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ABSTRACT Given that signal is weakened to a certain extent in the process of noise suppression using
mainstream method, and that new noise is introduced by signal processing system, causing the decrease of
detection performance, to improve the performance of detection to BPSK signal under the condition of strong
noise and no prior information, the detection algorithm of BPSK signal of bistable stochastic resonance
model based on scale change is proposed in this study. Using classical bistable stochastic resonance (BSR)
system, only low-amplitude and low-frequency periodic signal can be processed. Scale change is first made
to BSR in this study, verifying that BSR can be applied to high-frequency BPSK signal under high sampling
frequency condition, and nonlinear threshold detection system is designed following Neyman-Pearson
criterion to deduce and quantitatively show error rate of detector. Besides, complete flow for signal detection
was built by taking it as feedback quantity to adjust the system parameters adaptively. Scale change feasibility
and applicability of algorithm proposed in this study were verified through simulation experiment, which
lays the theoretical basis for the detection of weak BPSK signal under low signal-to-noise ratio (SNR).

INDEX TERMS Strong noise, detection to BPSK signal, bistable stochastic resonance, scale change,
Neyman-Pearson criterion.

I. INTRODUCTION
Binary Phase Shift Keying (BPSK) has been broadly adopted
in numerous existing communication protocols, e.g., IEEE
802.11a [1] and the second generation digital terrestrial tele-
vision broadcasting system [2], to ensure the quality of ser-
vice (QoS) against poor wireless channels. BPSK has a higher
tolerance to nonlinear degradation and provides an ideal
receiver sensitivity improvement with balanced detection [3].
It is easy to achieve with mature technology, and BPSK signal
and its modulation types are widely applied to photology
and communication [4], [5]. Accordingly, detection to BPSK
signal has always been research hotspot of academic circle.

With the rapid development of the communication field,
new requirements have been imposed on the regula-
tion of wireless communication. As an important step in
wireless communication supervision, signal recognition in
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non-cooperative mode is to estimate and judge information
such as the modulation method of the received signal in the
absence of the sender and channel information. Weak signal
detection in non-cooperative mode is a key technology for
monitoring and managing communication systems such as
software radio, multiple transmission and multiple reception
systems, and orthogonal frequency divisionmultiplexing. It is
widely used in civilian andmilitary fields. In the civilian field,
the BPSK signal is a very widely used signal. Detection with-
out prior information is mainly used in radiomanagement and
spectrum monitoring. Supervise the frequency usage of radio
users to prevent illegal frequency usage and protect legitimate
radio users from interference [6], [8]. At present, there are
instruments for weak signal recognition in non-cooperative
mode, such as Keysight’s N9041B, Rohde & Shwarz’s FSP
series, and so on. In electronic countermeasures in the mil-
itary field, BPSK signals are more typical LPI radar sig-
nals and common communication signals [9], [10]. Detection
of BPSK signals without prior information can effectively
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monitor and interfere with enemywireless signals. Therefore,
it is of positive significance to study the detection of BPSK
signals without prior information.

Scholars primarily focused on the relevant research
and gained numerous results. Literature [11] utilized
low-noise amplification of phase-sensitive amplifiers (PSAs)
to improve power of BPSK signal, which is conducive to
signal detection. Literature [12], [13] uses PSA to regener-
ate the BPSK signal to obtain the phase size information
of the signal, thereby improving the detection efficiency.
However, this method is limited by the bandwidth of elec-
tronic components and can only be used for single-channel
operation. Literature [14] modified above scheme but
was still affected by bandwidth. Literature [15], [16]
designed signal transmission system based on applying
physical-layer network coding (PNC), of which litera-
ture [15] restrained inter-carrier interference generated by
carrier frequency offset by utilizing BP-PNC algorithm,
thus lowering transmission error rate of BPSK signal.
Literature [17], [18] utilized Cramer-Rao low bound (CRLB)
for signal-to-noise ratio (SNR) estimation from BPSK mod-
ulated signals. Literature [19] estimated channel based on
minimum bit error ratio criterion, and above methods lay
a theoretical foundation for improving system output SNR
and improve estimation accuracy of BPSK signal. Literature
[20] deduced bit error rate (BER) expression of BPSK sig-
nal under Ricean-Faded Cochannel interference theoretically,
and BER of signal can be improved through improvement
of Rice factor, but method is significantly affected by SNR.
Literature [21] has proposed full rank transmit covariance
matrices and maximum achievable SNR of BPSK signal
which satisfy constant modulus constraint. But covariance
matrix full rankwill be ensured in this method. Literature [22]
improved Constant Modulus Algorithm (CMA) by utilizing
a simple modification of the Godard cost function, to real-
ize blind separation to BPSK signal having the same rates
and the same carrier frequencies, but the method requires
knowledge of the BPSK sources frequency offsets at the
receiver side. Literature [23] utilized real-valued property of
BPSK-OFDM signals to devise an accurate real-valued min-
imum mean square error (MMSE) in time-varying channels.
The method provided more accurate detection and lower
computational complexity. The method requires a priori
information of the BPSK-OFDM signals in the equalization
matrix construction, which cannot be obtained easily in real
time in reality. Literature [24] decreased BER of BPSK sig-
nal under multiple tone interference by increasing the sub-
band order to enhance system performance, and performance
of the method is significantly affected by system parame-
ter. Literature [25] detected BPSK signal through adaptive
windowed cross Wigner–Ville distribution method, and its
result is close to CRLB in certain condition. But kernel
function selection and parameter setting under different appli-
cation background conditions, and conflict between time fre-
quency resolutions restrict performance of time–frequency
analysis (TFA) method. Utilizing Compressed Sensing (CS)

theory, literature [26] made sampling to BPSK signal with
sampling frequency lower than Nyquist, which decreases
demand to storage resource, improves processing speed and
weakens effect of Iterative Soft Interference on BPSK signal.
But in accordance with CS theory, signal will possess sparsity
and signal is not concerned with sparsity space where it is
located, which restricts application of the method in reality.
Literature [27] transformed signal to circular stationary
dimension through cyclic autocorrelation and extracted signal
feature to realize detection to BPSK signal, but efficiency of
themethod decreases under non-Gaussian noise environment.

