card fraud detection,” in Proc. Int. Conf. Service Syst. Service
Manage., Jun. 2007, pp. 1-4.

[3] K. Shameer, M. A. Badgeley, R. Miotto, B. S. Glicksberg, J. W. Morgan,
and J. T. Dudley, “Translational bioinformatics in the era of real-time
biomedical, health care and wellness data streams,” Briefings Bioinf.,
vol. 18, no. 1, pp. 105-124, Feb. 2016.

[4] E. Haselsteiner and G. Pfurtscheller, “Using time-dependent neural net-
works for EEG classification,” IEEE Trans. Rehabil. Eng., vol. 8, no. 4,
pp. 457-463, Dec. 2000.

[5] N. Arunkumar, K. Ramkumar, V. Venkatraman, E. Abdulhay,
S. L. Fernandes, S. Kadry, and S. Segal, “Classification of focal and
non focal EEG using entropies,” Pattern Recognit. Lett., vol. 94,
pp. 112-117, Jul. 2017.

[6] J.Gama, R. Sebastido, and P. P. Rodrigues, “On evaluating stream learning
algorithms,” Mach. Learn., vol. 90, no. 3, pp. 317-346, Mar. 2013.

107011

IEEE Access

P. Rungcharassang, C. Lursinsap: SHEF With Projection Ratio for Local Distributed Streaming Data Classification

[71
[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

C. C. Aggarwal, Data Streams: An Overview and Scientific Applications.
Berlin, Germany: Springer, 2010, pp. 377-397.

H.-L. Nguyen, Y.-K. Woon, and W.-K. Ng, “A survey on data stream
clustering and classification,” Knowl. Inf. Syst., vol. 45, no. 3, pp. 535-569,
Dec. 2014.

G. I. Webb, R. Hyde, H. Cao, H. L. Nguyen, and F. Petitjean, “Char-
acterizing concept drift,” Data Mining Knowl. Discovery, vol. 30, no. 4,
pp. 964-994, Jul. 2016.

J. Lu, A. Liu, F. Dong, F. Gu, J. Gama, and G. Zhang, “Learning under
concept drift: A review,” IEEE Trans. Knowl. Data Eng., vol. 31, no. 12,
pp. 2346-2363, Dec. 2019.

M. Tennant, F. Stahl, O. Rana, and J. B. Gomes, “Scalable real-time
classification of data streams with concept drift,” Future Gener. Comput.
Syst., vol. 75, pp. 187-199, Oct. 2017.

I. V. Z. E. liobait, M. Pechenizkiy, and J. Gama, An Overview of Concept
Drift Applications. Cham, Switzerland: Springer, 2016, pp. 91-114.

Y. Aliyari Ghassabeh, F. Rudzicz, and H. A. Moghaddam, “‘Fast incre-
mental LDA feature extraction,” Pattern Recognit., vol. 48, no. 6,
pp. 1999-2012, Jun. 2015.

D. Chu, L.-Z. Liao, M. K.-P. Ng, and X. Wang, “Incremental linear
discriminant analysis: A fast algorithm and comparisons,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 26, no. 11, pp. 2716-2735, Nov. 2015.
G.-F. Lu, J. Zou, and Y. Wang, “A new and fast implementation of
orthogonal LDA algorithm and its incremental extension,” Neural Process.
Lett., vol. 43, no. 3, pp. 687-707, Jun. 2016.

R. Polikar, L. Upda, S. S. Upda, and V. Honavar, “Learn++: An incre-
mental learning algorithm for supervised neural networks,” IEEE Trans.
Syst., Man, Cybern. C, Appl. Rev., vol. 31, no. 4, pp. 497-508, Nov. 2001.
S. Pang, S. Ozawa, and N. Kasabov, ““Incremental linear discriminant anal-
ysis for classification of data streams,” IEEE Trans. Syst., Man Cybern. B,
Cybern., vol. 35, no. 5, pp. 905-914, Oct. 2005.

1. A. Lawal, Incremental SVM Learning: Review. Cham, Switzerland:
Springer, 2019, pp. 279-296.

J. Xu, C. Xu, B. Zou, Y. Yan Tang, J. Peng, and X. You, “New incremental
learning algorithm with support vector machines,” IEEE Trans. Syst., Man,
Cybern. Syst., vol. 49, no. 11, pp. 2230-2241, Nov. 2019.

B.-C.Kuo, H.-H. Ho, C.-H. Li, C.-C. Hung, and J.-S. Taur, “‘A kernel-based
feature selection method for SVM with RBF kernel for hyperspectral image
classification,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.,
vol. 7, no. 1, pp. 317-326, Jan. 2014.

