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ABSTRACT Despite extensive research efforts in the field of laser welding, the imperfect repeatability of
the weld quality still represents an open topic. Indeed, the inherent complexity of the underlying physical
phenomena prevents the implementation of an effective controller using conventional regulators. To close
this gap, we propose the application of Reinforcement Learning for closed-loop adaptive control of welding
processes. The presented system is able to autonomously learn a control law that achieves a predefined weld
quality independently from the starting conditions and without prior knowledge of the process dynamics.
Specifically, our control unit influences the welding process by modulating the laser power and uses optical
and acoustic emission signals as sensory input. The algorithm consists of three elements: a smart agent
interacting with the process, a feedback network for quality monitoring, and an encoder that retains only
the quality critic events from the sensory input. Based on the data representation provided by the encoder,
the smart agent decides the output laser power accordingly. The corresponding input signals are then analyzed
by the feedback network to determine the resulting process quality. Depending on the distance to the targeted
quality, a reward is given to the agent. The latter is designed to learn from its experience by taking the actions
that maximize not just its immediate reward, but the sum of all the rewards that it will receive from that
moment on. Two learning schemes were tested for the agent, namely Q-Learning and Policy Gradient. The
required training time to reach the targeted quality was 20 min for the former technique and 33 min for the
latter.

INDEX TERMS Laser welding, laser material processing, reinforcement learning, policy gradient,
Q-learning, closed-loop control.

I. INTRODUCTION
Laser welding (LW) is a crucial technology for many indus-
trial sectors, including automotive production, maritime,
medical, aerospace, and micromechanics [1]. On the one
hand, its advantages are in non-contact processing — avoid-
ing tool wear, ability to process refractory materials, and
higher processing rate and joint quality compared to tra-
ditional welding processes [2]. On the other hand, LW’s
main disadvantages derive from the highly complex under-
lying physical phenomena involved in the process. Thus,
despite many developments of this technology, LW still
suffers from imperfect quality repeatability, limiting its
applications in industrial production requiring high-quality
standards.

The associate editor coordinating the review of this manuscript and

approving it for publication was Jianyong Yao .

In the literature, the most commonly reported approach to
increase the repeatability of the weld quality is the application
of traditional regulators, such as proportional-integral (PI)
or proportional-integral-derivative (PID) controllers [3], [4].
These methods allow tracking the desired weld quality using
measurements of the surface temperature or the surface shape
of the process zone (PZ) as feedback. Unfortunately, since
they are based on the linearization of the non-linear weld-
ing dynamics, they can only operate in a narrow range of
the process parameters. This operating range, moreover, has
to be established during a preliminary exhaustive experi-
mental search, which is very time- and material-consuming,
making the entire methodology undesirable in an industrial
environment.
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A less common approach, but that is worth investigat-
ing, is based on more sophisticated regulators that rely on
differential models of the process [5], [6]. But in the case of
LW, a reliable model can be complicated to obtain, as it has
to take into account many factors that can drastically vary the
process, such as the heating and melting dynamics [5].

Nevertheless, a preliminary attempt can be found in Na
et al. [7], where the authors presented an algorithm that
automatically builds a model during the operation using the
Hammerstein identification technique.

An example of the actual use of a model-based controller
for laser processes was proposed by Song andMazumder [6],
where an experimentally identified model was involved for
predictive control of laser cladding— a process that is closely
related to LW. This technique heavily relies on its model for
the choice of the actions to take according to their impact
on the environment evaluated with the model itself. To be
specific, a closed-loop process was used to steer the melt
pool temperature to a reference temperature profile. In a
real-life scenario, unfortunately, this approach has two major
drawbacks. First, the temperature of the melt pool is not
uniformly distributed over its surface [8]. Second, the optimal
temperature profile can vary during the process, as it strictly
depends on the geometry, e.g., on the proximity to the edges
or the boundaries of the workpiece. Thus, the tracking of a
single fixed target has a direct impact on the system perfor-
mance and so on the desired result.

Similarly, Bollig et al. [9] showed promising results by
modeling the non-linear process with an Artificial Neural
Network and controlling the laser power with a linear model
predictive algorithm based on the instantaneous linearization
of the neural network itself. In this case, the regulator aimed to
track a reference penetration depth detected from the intensity
of the plasma’s optical emission. However, the experimen-
tal calibration curve used to map the measured intensity to
the penetration depth may diverge from its real-life values,
limiting the application of the same methodology in broader
scenarios.

In this context, there is a clear need for a widely applicable,
robust, and cost-effective process control system that ensures
high-quality standards. In particular, we focus on deep key-
hole welding, where the process complexity is even higher
compared to other welding regimes, such as conduction
welding.

This welding regime is indeed characterized by the
co-existence — within a limited volume — of vapor, melt,
and plasma phases of the processed material [10]. More-
over, it possesses an extremely complex energy-coupling
mechanism that includes Fresnel absorption (due to multi-
ple reflections inside the vapor channel) [11]. These com-
plex phenomena generate many process instabilities, making
keyhole welding prone to defects even under constant laser
irradiation [10]. Specifically, one of the most critical defects
is porosity. Pores are problematic since they are located inside
the material and may substantially weaken the mechanical
strength of the welding joint [12].