Above scheme has good performance under its background
set, but three common problems restrict further improvement
of performance of above method:

¬ When noise is suppressed, signal energy is also
weakened, and even partial information is lost, which is not as
serious as noise weakening in degree. Under low SNR, SNR
of mixed signal processed may still be unsatisfactory, thus
affecting subsequent signal detection.

­ Signal processing system is also noise source itself, and
in the process of restraining background noise, noise gener-
ated in the internal of system, higher harmonic appearing in
processing and image signal etc. also affect signal detection.

® With increase of noise intensity, efficiency of above sys-
tem is worsened obviously, and detection efficiency decreases
substantially.

The reason for the above three problems is that scholars
believe that noise is completely harmful to signal detection.
In this view, the detection method for weak signals is mainly
to improve the signal characteristics, or to reduce the noise
characteristics, or both. Therefore, the proposed method is
always limited by the above three problems.

In traditional linear theory, noise negatively affects signal.
Yet within bistable stochastic resonance (BSR) system of
nonlinear theory [28], [29], when system, signal and noise
have a matching relation, stochastic resonance will be gener-
ated by system, and seen macroscopically, its effect is that
noise energy moves towards weak signal, suggesting that
signal energy is not lost, but strengthened, thus improving
SNR of signal and being more conducive to signal detection.

The existing methods are divided into noise characteris-
tics [30]–[35] and system parameters [36]–[41] adjustment.
In the study of noise characteristics. Literature s [30], [31]
designed different detectors based on the statistical character-
istics of noise. Literature [32] combined traditional empirical
mode decomposition (EMD) method with SR to achieve the
decomposition of multi-frequency signals in colored noise.
Literature [33] proposed a method combining adaptive
bistable stochastic resonance and multi-scale noise tuning
based on the noise characteristics to improve the detection
ability for weak signals. Literature [34] studied the character-
istics of SR system where the background noise is a mixture
of color noise and white noise. Reference [35] studied the
SNR characteristics of SR system output under the back-
ground of additive white noise andmultiplicative white noise.
In the study of parameter adaptability. Literature [36] used

97644 VOLUME 8, 2020



X. Fan et al.: Detection Algorithm of BPSK Signal of Parameter-Adjusted BSR Model

particle swarm algorithm to match parameters. Literature
[37] studied the resonance parameter characteristics in the
Second-Order Underdamped System. Literature [38] uses the
Hilbert transform and High-pass filter to combine the signal
with the artificial fish swarm algorithm to improve the SNR
of the output signal of the SR system. Literature [39] is based
on the fact that asymmetry can improve the enhancement
ability of asymmetric bistable SR in weak feature extrac-
tion. An underdamped well-width asymmetric bistable SR
was constructed to improve signal detection capabilities.
Literature [40] proposed a second-order matched stochastic
resonance (SMSR) method. By combining the noise intensity
optimization and signal frequency synchronization with duff-
ing system, matching parameters are obtained, and weak sig-
nals are detected. Literature [41] proposed an underdamped
step-varying second-order SR. In this method, you can adjust
the second-order parameters to achieve resonance.

The above research results have made great achievements
in researching the characteristics of noise and improving
the matching of resonance, which has a guiding role in the
research of this paper. Based on the above literatures, this
paper studies the BPSK statistical characteristics under the
condition of no prior information, unknown noise types and
signal parameters, and performs signal detection based on
Neiman-Pearson criterion.

Structure arrangement of this study is as follows: introduce
basic concepts of BPSK and BSR in Section II; improve
BSR through scale change and construct complete flow for
signal detection in Section III; design nonlinear detector
based on Neyman-Pearson criterion in Section IV; deduce
output SNR of system and error rate in Section V; verify
effectiveness ofmethod through simulation and compare with
mainstream method to highlight advantages of algorithm in
Section VI; draw a conclusion and summarize the whole
paper in Section VII.

The contribution of this study is to extend the traditional
SR algorithm for small amplitude periodic signals to the
detection of non-periodic high-frequency signals based on
scale transformation, which broadens the application range of
the algorithm, and significantly improves the ability of weak
signal detection. Besides, the signal processing flow based on
Neyman-Pearson criterion is built. In theory, the approximate
probability density distribution function of the signal and
noise processed by SR system is deduced, thereby achieving
the constant detection of false alarm. In themeantime, the cal-
culating process and ideal value of bit error rate are derived,
and the signal detection process is optimized. The error rate
constructs the negative feedback mechanism, design control
law and the dynamic adaptive adjustment system parameters
for the feedback quantity to achieve the optimal parameter
matching and further improve the detection efficiency.

II. BASIC CONCEPTS
A. BPSK SIGNAL MODEL
BPSK signals have wide applications in the field of signal
processing due to their large time-width bandwidth product,

high resolution and low probability of interception. [42].
Signal model of typical superimposed Gaussian white noise
is as follows:

x (n) = A exp [j (2π f1tn+ θ (n))] ∗ rect (n)+ ω (n) (1)

where, rect() denotes rectangular square wave, f is the carrier
frequency of BPSK signal, 1t is sampling interval and θ (n)
is phase encoding, andω(n) is Gaussian white noise sequence
subject to standard normal distribution. Modulation mode of
BPSK signal is mainly embodied in phase function, where,

θ (n) = π∗d(n) (2)

d(n) denotes binary sequence and d(n) ∈{0,1}, with equal
probability valuing.