Z. Zhou, W.-S. Zheng, J.-F. Hu, Y. Xu, and J. You, “One-pass online
learning:A local approach,” Pattern Recognit., vol. 51, pp.346-357,
Mar. 2016.

S. Jaiyen, C. Lursinsap, and S. Phimoltares, “A very fast neural learning
for classification using only new incoming datum,” IEEE Trans. Neural
Netw., vol. 21, no. 3, pp. 381-392, Mar. 2010.

P. Junsawang, S. Phimoltares, and C. Lursinsap, “A fast learning method
for streaming and randomly ordered multi-class data chunks by using one-
pass-throw-away class-wise learning concept,” Expert Syst. Appl., vol. 63,
pp. 249-266, Nov. 2016.

Z. Fan, Y. Xu, and D. Zhang, “Local linear discriminant analysis frame-
work using sample neighbors,” IEEE Trans. Neural Netw., vol. 22, no. 7,
pp. 1119-1132, Jul. 2011.

T.-K. Kim and J. Kittler, “Locally linear discriminant analysis for
multimodally distributed classes for face recognition with a single
model image,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 3,
pp. 318-327, Mar. 2005.

N. Wattanakitrungroj, S. Maneeroj, and C. Lursinsap, ‘Versatile
hyper-elliptic clustering approach for streaming data based on one-pass-
thrown-away learning,” J. Classification, vol. 34, no. 1, pp. 108-147,
Apr. 2017.

107012

[27] M. Thakong, S. Phimoltares, S. Jaiyen, and C. Lursinsap, “Fast learn-
ing and testing for imbalanced multi-class changes in streaming data by
dynamic multi-stratum network,” IEEE Access, vol. 5, pp. 10633-10648,
2017.

[28] R. A.Fisher, “The use of multiple measurements in taxonomic problems,”
Ann. Eugenics, vol. 7, no. 2, pp. 179-188, Sep. 1936.

[29] S. Alfano and M. L. Greer, “Determining if two solid ellipsoids intersect,”
J. Guid., Control, Dyn., vol. 26, no. 1, pp. 106-110, Jan. 2003.

[30] A. Sharma and K. K. Paliwal, “Linear discriminant analysis for the small
sample size problem: An overview,” Int. J. Mach. Learn. Cybern., vol. 6,
no. 3, pp. 443-454, Jun. 2015.

[31] J. H. Friedman, ‘“Regularized discriminant analysis,” J. Amer. Statist.
Assoc., vol. 84, no. 405, pp. 165-175, 1989.

[32] K. Zimmermann and T. Svoboda, “Approximation of Euclidean dis-
tance between point from ellipse,” Center Mach. Perception, FEE Czech
Tech. Univ., Prague, Czech Republic, Tech. Rep. CTU-CMP-2005-23,
Aug. 2005.

[33] B. P. Stephen, “Algorithms for ellipsoids,” Sibley School Mech. Aerosp.
Eng., Cornell Univ.,, New York, NY, USA, Tech. Rep. FDA-08-01,
Feb. 2008.

[34] D. Dheeru and E. K. Taniskidou. (2017). UCI Machine Learning Reposi-
tory. [Online]. Available: http://archive.ics.uci.edu/ml

[35] A. Bifet, G. de Francisci Morales, J. Read, G. Holmes, and B. Pfahringer,
“Efficient online evaluation of big data stream classifiers,” in Proc. 21th
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining (KDD), 2015,
pp. 59-68.

PERASUT RUNGCHARASSANG received the
B.Sc. degree in mathematics from Kasetsart Uni-
versity, Bangkok, Thailand, in 2008, and the M.Sc.
degree in applied mathematics and computational
science from Chulalongkorn University, Bangkok,
in 2012, where he is currently pursuing the Ph.D.
degree in applied mathematics and computational
science.

His research interests include neural net-
works, streaming data learning, and classification
problem.

CHIDCHANOK LURSINSAP (Member, IEEE)
received the B.Eng. degree (Hons.) in com-
puter engineering from Chulalongkorn Univer-
sity, Bangkok, Thailand, in 1978, and the M.S.
and Ph.D. degrees in computer science from
the University of Illinois at Urbana—Champaign,
Urbana, in 1982 and 1986, respectively. He was
a Lecturer with the Department of Computer
Engineering, Chulalongkorn University, in 1979.
In 1986, he was a Visiting Assistant Professor
with the Department of Computer Science, University of Illinois at Urbana-
Champaign. From 1987 to 1996, he has worked with the Center for Advanced
Computer Studies, University of Louisiana at Lafayette, as an Assistant and
Associate Professor. After that, he came back to Thailand to establish Ph.D.
Program in computer science at Chulalongkorn University, where he became
a Full Professor. His major research interest includes neural learning and its
applications to other science and engineering areas.

VOLUME 8, 2020