The design of a keyhole LW control system is made all
the more challenging by the partial observability of the laser
process. In fact, in-depth information of the PZ can only be
indirectly obtained either by acoustic emission (AE) sensors
or by surface measurements using optical emissions (OE)
sensors [12]. Consequently, it is difficult to provide an effec-
tive feedback from the process to the control system, since it
requires the correlation of the surface measurements with the
sub-surface events (e.g., pore formation), which is not a trivial
task [12]. Nevertheless, some pilot works in LW monitor-
ing report successes in identifying quality critic momentary
events from the corresponding AE and OE signals from the
processed zone [13], [14].

The present study starts from the aforementioned pre-
liminary results of process monitoring and focuses on the
use of Reinforcement Learning (RL) towards keyhole LW
closed-loop control.

RL appears to be an attractive approach since it enables a
model-free learning scheme that is capable of solving com-
plex problems and provides high adaptability to specific con-
ditions through active interaction with a given process [15].

Moreover, we take advantage of recent advances in Deep
Convolutional Neural Networks (DCNN) developments [16],
[17] to derive efficient representations of the laser process
from the high-dimensional sensory input — the AE and OE
signals from the PZ — and use them to generalize previ-
ous experiences to new situations [18]. In our case, indeed,
the input data from the sensors do not contain an explicit
representation of the physical state of the system, as they are
just limited to the optical and acoustic emission. As shown
by Mnih et al. [18], DCNNs can overcome — and even take
advantage of — this condition, allowing the system to learn
meaningful position and scale of irregular structures in the
data.

Concerning the recent advances of RL, its application
towards LW was discussed in Günther et al. [19], where
a dynamic model substituted the real laser process, and a
camera-based system and photodiodes were used for process
monitoring. RL was able to efficiently search for strategies
for modulating the laser irradiation to compensate for the
mentioned process instabilities.

Despite the successes of this work, the efficiency of RL
in more complex LW processes remains an open ques-
tion. To close this gap, we inspected the performance of
our methodology in the case of keyhole LW and evalu-
ated its outcomes in terms of the evolution of the weld
quality over time during training. Firstly, the AE and OE
signatures of the desired weld quality were given to the
algorithm, as well as several signatures of undesirable
qualities, without any other prior information about the pro-
cess dynamics. Further search for the optimal process con-
trol strategy was carried out in a completely autonomous
way. Two RL techniques were investigated in this contri-
bution: Q-Learning [20] and Policy Gradient [21], in order
to analyze their strengths and weaknesses in this particular
application.
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This paper is divided into five sections. Section II describes
the experimental setup and the hardware of the control
system. Section III describes the developed algorithms,
including details on signal dimensionality reduction and the
feedback network used for process monitoring. Section IV
presents and discusses the results. Finally, Section V con-
cludes this work and gives the perspective of its further
developments that would allow LW to operate autonomously
and, thus, bringing it closer to the intelligent manufacturing
within Industry 4.0 framework [22].

II. EXPERIMENTAL PROCEDURE, MATERIALS,
ACQUISITION, AND CONTROL
The experimental setup was similar to the one used in a
previous work [14], and therefore just a summary is given
in this contribution.

A. EXPERIMENTAL SETUP
A schematic representation of the setup is presented in Fig. 1,
along with its picture. The main components were: a laser
source, an optical laser head, a workpiece holder — mounted
on a moving stage — and an AE sensor.

The laser source was a fiber laser system StarFiber150P
(Coherent Switzerland AG, Switzerland), with a maxi-
mum output power of 250 W, a wavelength of 1070 nm,
and a diameter of the laser spot of 30 µm (within 2w0)
at the workpiece surface. The source was operated in
continuous-wave (CW) mode with the possibility to modu-
late the output laser power using an external voltage source
within a voltage range of 0–5 V. More details are given in
Le-Quang et al. [23].
The laser experiments were performed in air at atmospheric

pressure. To prevent the potential oxidation of the weld,
an adequate Ar flow was directed to the PZ via a nozzle.
The flow was kept constant at a pressure of 1.5 atm during
all experiments. In order to realize line welds, a workpiece
was mounted on a linear stage M-663.5U (Physik Instru-
mente GmbH, Germany), and moved at a constant veloc-
ity of 10 mm/s during the process. The movement of the
workpiece was synchronized with the laser source so that the
irradiation started only when the stage already reached the set
velocity.

The aforementioned setup provided the realization of dif-
ferent LW regimes leading to various welding quality [14],
[24]–[26], including no illumination (laser power P = 0 W),
conduction welding, keyhole without porosity, and keyhole
with porosity.

It must be emphasized that, in terms of process param-
eters, the weld quality also depends on the velocity of the
workpiece. This work, however, was focused on the control
of the laser power that, in our setup, can be dynamically
modulated via the external voltage generator, as described.
Consequently, this process parameter was considered as the
sole control variable.