B. BISTABLE STOCHASTIC RESONANCE SYSTEM
A completely different approach to increase the SNR can be
adopted based on stochastic resonance (SR) theory. It can
take advantage of the noise to enhance the weak signals by
some nonlinear systems [43], [44]. Langevin equation having
double-well potential property is typical bistable nonlinear
system, and then system model can be expressed as:

dx
dt
= −

∂U (x)
∂x

+ s (t)+ N (t)

U (x) = −
1
2
ax2 +

1
4
bx4

(3)

In above equation, U (x) is the potential function of BSR
system. s(t) is an input signal, which will be the BPSK signal
to be detected later. a, b are the structural parameters of the
BSR system, all of which are real numbers greater than zero.
N (t) stands for the background white Gaussian noise with
zero mean and variance D, x is the output variable of the
system. It is used to describe the output of the BSR system
after the signal and noise have resonated under the influence
of the system.{

E [N (t)] = 0
E [N (t1)N (t1)] = 2Dδ (t1 − t2)

(4)

where δ(t) is impulse function.
When D = 0, it is assumed that there is no noise, only

when the signal is input. The system has two steady states
at ±
√
a/b , the well bottom of the potential well. There is a

barrier 1U between the two well bottoms. Only beyond the
barrier can the system resonate between the two wells. The
height of the barrier is:

1U =
a2

4b
(5)

To go beyond this barrier, the input signal amplitude needs
to exceed the threshold Ac. Let the pole of the potential
function in equation (3) coincide with the inflection point,
namely: 

∂U (x)
∂x
= ax + bx3 + A0 = 0

∂2U (x)
∂x2

= a+ 3bx2 = 0
(6)
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FIGURE 1. Schematic diagram on bistable potential well.

FIGURE 2. Schematic diagram on tilt of potential well.

The threshold Ac that can be solved is:

Ac =

√
4a3

27b
(7)

System output is considered as particles moving on
potential function curve. After signal is input to system,
potential well will make periodic tilt change in accordance
with signal frequency under modulation drive of signal,
which is as shown in Fig.1and Fig. 2.

When A < Ac, particle can only make periodic motion
within 2 potential wells,±

√
a/b, and cannot jump to another

potential well; particle can only jump between 2 potential
wells when A > Ac. After noise is input to system, because
of synergistic effect of signal and noise, tilt of potential
well increases gradually, so that particle can jump from
original potential well to another potential well even when
A < Ac. When noise intensity increases to an optimum value,
frequency of jumping between 2 potential wells by particle
will be the same with frequency of input signal and output
SNR will reach to the maximum value; when noise intensity
increases continuously, law of particle motion will disappear,
and output SNR will decrease obviously.

However, there are corresponding requirements for signals
and noise. For the signal, there is a barrier as shown in
equation (5) due to the BSR system. Stochastic resonance can
only be excited when the energy of the signal exceeds the
barrier. That is, the amplitude A of the signal is required to
exceed the threshold A0 of equation (7). Otherwise, the sys-
tem will not generate random resonance. For noise, although
the stochastic resonance system directs the energy of the noise
to the signal, the energy of the signal is boosted. But the noise

FIGURE 3. Algorithm principle block diagram.

is not as strong as possible. Once SNR is lower than the SNR
wall, the detection of the signal cannot be achieved by any
processing method. Therefore, the requirement for noise is
that the SNR cannot be made lower than the SNR wall.

BSR can transform noise energy into signal energy, which
reserves information of original signal and is also conducive
to its detection. But classical BSR is only applicable to
small-intensity and low-frequency periodic signal, and if one
of above three conditions is not met, matchingwork of system
will not be done, which restricts application of SR theory
seriously. But in reality, signal intensity and frequency band
property are relative values in background, and based on
Fourier transform thought, non-periodic signal can also be
considered as signal with infinite period. Accordingly, appli-
cable scope of BSR may be expanded further. This study will
expand applicability of BSR through scale change thought in
next section.

Therefore, this paper builds a detection algorithm for
BPSK signals based on BSR. The functional block diagram
is shown in Figure 3.

First, according to the estimated frequency range of the
signal to be detected, a preliminary scale transformation is
performed on the BSR. Based on the output parameter char-
acteristics of BSR, a detector was designed based on Neyman
Pearson criterion. When the detection result meets the error
requirements, a signal is output, otherwise the BSR system
parameters are further adjusted according to the errors until
the conditions are met. Next, this article discusses each of
these parts in detail.

III. SIGNAL PROCESSING FLOW BASED ONTOCHASTIC
RESONANCE OF SCALE CHANGE
A. SCALE CHANGE MODEL AND DEMONSTRATION
The theoretical analysis and quantitative derivation of
stochastic resonance systems are based on the theory of
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adiabatic approximation and linear response. The above the-
ory assumes that the frequency of the signal to be detected
is extremely low and the amplitude is extremely small.
Therefore, the classical stochastic resonance theory can only
deal with low-frequency signals with small amplitude, gen-
erally handle no more than a few Hz [28], [32]. But in actual
scientific research and project application, center frequency
of signal is greater than 1 and frequency band is wide. Thus,
to improve applicability of algorithm proposed in this study,
this section introduces normalization scale change of bistable
system model, and based on combination with derivation
demonstration, demonstrates that applicable scope of BSR
can be expanded by adjusting parameters.

This study makes variable substitution to equation (3), i.e.,
scale change, assumed that:z = x

√
b
a

τ = at
(8)

Substitute equation (8) into equation (3) to obtain
following equation through sorting:

a

√
a
b
dz
dτ
= a

√
a
b
z− a

√
a
b
z3 + s

(τ
a

)
+ N

(τ
a

)
(9)

Assumed that:

ζ (τ ) =
1
√
2Da

N
(τ
a

)
(10)

Then above equation meets:{
E [ζ (t)] = 0

E [ζ (t1) ζ (t1)] = δ (t1 − t2)
(11)

Substitute equation (11) into equation (9) to obtain:

a

√
a
b
dz
dτ
= a

√
a
b
z− a

√
a
b
z3 + s

(τ
a

)
+
√
2Daζ (τ ) (12)

Following equation can be obtained by sorting to above
equation:

dz
dτ
= z− z3 +

√
b
a3
s
(τ
a

)
+

√
b
a3
√
2Daζ (τ ) (13)

Above equation is normalization form of equation (3),
both equations are equivalent, and signal frequency is 1/a of
frequency of original signal. Accordingly, for high-frequency
signal, signal to be detected can be normalized as equivalent
low-frequency signal by choosing increased system param-
eter a and improving sampling frequency of signal, thus
making analysis and solution by utilizing SR theory. Signal
and noisewill bemultiplied by the same scale factor, and SNR
of original system is not changed.