B. SENSORS
The laser head was equipped with a customized optical sys-
tem that allowed delivering the back-reflected radiations from
the PZ to three photodiodes. These sensors are based on
Silicon (Si), Germanium (Ge), and InGaAs and are sensi-
tive within the ranges of 450–850 nm, 1000–1200 nm, and
1250–1700 nm, respectively. The Ge sensor was equipped
with a narrow bandpass optical filter (FB1070-10, Thorlabs
Inc., USA) with a center wavelength of 1070 ± 2 nm to only
sense the back-reflected laser radiation from the PZ.

In addition to the optical sensors, an AE sensor PICO
(Physical Acoustics, USA) was placed in tight contact with
the workpiece, as shown in Fig. 1 (a). The sensor was sensi-
tive within the range 500–1850 kHz. Its purpose is to detect
the AE shockwaves generated inside the workpiece during
welding.

C. MATERIAL
The workpieces were 2 mm thick plates of titanium alloy
(Ti6Al4V, grade 5) with a melting temperature of 1,650 ◦C.
This material was chosen due to its extensive industrial usage,
including the medical sector. Additionally, its Heat-Affected
Zone (HAZ) can be easily recognized in cross-sections due
to the remarkable textural changes [27].

D. REFERENCE QUALITY DEFINITION
Tomeet the industrial demand for high-quality keyhole weld-
ing [12], we defined our reference weld as the one with the
highest achievable penetration depth without the presence
of pores. In addition to previous experiences [14], [24],
several experiments were carried out, taking advantage of
the well-controlled welding conditions of our setup that
allowed us to reproduce different penetration depths pre-
cisely. Each experimental weld was verified by analyzing the
cross-sections of the processed workpieces.

Finally, the investigations lead to a reference weld charac-
terized by a laser power of 80 W and a resulting penetration
depth of 150 µ m. Every increment in laser power resulted
in the introduction of porosity, whereas every decrement
corresponded to shallower welds.

E. DATA ACQUISITION AND COMPUTATIONS
In order for the control system to reach a real-time response
given the high-dimensional input from the sensors, a combi-
nation of specialized hard/software was used. The hardware
included a PC equipped with an Intel i7-8750H processor
(Intel, USA) that operated at a frequency up to 4.1 GHz, and
a Graphics Processing Unit NVidia GTX 2080 Ti (Nvidia,
USA).

The signals from all four sensors described in Section II-B
were acquired with a high-speed DAQ card Advantech 1840
(Advantech, Taiwan) with four independent input ports for
data digitalization. All signals were digitized with a sampling
rate of 1 MHz, and their acquisition was triggered when the
intensity of the back-reflected laser light detected by the Ge
photodiode exceeded a fixed threshold (0.1 V).
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FIGURE 1. (a) Scheme of the experimental setup and (b) its picture. The labels of the individual components in (a) and
(b) correspond to each other.

The choice of the Ge sensor as a trigger for the acquisition
is based upon the very high intensity of the back-reflected
laser radiation at the beginning of the process, when the
reflectivity of the workpiece is the highest [23].

To dynamically modulate the laser power, the control sig-
nal provided by the RL algorithm was transmitted to the
laser source via an external USB unit Advantech 4751L
(Advantech, Taiwan). The latter converted the digital values
calculated by the RLmodels into a direct voltage value, which
was then delivered to the laser source via a cable connection
(see Fig. 1 for details). The time delay between the output
from the USB unit and the laser response was experimentally
measured to be 0.57 ± 0.25 ms.

The real-time acquisition routine of the input signals using
the DAQ board, the data processing in the GPU, and the
transmission of the computed control signal to the laser
source were carried out with in-house custom-made software.
In particular, the data acquisition program was coded in
C# in Visual Studio 2017, Community addition. Conversely,
the high-level data processing was realized in Python 3.7.
Finally, the Deep Learning (DL) library involved was Pytorch
(www.pytorch.org), version 1.1.0.

III. DATA PROCESSING
The structure of the developed data processing is schemati-
cally presented in Fig. 2. The entire control unit consists of
threemain building blocks: an encoder that processed the data
from themeasurements to retain only the quality critic events,
a smart agent interacting with the welding process, and a
feedback network based on a DCNN for quality monitoring.

Before even starting the interaction with the environment,
the encoder and the feedback network were trained using a
database consisting of 750 signals acquired from previous
experiments covering the whole operating range of the laser
process. The signals were divided into 5 categories according
to the corresponding penetration depth identified with opti-
cal inspection of the cross-section of the processed material
(more details in Section IV).

A. ENCODER
The encoder was used to reduce the dimensionality of the
sensory input of the agent, preserving, at the same time,
the structure of the original data while minimizing the com-
putational time. The introduction of this unit was motivated
by a resulting simplification of the search of the optimal
control law for the smart agent. Indeed, the projection of the
high-dimensional input data into a low dimensional latent
space allows capturing a ‘‘good’’ parametrization of the sig-
nal that focuses only on quality critical events that the user
can settle by carefully choosing the training data [28].

To be specific, we based our encoder on a DCNN due
to the proven abilities of convolutional networks to explic-
itly model signals by finding their meaningful degrees of
freedom [29], [30]. Indeed, DCNNs also exhibit excel-
lent generative properties [31], which motivates their use
as encoders.

Following traditional architectures [30], [32], our DCNN
encoder included four convolution layers. Moreover, each
convolution was enforced with a batch normalization layer
to speed up the training [33]. The activation consisted of a
rectified linear unit (ReLU) that is more efficient in multi-
layer architectures, as it diminishes the gradient vanishing
problem [34]. The summarization of the input information
is achieved gradually through the convolutional layers by
adopting strided convolutions [35].

As stated, the training of the encoder was carried out
separately, prior to the interaction with the environment.
During training, a decoder with a symmetrical structure was
added to process the encoder output. Specifically, in the
decoder, the convolutions of the encoder were replaced with
their reciprocal transposed convolution. The two models
were then trained end-to-end to minimize the mean square
error between the training input signals and the output
of the decoder [30], [32]. After training, the decoder was
removed, thus, keeping the encoder standalone to provide a
low dimensional signal representation as input for the smart
agent.
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FIGURE 2. Structure of the complete control unit made up of three main building blocks: an
encoder that processed the data from the sensory input to retain only the quality critic events,
a smart agent interacting with the welding process, and a feedback network based on a
convolutional neural network for quality monitoring.

B. FEEDBACK NETWORK
As seen in the introduction, RL is a learning paradigm leading
to the design of algorithms that directly interact with an envi-
ronment and learn via trial and error. Nevertheless, learning
by doing is only effective if we can define a notion of reward,
something that motivates the intelligent system to behave
appropriately. For this reason, the full setup depicted in Fig. 2
included a feedback network based on a DCNN classifier and
a summation unit.

This unit is based on our previous work [13], where the
AE and OE signals from the PZ were used to identify quality
critic momentary events. In this contribution, the output of the
classifier is made up of labels that correspond to predefined
welding qualities in terms of penetration depth and pore con-
tent. The DCNN classifier shares the initial two convolution
layers with the encoder, as it is shown in Fig. 2. This detail
allows the classifier to reuse the good feature representation
learned by the encoder. The final decision on the quality is
taken in two fully connected layers that were closed by a
softmax layer. In analogy to the encoder, the training of the
classifier was carried out prior to the operation of the entire
system with the preliminary collected signals database.

To provide the reward signal, the output of the classifier
(i.e., the label of the current momentary quality) was com-
pared with the label of the reference signal in the summation
unit (see Fig. 2). In case of significant differences, the smart
agent is granted with negative rewards; otherwise, positive
rewards are assigned (more details in Section IV).

C. SMART AGENT
The final building block is constituted by the smart agent
whose purpose is to interacts with the environment — in
this case, the laser process — by making actions, i.e., mod-
ulation of the laser power. Practically, the agents commu-
nicate to the output board that, in turn, delivers the con-
trol signal to the laser source (see Section II-E for more
details).

The principle of operation is the following: based on the
representation of the current sensory input provided by the
encoder, the agent chooses an action, which leads to a change
in the sensory input, and receives a reward from the feedback
network. From this experience—made up by the past sensory
input, the executed action, the current input, and the received
reward — the agent tries to optimize the outcomes of its
actions over time, i.e., to maximize the reward over a defined
time horizon.

In our case, the considered time horizon corresponds to the
time required to perform a single line weld of 10 mm (1 s in
this work, see Section II-A).

In the remainder of the article, we refer to this 10 mm
line weld as an episode. Operating in an episodic fashion
— i.e., by individually welding lines of 10 mm — permits
the algorithm to update its parameters between one line to
another, and allows the stage to move in a new unprocessed
position to be able to start over. For training the agent, two RL
techniques were tested in this study, and their descriptions are
given in the next subsections.
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D. PARAMETER TUNING
Assuming the use of a conventional RL learning scheme,
we can output a single action after the defined sensory input
is available, i.e., after a predetermined number of data points
is acquired from the AE and OE sensors. Hence, the length
of the input window determines the operational frequency,
that is, the rate at which the control unit can modify the laser
power.

A small window increases the system readiness to adapt
to new welding conditions, but, unfortunately, it also raises
the sensitivity to noise of the feedback network [14]. In
contrast, a large window increases the monitoring accuracy
and eases the internal timing constraints, but reduces the
number of actions per unit time. In this sense, the window
length is crucial, as it is a trade-off between system readiness
to react to different stimuli and monitoring accuracy. A good
compromise was found by fixing the window length to 20ms,
thus, setting the operating frequency to 50 Hz.

The entire system was also sensitive to multiple other
parameters, including the size of the convolutional kernels
used in the DCNN and the dimensionality of the encoder
output. The adjustments of these parameters were carried out
through an exhaustive search, and the final set of parameters
was established as follows.

The optimal size of the convolutional kernel used in the
very first layer of the feedback network (see Fig. 2) was
founded to be 5 ms. Taking into account the given stage
velocity and the acquisition rate, the time span of this kernel
corresponded to 50 µ m in length of the weld joint, or,
equivalently, to a signal sample of 5,000 sampling points
obtained from each sensor.

Following the scheme in Fig. 2, the unification of all
signals from the sensors in a time interval of 20ms determines
the dimension of the algorithm’s input space that amounts to
80,000 data points. As seen before, the agent does not receive
this high dimensional input, but its condensed representation
from the encoder.