B. ALGORITHM FLOW
Last section discusses feasibility to expand stochastic res-
onance by utilizing scale change method, and this section
constructs signal processing flow based on bistable system.
Its flow chart is as Fig.4:

FIGURE 4. Signal processing flow based on bistable stochastic resonance.

The algorithm steps can be summarized as following
6 steps:

Step 1: The BSR system is constructed according to the
Langevin equation. Initialize the structural parameters of the
BSR system a0 = b0 = 1, signal amplitude A0 = 0.5,
frequency f0 = 0.5, noise standard deviation σ0 = 1.
Step 2: The magnitude f1 of the frequency fBPSK of the

BPSK signal to be detected is estimated. Set the sampling
frequency fs to 100 times f1. Even if frequency f1 of signal to
be detected is lower than sampling frequency fs, it is ensured
that signal can be transformed to equivalent low frequency
range after scale change.

Step 3: Utilize a1
.
= a0 (fs/f0) and assume b1

.
= a1,

to obtain bistable system parameters a1 and b1 after scale
change, and to construct stochastic resonance system.

Step 4: Make sampling to mixed signal to be detected and
calculate root-mean-square (RMS) value σ1 of mixed signal.
Because low SNR is set under this study, root-mean-square
value of mixed signal is set to be equal to root-mean-square
value of noise almost. Scale factor K is obtained by utilizing
K = a1(σ0/σ1).
Step 5: Multiply mixed signal to be detected by scale factor

K and input the result into stochastic resonance system. Input
output result into signal detection system to obtain error rate
of system, and make trimming to a1 based on it, return to
Step 3, and make recalculation to lower error rate of result.
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FIGURE 5. Spectrogram before and after mixed signal passing SR.

FIGURE 6. Schematic diagram of nonlinear threshold system.

Step 6: Adjust parameter to minimize error rate, and signal
processing result will be the most ideal one. The detection
waveform and the corresponding bit error rate of the system
are detected to realize the detection of the BPSK signal.
Signal detection part and error rate calculation part will be
discussed below in detail.

IV. DETECTION FLOW OF NONLINEAR THRESHOLD
SYSTEM BASED ON NEYMAN-PEARSON CRITERION
In order to further extract the weak signal from the noise. This
paper designs a signal detector based on the Neyman-Pearson
criterion. This is the signal detection part of Figure 4.

Mixed signal of BPSK signal and noise are affected by
nonlinear interaction when it passes BSR system, which
changes Probability Density Function (PDF) of noise. This
section sets relatively high SNR to make simulation exper-
iment, input signal is 0.03Hz and SNR is -10dB, and result
obtained is as shown in Fig. 5.

Through comparison to 2 figures, it can be seen obviously
that after nonlinear processing by stochastic resonance sys-
tem, noise power is gathered towards frequency point direc-
tion of signal, suggesting that noise is not subject to normal
distribution again after passing stochastic resonance system.
Thus, this study designs nonlinear threshold system (NTS) by
utilizing Neyman-Pearson criterion, and its function model is
as shown in Fig. 6.

Its expression is as follows:

y =

{
T x ≥ θ
P x < θ

(14)

T and P are two constants, which will be given later.
Because whether BPSK signal exists or not needs to be
detected in this section, following equation can be obtained
after discretization to it:{

s1 (k) = 1
s2 (k) = −1,

1 ≤ k ≤ N (15)

N is the number of sampling point in above equation.
Each code element of BPSK signal will last for some

time, and sampling frequency is greater than signal frequency,
suggesting that when BPSK signal exists, system will contin-
uously collect relatively numerous mixed signal of s1(k) and
noise or mixed signal of s2(k) and noise to be used as signal
detection basis.

When signal exists, probability that system collects s1(k)
and s2(k) is 0.5. Assumed that system collects s1(k) with
noise being n(k) first, existence or inexistence of signal can
be expressed through binary hypothesis testing, i.e.,{

H0 : x(k) = n(k), noise only
H1 : x(k) = s1(k)+ n(k), signal and noise

(16)

Because PDF of Gaussian white noise is changed after
it passes BSR system, and because it is difficult to obtain
processing mechanism of nonlinear system through theoret-
ical analysis and nonlinear system has sensitivity to initial
conditions, this study will not deduce PDF of Gaussian white
noise after it passes bistable system. To design detector, and to
ensure universality of algorithm, assumed that noise is subject
to generalized Gaussian noise, its PDF is as follows:

f (x; p, β) =
p

2βσn0
(
1
p

)e−
(∣∣∣ x−µnβσn

∣∣∣2)
, p > 0, β > 0 (17)

In above equation, µn and σn respectively are mean value
and variance of noise, and expression of 0(x) and β is as
follows:

0 (x) =
∫
+∞

0
ux−1e−udu (18)

β =

√
0

(
1
p

)
0

(
3
p

)
(19)

The value of p is used to describe the noise type, and the
different p values correspond to different noise PDF. Using
the output of the BSR, the noise characteristics are analyzed,
and the parameters are modeled to obtain a noise distribution
model close to the result, so as to determine the value of p.
When p is 1, the noise is Laplacian type noise. When p
is 2, the noise is Gaussian noise. When p is∞, the noise is
uniformly distributed.