The maximum possible dimensionality reduction achiev-
able in our setup led to low dimensional signals made up
of 64 data points for every sensor (from the original 20,000).
In our work, it was experimentally established that any further
reduction harmed the algorithm’s accuracy, provoking higher
error rates for the autonomous learning controller.

E. REINFORCEMENT LEARNING
RL is inspired by human and animal behaviors, where the
experience/knowledge is acquired through active interaction
with the environment by trying to maximize the rewards
received [15], [18], [36].

Specifically, RL is the branch of Machine Learning (ML)
that aims at designing agents capable of taking, in every
moment, the action that maximizes not just the immediate
reward, but the sum of all the rewards that will be received
thenceforth. The agent chooses actions based on its sen-
sory input that provides a momentary representation of the

environment — the so-called states — and tries to optimize
the outcomes of these actions over time in terms of reward.

In RL, this concept is formalized through a Markov Deci-
sion Process (MDP). MDP is described by a quadruple
{S,A, p, r}, where S and A are the state and action spaces
and p(st+1|st , at ) is the probability of the transition from state
st ∈ S to state st+1 ∈ S taking the action at ∈ A. Each
change of state is rewarded according to r(st , at ). The strategy
of choosing an action at given the state st is known as policy,
and it is indicated by π (at |st ) — denoting the probability of
selecting the action at in state st .

The correctness of the choice of the actions is evaluated
in terms of the rewards subsequently collected. Concretely,
the quality of taking an action at given the actual state st
with the further choice of all remaining actions according to
the policy π , can be quantified with the action-value function
Qπ (st , at ). Given an episode that includes T steps, it is defined
as [15]:

Qπ (st , at ) = Eπ

[
T∑
t ′=t

r(st ′ , at ′ )|st , at

]
, (1)

that is the expected total reward from taking the action at in
state st and then following the policy π .

The goal of RL is to approximate the optimal policy π∗

that returns, for every state, the best action to take in terms of
total reward from that moment on.

One approach consists of estimating the action-value func-
tion for π∗. Indeed, in that case, the optimal action a to
be taken in state s is the one that maximizes Qπ∗ for the
given state [15]. The different RL algorithms differ in the
way Qπ (s, a) or, alternatively, the policy parameters are iter-
atively updated. In this study, we have tested two of the
most successful realizations of RL that are Q-Learning and
Policy Gradient. Both methods have pro et contra, which are
discussed in the next two subsections.

F. DEEP Q-LEARNING
Q-Learning is one of the most popular RL algorithms and
aims at estimating the Qπ∗ values for every state — hence
the name of the technique.

In the case of high-dimensional state space (e.g., in laser
welding), the traditional update methods for the Qπ values
become inapplicable as they suffer from the curse of dimen-
sionality [37]. Indeed, those methods require to represent the
Qπ values in a tabular form— a table having as many entries
as the ordered pairs (s, a) ∈ S×A [15], which is only feasible
if the cardinalities of both S and A are small.

The concept of DL allows overcoming those limits by
using DCNNs to estimate the action-value function [38],
exploiting the recent advances in ML where DCNNs proved
to be excellent complex function approximators [39], [40].

In our work, the Fitted Q Iteration algorithm (FQI) was
used as a basic learning scheme [41], and included the
following steps:
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(i) using some policy, collect a dataset of transitions:

{(st , at , st+1, rt )}t=1,2,... (2)

(ii) for every transition, compute:

yt = rt + γ max
a
Qπθ (st+1, a) (3)

(iii) update the parameters θ :

θ ← argmin
θ

[∑
t

‖Qπθ (st , at )− yt‖
2

]
, (4)

where Qπθ denotes the functional approximator of the func-
tion Qπ given by a parametric function with parameters θ .
In this contribution, θ represents the weights and biases of a
DCNN that takes as input the ordered pair (st , at ) and outputs
an estimate of Qπ (st , at ). γ is a discount factor ∈ (0, 1) to
weigh less future rewards and more the immediate ones, rt is
the reward collected at time t , and yt is a momentary target for
the computation of the so-called Bellman update in (4) [37].

The minimization problem in (4) can be solved using gra-
dient descent methods. Therefore, it can be addressed using
the techniques for loss minimization that are common in DL
frameworks [42], [43].

In order to promote the exploration of the state space at the
beginning of the training, we have used the so-called epsilon-
greedy technique for step (i) of the FQI [15]. This strategy
consists in the use of the following policy for the collection
of the transitions:

π (at |st ) =


1− ε, if at = argmax

a
Qπθ (st , a)

ε

|A| − 1
, otherwise,

(5)

where |A| is the cardinality of the set A and ε ∈ (0, 1).
Following (5), at each timestamp, the algorithm chooses
either a random action with probability ε, or the best action
according to the actual Qπ estimate with probability 1 − ε.
As the training progresses, ε is progressively reduced. This
procedure encourages the exploration of the environment at
the very beginning of the training and the exploitation of the
acquired knowledge at the end.

To reduce the oscillations or divergence of the policy,
themomentary target yt and theQ-valueQπθ (st , at ) were esti-
mated using two separate networks that are known as target
network (Qπθ t ) and Q-network (Qπθ ), respectively [18].
During the interaction with the environment, the param-

eters of the target network are cyclically updated with the
parameters of the Q-network. Additionally, in our study,
the Double Q-Learning technique was used [44]. It consists
in using the Q-network to evaluate the action to take —
using Qπθ in (5) — and the target network to evaluate the
momentary target yt — using Qπθ t instead of Qπθ in (3).
The reason was an efficient decorrelation between the

noise in the action selection and the noise in the Q-values

estimation, which is a common problem for standard Q-
Learning realizations [44].
Moreover, to avoid bad local minima and to reduce the

correlation between observations, a replay bufferBwas intro-
duced, as in Mnih et al. [18]. In particular, during step (i) in
FQI, the collected transitions are added to B. During step (ii),
we randomly sampled a batch of the accumulated transitions
from B and used those to compute the targets yt through the
target network (see (3)). Finally, the updates of the parameters
θ in the Q-network were carried out using (4).

Here one of the key advantages of the introduction of the
encoder manifests itself. Indeed, it allows a dimensionality
reduction of the input — the reduction factor was 300 in our
setup — allowing us to use a bigger buffer B, avoiding the
GPU memory saturation.

The advantages and disadvantages of Q-Learning can be
explained by the way the targets are computed in FQI. As can
be seen in (3), the observed reward in just one transition is
used to calculate the targets yt . In addition, the first term rt
in (3) is significant when the estimation of Qπθ is inaccurate,
as it is a real reward and not an estimation. In contrast,
the second term γ maxaQπθ (st+1, a) in (3) is relevant only
when the estimation of Qπθ is reliable, as it is an estimation
of the total future reward that is supposed to be higher than
the current one.

Consequently, during the Bellman updates (see (4)),
the algorithm relies more and more on the actual estimate
of the Q-value as soon as it becomes sufficiently large. In
Q-Learning, as a result, the strategy of sharply reducing the
variance of the estimates (the Q-values) is being adopted,
to the detriment of high bias.

G. POLICY GRADIENT
Asmentioned above, the main limitation ofQ-Learning is the
high bias in the estimation of the Q-values. This bias origi-
nates from the single-step reward estimator for the targets yt .
The Policy Gradient (PG) approach [15], [45], [46] aims to
overcome those limits by evaluating the total reward on an
entire episode. Similarly to other RL algorithms, the objective
of PG is to find the policy that maximizes the expected total
reward in one episode that includes T steps. But contrary to
Q-Learning, PG does not try to estimate the optimalQ-values,
but the parameters of the policy approximating the optimal
policy π∗:

θ∗ = argmax
θ

J (θ ), (6)

where

J (θ ) = Eπθ

[
T∑
t=1

r(st , at )

]
, (7)

and θ stands for the policy parameters. In our case, θ rep-
resents the weights and the biases of a DCNN that takes
as input the current sensory representation provided by the
encoder (see Section III-A) and outputs the action to be taken
(e.g., the power of laser irradiation).
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In PG, the functional J (θ ) is estimated as:

J (θ ) ≈ Ĵ (θ ) =
T∑
t=1

r(st , at ). (8)

The optimization of the objective J (θ ) is carried out by
directly differentiating its estimate Ĵ (θ ) and using gradient
ascent to update the parameters as:

θ ← θ + α∇θ Ĵ (θ ). (9)

In particular, the gradient of the objective in (8) is computed
as [45], [46]:

∇θ Ĵ (θ ) =
T∑
t=1

∇θ logπθ (at |st )
T∑
t=1

r(st , at ). (10)

Clearly, the entire approach relies on a single sample estimate
of the full expectation (cf. (8)) that, even if unbiased, has a
very high variance.

For this reason, even though this method is potentially able
to provide better results compared to Q-Learning in terms of
the learned policy, it surely requires more learning time.

The implementation of PG was carried out by firstly
randomly initializing the parameters of the policy πθ and
then sampling a trajectory (i.e., collecting all the transitions
(st , at , st+1, rt ) within a single episode). The logarithm of the
action probabilities, as well as the rewards collected along the
trajectory, were accumulated and used to calculate the pol-
icy’s gradient according to (10). Finally, the parameters were
updated following the direction of improvement indicated by
the gradient (cf. (9)).

IV. RESULTS AND DISCUSSION
A. RESULTS
Prior to starting the interaction with the environment,
the preparation of the algorithm included two stages, namely:
i) collection of the signal database for training the classifier
and the encoder, and ii) definition of a reward function.

The first step is motivated by the fact that the classifier and
the encoder — to fulfill the role of guiding the smart agent
during its learning process — have to learn to recognize,
not just the reference quality, but also several other counter-
examples.

For this reason, we collected the acoustic and optical sig-
nals from multiple weld experiments at various laser power
(20, 40, 60, 80, and 120 W).

It must be emphasized that the weld quality depends the-
oretically not only on the laser power but also on the work-
piece velocity and its physical properties such as optical and
thermal [10]. But in this work, since the latter factors were
invariable, the former one is used to define the weld quality.

The sensors’ signals were acquired during three weld
experiments at each laser power, then partitioned in samples
of 20 ms (see Section III-D, for details), and finally grouped
in 5 categories according to the weld quality in terms of

penetration depth identified via optical inspection of both
surface and cross-section of the workpieces.