Assumed T = 1, P = −1, and θ = s1/2+n in this study,
threshold system can be regarded as a symbolic function and
expressed as:

y = sgn (s1 + n− θ) =

{
1 s1 + n− θ ≥ 0
−1 s1 + n− θ < 0

(20)
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Calculate mean value of output signal y first, which can be
expressed as:

E [y] = P (y = 1)− P (y = −1)

= P (s1 + n ≥ θ)− P (s1 + n < θ)

= 1− 2Fn (θ − s1) (21)

where:

Fn (θ − s1) =
∫ θ−s1

−∞

fn (u)du (22)

fn(u) is PDF of generalized Gaussian noise in equation (17).
Calculate variance of output signal y:

E
[
y2
]
= (1)2 P (y = 1)+ (−1)2 P (y = −1) = 1 (23)

Var (y) = E
[
y2
]
− E2 [y]

= 4Fn (θ − s1)− 4F2
n (θ − s1) (24)

Test statistics of nonlinear threshold system obtained is:

l =
1
N

N∑
k=1

y (k) (25)

Waveform received is different under existence or inexis-
tence of signal, and accordingly, underH0 andH1 assumption
condition, test statistics has different mean value and standard
deviation, respectively set as µ0, σ0, µ1, σ1. In accordance
with property of test statistics, values respectively are:

µ0 = 1− 2Fn (θ) (26)
µ1 = 1− 2Fn (θ − s1) (27)

σ0 =
1
N

[
4Fn (θ)− 4F2

n (θ)
]

(28)

σ1 =
1
N

[
4Fn (θ − s1)− 4F2

n (θ − s1)
]

(29)

Because the first code element of BPSK signal will last for
some time, and sampling frequency of system is high enough,
suggesting that the number of point on sampling to system is
large enough, in accordance with central-limit theorem, under
above 2 assumptions, test statistics is subject to Gaussian
distribution and its PDF is:

p (l|H0) =
1

√
2πσ0

e
−
(l−µ0)

2

2σ20 (30)

p (l|H1) =
1

√
2πσ1

e
−
(l−µ1)

2

2σ21 (31)

To improve efficiency of detection system to signal
processing, this study designs detector by adopting Neyman-
Pearson criterion, thus ensuring entry of useful information
into system as much as possible and avoiding entry of over-
much false data into detector to affect work efficiency of sys-
tem; when false alarm probability PF is constant, detection
probability PD will be maximized, and they can be expressed
as:

PF =
∫
∞

α

p(l|H0)dl (32)

PD =
∫
∞

α

p(l|H1)dl (33)

Because Neyman-Pearson criterion is to make lower limit
integration to equation (32) after false alarm probability PF
is set, and make its value be PF , threshold value α can be
obtained. It is assumed that PF has been set in this study, and
following equation can be obtained by substituting equation
(30) into equation (33):

PF =
∫
∞

α

1
√
2πσ0

e
−
(l−µ0)

2

2σ20 dl (34)

Make variable substitution to above equation, assumed
that:

v =
l − µ0

σ0
(35)

Then equation (21) can be expressed as:

PF =
∫
+∞

α−µ0
σ0

1
√
2π

e−
v2
2 dv (36)

Above equation does not have theory resolution, but in
practical application, auxiliary calculation can be made by
combining with distribution table of standard normal func-
tion, i.e., function value corresponding to following equation:

8(z) = P (Z ≤ z) =
∫ z

−∞

1
√
2π

e−
u2
2 du (37)

Then false alarm probability can be expressed as:

PF = 1−8
(
α − µ0

σ0

)
(38)

After false alarm probability is set, standard normal func-
tion value can be determined, and µ0 and σ0 can be obtained
through calculation, and threshold value α can be obtained
through table lookup and simple calculation, so that detection
probability obtained is:

PD = 1−8
(
α − µ1

σ1

)
(39)

Fig. 7 is detection flow of mixed signal after processing by
stochastic resonance system.

Capability to detect BPSK signal can be enhanced
further by utilizing Neyman-Pearson criterion under no prior
information.

Because above derivation is based on the condition that
signal received is +1, detection probability PD can be
obtained through above calculation. But in reality, the first
code element of BPSK signal can be positive or negative.

Thus, this study adopts 2 sets of same detection system,
the first set adopts normal processing, and signal is reversed
and input to the second set of detection system, i.e., s(t)
turning to -s(t), and under simultaneous working of bistable
system, detection probability PDv of the second set of detec-
tion system is obtained; compare PD with PDv, they differ
significantly in size, and select the greater one, which is signal
detection probability, and whether signal is positive or neg-
ative can also be determined. The first set of system only
detects positive signal while the second set of system detects
negative signal and add sequence of signal detected by them
to obtain complete sequence of BPSK signal.
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FIGURE 7. Detection flow of BPSK positive signal based on
Neyman-Pearson criterion.

V. ANALYSIS ON ALGORITHM PERFORMANCE
A. ANALYSIS OF DETECTION CAPABILITIES
To analyze algorithm performance quantitatively, signal
detection enhancement capability is described quantitatively
by algorithm proposed in this study.

Through expression of BPSK signal, it can be seen that
between each code element, signal is sinewave, and unilateral
output power spectral density function of bistable system can
be expressed as:

S (ω) = Ss (ω)+ Sn (ω)

=

2a4A4

πb2D2 e
−

a2
2bD

2a2
π2 e
−

a2
2bD + ωc

δ (ω − ωc)

+

1−
a3A2

bπ2D2 e
−

a2
2bD

2a2
π2 e
−

a2
2bD+ωc

 4
√
2a2
πb e−

a2
4bD

2a2
π2 e
−

a2
2bD+ω2

 (40)

In above equation,ωc = 2π fc denotes angular frequency of
BPSK signal, and fc is modulation carrier frequency of signal.
In the meantime, under adiabatic approximation, to ensure
that bistable system can generate stochastic resonance, mod-
ulation frequency of BPSK signal and Clay Moss rate Rk will
meet:

fc =
1
2
Rk =

a

2
√
2π

e−
a2
4bD (41)

Then output signal power Ps can be expressed as:

Ps =
1
2π

∫
+∞

0
Ss (ω) dω =

2a4A4

πb2D2 e
−

a2
2bD

2a2
π2 e
−

a2
2bD + ωc

(42)

Noise power Pn can be expressed as:

Pn =
1
2π

∫
+∞

0
Sn (ω) dω

=
2a
bπ

1−
a3A2

bπ2D2 e
−

a2
2bD

2a2
π2 e
−

a2
2bD + ωc

 arctan

 ω
√
2a
π
e−

a2
4bD

∣∣∣∣∣∣
+∞

0

=
a
b
−

a4A2

b2π2D2 e
−

a2
2bD

2a2
π2 e
−

a2
2bD + ωc

(43)

Through sorting, SNRout of output signal can be expressed
as:

SNRout =
Ps
Pn
=

2a2A2

abD2
(
4+ π2

)
− 2a2A2

(44)

SNRin of input signal is:

SNRin =
Ps
Pn
=

A2

4D
(45)

SNR gain of bistable system before and after signal input
is:

G =
SNRout
SNRin

=
8a2D

ab
(
4+ π2

)
D2 − 2a2A2

(46)

To ensure that G is greater than 1, above equationwill meet:

0 < ab
(
4+ π2

)
D2
− 2a2A2 < 8a2D (47)

After solution to above one-variable quadratic inequality
set related to D, following result can be obtained:√

2aA2(
4+ π2

)
b
< D <

4a
√
16a2 + 2abA2

(
4+ π2

)(
4+ π2

)
b

(48)

When original noise intensity meets above conditions, out-
put SNR of system will be enhanced.

To research relationship between noise and system param-
eter, assumed that:

G (a) =
8a2D

ab
(
4+ π2

)
D2 − 2a2A2

=
8D

1
ab
(
4+ π2

)
D2 − 2A2

(49)

From above equation, it can be seen that system gain is
positively correlated with parameter a. To ensure that gain is
greater than 1, parameter a will meet:

1
a
b
(
4+ π2

)
D2
− 2A2 > 0

1
a
b
(
4+ π2

)
D2
− 2A2 < 8D

(50)

After solution, following result can be obtained:(
4+ π2

)
bD2

2
(
4D+ A2

) < a <

(
4+ π2

)
bD2

2A2
(51)
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Because gain is monotone increasing function concerned
with a, when value of a is close to upper limit, system gain
will be maximized.

From above equation, it can also be seen that increase of
a is conducive to improvement of signal SNR, and scaling
proposed in this study also requires a to be large as much as
possible, suggesting that applicability of stochastic resonance
can be expanded by increasing a, and system gain can also
be enhanced simultaneously, which is also one advantage of
scaling method proposed in this study.

B. ANALYSIS OF BER AND OPTIMAL MATCHING
OF SYSTEM PARAMETERS
SNR of signal is enhanced after it passes bistable system.
To evaluate performance of detector, this study takes error
rate as evaluation index and feedback quantity from signal
processing system, and its expression is as follows:

Pe = P0P (0 |1 )+ P1P (1 |0 ) (52)

In above equation, P1 and P0 respectively represent
probability for existence or inexistence of code element. P0+
P1 = 1. Under Neyman-Pearson criterion, and because
this study transforms BPSK signal into 2 groups of binary
detection, P(0|1) is expressed as false dismissal probability
while P(1|0) is expressed as false alarm probability, i.e.,{

P (0 |1 ) = 1− PD
P (1 |0 ) = PF

(53)

Accordingly, error rate of detector can be expressed as
follows by combining with derivation result of last section:

Pe = P0 (1− PD)+ P1PF

= P08
(
α − µ1

σ1

)
+ P1

[
1−8

(
α − µ0

σ0

)]
(54)

In accordance with above equation, the greater the false
alarm probability PF is, the lower the detection threshold α
will be; the greater the detection probability PD is, the lower
the false dismissal probability will be, vice versa. Thus, above
equation shows that error rate will present decrease first and
then increase with decrease of false alarm probability set
manually, suggesting that an ideal false alarm probability
PFopt exists, to minimize error rate of system.
Seen from8 function, error rate Pe is concerned with noise

intensity before detector passing, and after processing by
bistable stochastic resonance system, SNR of output signal is
improved, suggesting that value of8 function is lowered and
error rate of detection signal is lowered thus. Above process
is error rate calculation part in signal processing flow, and
system parameter will be adjusted in accordance with error
rate size to realize optimal detection.

In Step 3, a1 is approximated as fs/f0 times of a0. Though
scale scaling can be achieved, it is necessary to achieve
optimal parameter matching. Thus, the ratio of a1 to a0 should
be adjusted.

Eq.(54) suggests that the system’s error rate is related to
the probability of transmitting signals, P0 and P1, and to the

set probability of false alarm PF . Also, based on Neyman-
Pearson criterion, when the false alarm probability of a
Receiver is set, its detection probability PD can also be deter-
mined according to the Receiver Operating Characteristic
curve (ROC).

To achieve the optimal matching of a1, parameters of the
receiver can be adjusted before signal detection. The param-
eter adjustment process can be described as the following
steps.

Step 1: According to the application requirements, estimate
the frequency band of the signal to be detected. Take any
frequency fe in this frequency band. BSRs with parameters
a0 and b0 were constructed to generate stochastic resonance
at low frequency f0. Adjust the system parameters a1 = b1 =
fea0/ f0. And initialize a1 = b1 = 0.5. Also set the system
false alarm probability PF .

Step 2: Take a detection signal of 100 sampling points and
input it into the BSR. This group of signals was detected
9 times. Because the BSR system adds noise during each
test, the results of these 9 times are not exactly the same.
Comparing the number of 0 and 1 of the 9 test results at
each position, the more is the test result at that position.
Thereby, a preferable detection result of 100 sampling points
is obtained.