Based on the optical inspection, the categories were
defined as insignificant penetration (achieved with a laser
power of 20 W), poor penetration (40 W), medium pene-
tration (60 W), highest penetration without pores (80 W),
and porosity (120 W). In total, each category consisted
of 150 samples.

The second stage concerns the definition of the reward
function that determines the reward assignment from the
feedback network to the smart agent.

Considering that the agent is designed to act to maximizes
the collected rewards in the long run, the engineering of the
reward is crucial since it influences the learning process.
The reward assigned for every weld quality detected by the
classifier used in our experiments is reported in Table 1.

TABLE 1. Rewards assigned for every category detected by the classifier.

After the preparation, we let the algorithm interact with the
environment in a completely autonomous way without any
further interventions. The performance for both Q-Learning
and Policy Gradient is shown in Fig. 3, where the red line
represents the average values of the rewards obtained in
every episode, whereas the shaded area denotes the standard
deviation.

The average reward of Q-Learning reached a plateau after
approximately 110 episodes, i.e., after performing 110 line
welds of 10 mm. Taking into consideration the fact that
we wait for 10 s after each line — to permit the agent to
update its parameters and to allow the stage to move in a new
unprocessed position —, this learning period corresponds to
about 20 minutes. In contrast, PG reached a plateau only after
180 episodes (33 minutes). In both cases, additional learning
time had little effect in terms of increment of the quality, and
it only increased the cost in terms of wasted materials and
time.

The dynamics of the agent adaption to the given process
can be vividly seen in the evolution of the welds using optical
inspections of the surfaces and cross-sections of the processed
material. Fig. 4 presents the optical images of the welds
corresponding to the first, the 40th, the 80th, and the 110th
episode of the Q-Learning training process. To be specific,
Fig. 4 (a) shows the light microscope images of the top views
of different episodes, whereas Fig. 4 (b), the corresponding
cross-sections.

It has to be noted that the results in Fig. 4 show an evolution
of the weld quality that is consistent with the increment of the
reward observed in Fig. 3. Indeed, in Fig. 4 (a), episode 1 —
i.e., beginning of the training — signs of unstable controlled
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FIGURE 3. Performance in terms of average reward per episode over time for Q-Learning and Policy Gradient. The red line
represents the average reward over an episode, whereas the shaded area indicates the standard deviation. An episode
corresponds to the weld of a line of 10 mm and has a duration of 1s. Between one line to the other, we wait for 10 s to permit
the agent to update its parameters and to allow the stage to move in a new unprocessed position.

laser power can be seen on the weld surface. The black
marks on the weld correspond to oxidation, which is also
an indication of local overheating due to inaccurate laser
control leading to a poor weld quality in terms of mechanical
properties [12].

This aspect is even more evident from the cross-sections
(Fig. 4 (b), episode 1), which is characterized by rapid vari-
ations of the weld penetration depth along the line. In this
specific case, the local overheating of the material was taking
place due to the application of a too high level of laser power
generating a highly unstable keyhole that led to the trapping
of pores inside the material during the keyhole collapse [10].
The red arrows highlight the pore locations in the magnifica-
tion in Fig. 4 (b).
After 40 trials, i.e., about 7 min from the beginning of

the training (Fig. 4, episode 40), the welds started to be
characterized by smoother changes in surface textures and
penetration depth.

Confirming the positive trend, significant signs of progress
are obtained just after performing other 40 more welds
(Fig. 4 (a), episode 80, about 15 min from the beginning),
when the texture of the weld surface started to present no per-
ceivable non-uniformities. Nevertheless, some fluctuations
in the penetration depth can still be observed (Fig. 4 (b),
episode 80).

Finally, a weld comparable to the reference one was only
achieved after the completion of other 30 more episodes —
see Fig. 4 (a), episode 110 (about 20min from the start), when
the welds began to be characterized by uniform surface tex-
ture and constant penetration depth. Fig. 4 (c) also shows the
light microscope images of the cross-sections for the trained
controlled and reference welds, respectively. As described
in Section II-D, the latter was realized after an exhaustive
search of the laser parameters and achieved a weld depth
of 150 µm, as shown is in Fig. 4 (c), top image. As can
be noticed, no measurable differences between the trained
controlled weld and the reference one can be found.

Similarly, PG showed identical results apart from a dif-
ferent convergence rate. Indeed, the convergence took about
1.6 times more time compared to Q-Learning (see Fig. 3).

B. DISCUSSION
Whether the classifier is of unquestionable fundamental
importance as it allows the monitoring of the process, the use
of the encoder, on the other side, is debatable. The encoder has
indeed some pros and cons that were not obvious before the
experiments. As stated in Section III-A, its advantages consist
of an effective reduction of the state space dimensionality
that potentially simplifies the search of the optimal param-
eters of the smart agent by capturing a proper parametriza-
tion of the signal that can focus only on quality critical
events.

In contrast, its drawbacks derive from its output representa-
tion, that could not be entirely suited for deriving the dynam-
ics of the system, as its temporal resolution is non-uniform
[47]. As a result, the sensitivity of the algorithm to some
actions could be reduced and potentially bringing to poor
process control.

For the sake of verifying the effectiveness of the encoder,
we have also tried to exclude it from the processing pipeline
and directly provide the high dimensional raw signals from
the sensors as input to the agent.

It resulted in a marginally slower convergence rate in terms
of the number of episodes (in the order of tens of episodes),
but the two strategies were able to achieve the same results.

We believe that this behavior can be explained by the
very first convolutional layer of the agent (see Fig. 2) that,
if provided with raw signals, can take over the encoder
duty to deliver a good signal representation to the following
layers. However, when excluding the encoder, the computa-
tions were slowed down due to the more significant input
quantities, and we had to increase the time between each
episode.

It also has to be mentioned that the present work was
realized using a well-controlled laboratory environment and
with reliable custom equipment.

These controlled conditions provided a more reproducible
laser-material interaction during the welds as they included
the processing of always the same material with consistent
material properties as well as flat surfaces with identical
surface roughness.
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FIGURE 4. Training dynamics of the Q-Learning algorithm in terms of welding quality. (a) light microscope pictures of the top
view of the welded surface at discrete time points of the algorithm’s training; (b) corresponding light microscope pictures of
the cross-section of the welds from (a). The magnification for the first episode is shown on the right. The red arrows indicate
the pores inside the material; (c) reference weld and controlled weld after the completion of the training procedure. The
numbering of the episodes started from the beginning of the training procedure and is indicated on the vertical axis. The arrow
at the bottom shows the direction of the laser scan. The white borders denote the boundary of the weld. The deep weld
penetration at the beginning of each line constitutes the initial condition from which the algorithm needs to regulate the
power.

The well-controlled environment could also be the reason
for the small size of the database needed to train encoder
and classifier, and this detail may be significantly different
in industrial conditions.

V. CONCLUSIONS
This work presents the first results of a study for adaptive
closed-loop control of laser welding based on RL applied on
a real-life setup.

The developed system includes an encoder that derives
efficient representations from the sensory input for the active
unit, a feedback network, and a smart agent, which is the
active unit itself, that can influence the laser process. The
principle of operation is the following: based on the current
sensory input provided by the encoder, the agent chooses
an action, which leads to a change of its sensory input, and
receives a reward — an indirect quality measure of the state
the agent ends up in. From this experience — made up by
the past sensory input, the executed action, the current input,
and the received reward — the agent tries to optimize the
outcomes of its actions over time.

In standard RL approaches, the reward signal is provided
by the environment and is straightforward to derive. In laser
welding, conversely, effective feedback is challenging to
provide, as the process is only partially observable since
in-depth information of the PZ can be obtained only indi-
rectly from conventional sensors. This reason motivates the
introduction of the feedback network: a complete monitoring
system based on a DCNN classifier capable of tracking the
weld quality in real-time.

In the present work, the control unit was implemented
to regulate the output laser power while using the acoustic
and optical emission as sensory input. The potential of the
system was demonstrated by its capability — without prior
knowledge of the process dynamics — to reach a reference

weld quality autonomously. The latter was chosen to be
represented by the weld with the highest depth achievable
without porosity in Ti grade 5 workpiece, to meet the indus-
trial demand for high-quality keyhole welding. This refer-
ence weld was determined experimentally and attained a
weld depth of 150 µ m without porosity with a laser power
of 80 W.

To guide the smart agent, the feedback network and the
encoder were trained to recognize not just the reference qual-
ity, but also several other counter-examples. For this reason,
we collected the acoustic and optical signals from 15 weld
experiments at various laser power, namely 20, 40, 60, 80,
and 120 W.

The signals were then grouped in 5 categories according
to the corresponding weld quality in terms of penetration
depth, which were identified via optical inspection of both
the surfaces and the cross-sections of the workpieces, and
further partitioned in samples of 20 ms. This time span was
chosen by taking into consideration the requirement of very
high classification accuracy and computation time within the
range of 1–5 ms.

After the DCNN classifier and the encoder were trained,
the smart agent started its interaction with the laser process
by performing line welds with the output laser power being
controlled autonomously.

We tested two learning schemes — Q-Learning and Policy
Gradient — and evaluated their performance both in terms of
the evolution of rewards over time, and of the resulting weld
quality.

The training time needed for both the algorithms to reach
the reference quality was 20 minutes and 33 minutes, respec-
tively. After that time, there was no additional observable
increment of weld quality and rewards.

The present results demonstrate the ability of RL to learn
a control law for laser welding processes autonomously.
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This prospect is highly appealing for the industrial sector
as the unit can deal with complex processes without costly
simulation and computational tools. Furthermore, the sensor
technologies exploited in the present work are commercially
available and ready for industrial implementation. It must be
emphasized that the proposed framework can also operate
with other feedback sensor signals — pyrometer, micro-
phones, or additional photodiodes — making it a rather
versatile tool. Further experiments are planned to explore the
potential of this approach on more complex conditions, e.g.,
with surface irregularities or at the interface between two
different materials. Additionally, we will increase the number
of control variables, including the workpiece velocity and its
distance from the laser source. Finally, the RL algorithms will
be further enriched with techniques for faster convergence,
higher operating frequency, better adaptation under changing
materials, and varying noise levels.
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