Step 3: Count the number of 0 and 1 in the 100 preferred
results, and replace the probability with the frequency to
obtain P0 and P1 in formula (52). Use formulas (26)-(29) to
calculate µ0, µ1, σ0, and σ1, and then use formulas (38) and
(39) to obtain the detection probability PD. Thus, the bit error
rate Pe of formula (54) is obtained.

Step 4: Count the number of errors ne in the 900 detection
results to obtain the actual bit error rate Per = ne/ 900.

Step 5: Bring the above parameters into the control law,
that is: 

err (q) = Per (q)− Peopt
u (q+ 1) = u (q)+ k × err (q)
a1 (q+ 1) = u (q+ 1)× a0

(55)

The error is calculated as err(q). The ratio of a1 to a0 is
adjusted in accordance with such error, k is a proportional
constant, which is an order of magnitude with fe, q is the
number of iterations.

Step 6: Repeat Step 2-Step 5 until err(q) is less than 0.01.
Eq.(55) is the classical control of ratio, which is mature and

easy to achieve. When the algorithm is finished, the number
of record iterations is Q, q ∈[1, Q]. In such a way, a1 can be
adjusted, and the error rate of the detection can be ensured to
decrease under such system parameter. The BSR system can
then be used to detect similar subsequent signals.

The above process is also one of the reasons for the good
effect of the algorithm in this paper. In the absence of prior
information, the parameters of many detection algorithms
remain unchanged, making it difficult to cope with signals of
different parameters. During the detection process, the algo-
rithm in this paper continuously obtains the signal informa-
tion, and further adjusts its parameters according to the signal
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parameters to achieve better detection. This improves the
algorithm’s performance.

C. ANALYSIS OF ALGORITHM COMPLEXITY
The algorithm flow suggests that following the algorithm
of this study, the mixed noise signal is first processed
through the bistable stochastic resonance system, and then
the output signal is detected based on the Neyman-Pearson
criterion. Subsequently, the parameters of bistable system
are adjusted according to the detected error rate until the
lowest error rate is achieved. Accordingly, it is necessary
to analyze the superimposed amount of a random resonance
and detection algorithm, and then carry out Qth iteration to
get the times of optimal solutions, i.e., the complexity of this
algorithm.

The part of BSR with changed scale should be first
analyzed. The first step is scale change, i.e., Eq.(7) and
Eq.(8). The frequency and scale change of the signal are
changed as 1/a of the original values and then divided
by a. The complexity of this algorithm is O(n). Subse-
quently, the results of scale change is input into BER system,
i.e., Eq.(3). The algorithm is complex primarily because of
bx3, with the complexity of O(n3). Thus, the complexity of
the algorithm om BSR is O(n+ n3), i.e., O(n3).
Next, the signal detection is to be analyzed. When

determining the generalized noise distribution in PDF, p
value is selected according to the BSR output result to
achieve an approximate description of noise. The correspond-
ing algorithm complexity is O(1). Then the parameters of
µ0, σ0, µ1, σ1 will be calculated. (26)-(29) suggest that the
algorithm for σ is more complex than that for µ. Thus,
we only investigates the complexity of algorithm for σ . Fn
is obtained by the integral calculation of Eq. (22). The inte-
grand and the bound of the integral are known here, and
the integrand is a typical distribution function. The value
of Fn can be determined by referring to the table, and the
computational complexity isO(n). Then, σ is calculated using
Eq. (28) and (29). Thus, the complexity for calculating σ is
O(n3). Next, the threshold α is derived by the established PF .
Eq.(36) suggests that the integrand and bounds are known,
and the integrandmeets the typical Gaussian distribution. The
threshold α can be obtained by viewing table and through
simple operation. The computational complexity is O(n2).
Finally, the test statistics are analyzed, and according to
Eq.(25), the test statistics are the mean value of the output
signal, and then the statistics are compared with the thresh-
old. The algorithm complexity of the two parts is O(n). The
algorithm complexity of the signal detection part is therefore
O(1+n+ n3 + n2 + n), i.e., O(n3).
Finally, in combination with the algorithm process in

Figure 4, most of the rest are simple four operations and
assignment except for the BSR and signal detection. Only the
algorithm for noise variance in the computing environment
has a complexity of O(n2). Then, the overall algorithm com-
plexity of the system is O[Q(n3 + n3 + n2)], i.e., O(2 Qn3).
Nonlinear detection with similar complexity of most signal

FIGURE 8. Figure on comparison to previous and late waveform after
BPSK signal passing bistable system.

detection algorithms’ can significantly improve the detec-
tion ability of weak signals, and the algorithm has better
performance.

VI. SIMULATION VERIFICATION
A. SCALE CHANGE MODEL
Scale change feasibility has been deduced and discussed
in above content. To verify its feasibility, this paper makes
simulation experiment to it. This paper makes simulation
verification to scale change method by utilizing BPSK
signal.

Sampling frequency of system is 20MHz, system
parameter a = b = 107, and carrier frequency of BPSK
signal is 200kHz, base band frequency is 20 kHz, and initial
code element can be selected stochastically, initial phase is
random, and random equal probability of +1 and −1 code
element can change stochastically, and noise intensity is
equal to signal intensity. Simulation environment is I7-4960,
with 2.60GHz dominant frequency and 16G memory, and
simulation experiment is made to platform based on Matlab
2014a. Figure on comparison to previous and late waveform
obtained after BPSK signal passes above bistable system is:

In Fig.8, signal from top to bottom successively is BPSK
signal modulated, input signal of bistable system mixed with
equal intensity noise and output signal of bistable system.
Through observation to Fig.8, it can be visually seen that
above parameters set can make system generate stochastic
resonance, which means that scaling method in this paper is
feasible through experimental verification.

Through comparison to original signal and output signal
of system, output signal can be modulated and matched
with original signal well, and especially at 1.2∗10−5s and
3.9∗10−5s when 2 signal amplitudes are switched, i.e., the
positive and negative of code element of BPSK signal change,
output signal of bistable system embodies original signal
feature well. Through comparison to mixed signal and output
signal, under the condition that SNR is 0dB, output signal of
system can be interpreted visually, because system transforms
noise energy into signal energy, thus enhancing signal inten-
sity, which shows that system has potential to detect weak
signal under low SNR.
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FIGURE 9. Figure on comparison to frequency spectrum before and after
BPSK signal passing bistable system.

Make fast Fourier transform (FFT) to above mixed signal
and output signal, and analyze the frequency spectrum, which
is as shown in Fig. 9:

Through comparison to above 2 figures, it can be seen
that intensity of signal at its frequency point increases obvi-
ously, and is 11 times of original signal intensity roughly,
and SNR of output signal is improved obviously, which is
beneficial to signal detection. Seen from Fig.2, original noise
is Gaussian white noise, distributed at the whole frequency
band uniformly with certain intensity, and after processing
by stochastic resonance system, its distribution is gathered
towards signal frequency point obviously, which also verifies
that noise distribution is changed and is not subject to normal
distribution again after noise passes stochastic resonance
system based on scale change. Therefore, good detector not
under Gaussian white noise background shall be used to
make further detection to output signal of bistable stochastic
resonance.

B. DETECTION ANALYSIS OF BPSK SIGNAL
To ensure stochastic resonance, the number of sampling point
of received signal set in the experiment is large enough, and
in accordance with central-limit theorem, test statistics is sub-
ject to approximate Gaussian distribution. System parameter
and simulation environment are almost equal to simulation
condition in last section that SNR is −10dB and false alarm
probability is 0.01, assumed that generalized Gaussian noise
parameter p=1, suggesting that it is assumed that noise is
subject to Laplace noise distribution after passing stochastic
BSR system. Assumed that time span of BPSK signal is
0.1s, and 1000 amplitude transformations are made during
the period, make the signal pass bistable system with param-
eter set in last section, make output signal of system pass
nonlinear detector, and demodulate output signal of bistable
system and output signal of detector. For the convenience of
observation, waveform within 0.01s is chosen, which is as
shown in Fig.10.

Through comparison to above 2 curves, it can be seen that
bistable system has good capability to enhance signal energy,
so signal feature is further highlighted, which is conducive

FIGURE 10. Figure on output waveform of bistable system and detector.

FIGURE 11. Figure on comparison between original signal and output
signal.

to further detection of nonlinear detector. Make output signal
pass nonlinear detector to obtain waveform of BPSK signal
detected. To further evaluate correctness of output result of
detector and error rate of calculating system, draw relational
graph of original pure signal and output signal of detector,
which is as shown in Fig.11.

Through comparison to above 2 groups of point, it can
be seen that in the 26th signal modulation, system meets
detection failure, and correct detection is obtained in other
99 times. In sequence of 1000 modulations to the whole
band, 6 times of detection failure appear with relatively
low error rate. Make 100 times of Monte Carlo simulation
experiment to above flow, and average error rate of detection
system obtained is 0.0076. Thus, under−10dB condition and
Laplace noise background condition, algorithm proposed in
this study has good detection efficiency.

C. COMPARISON OF ALGORITHM PERFORMANCE
In order to further reflect the performance of this algorithm,
under the condition of no prior information and low
signal-to-noise ratio, the algorithm in this paper is compared
with the existing algorithms to reflect the advantages of the
method. At the same time, through the following three sets of
comparative experiments, the algorithm in this paper demon-
strates that the method has better results in a strong noise
environment, for BPSK signal detection and without prior
information.
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FIGURE 12. Figure on comparison between original signal and output
signal.

Firstly, the advantages of this algorithm in low SNR
environment are discussed. To further measure performance
of algorithm proposed in this study and embody advantage
of algorithm proposed in this study, under low SNR, adjust
parameter value of p, and compare detector in this study with
Best Linear Detection (BLD), simulation environment and
parameter value are kept unchanged, and simulation SNR is
[-30,0]dB, and simulation figure obtained by taking 3 dB as
step is as Fig. 12.

Through above figure, it can be seen that nonlinear detector
in this study designed based onNeyman-Pearson criterion has
good detection efficiency under low SNR and with increase
of SNR, detection efficiency will increase obviously. In the
meantime, in most cases, performance of detector in this
study is superior to optimal linear detection algorithm. When
p = 2, noise is Gaussian white noise, and optimal linear
detector has the best detection performance under Gaussian
white noise background, but when p is changed gradually,
performance advantage of detector designed in this study
appears gradually with more obvious error rate decrease.

However, with the further increase of the signal-to-noise
ratio, the performance of the algorithm in this paper will
be inferior to BLD at about 10dB. There are two main
reasons. One is that the signal-to-noise ratio is increased,
the resonance effect is weakened, and the ability to increase
the signal energy is also reduced. Although the bit error
rate is still decreasing, the performance is not as good as
BLD. Another reason is that the signal detection algorithm
in this paper is designed based on Neyman-Pearson criterion.
The false alarm probability needs to be set, and the false
alarm probability is negatively related to the bit error rate.
And setting false alarm probability means that the system
allows bit error rate. Due to the inherent errors of the system,
the performance of this algorithm is limited under high SNR
conditions. Therefore, the algorithm in this paper is more
suitable for low SNR environments.

Secondly, it discusses the advantages of this algorithm
to BPSK signal detection. The algorithm in this study is
compared with [21]. The simulation parameters are the same
as those shown in Figure 10 in reference [21]. The false alarm

FIGURE 13. Comparison between the performance of algorithms.

probability is set as 0.05. The Monte-Cario Experiment is
performed 200 times. The simulation results are averaged,
and the results are compared as shown in Fig. 13.

As suggested from the above figure, compared with [21],
the algorithm in this study can provide higher SINR. This is
because the algorithm in this study can transform the energy
of noise into the energy of signal through nonlinear action
under the condition of low signal-to-noise ratio. Thus, it has
better detection ability than the method of [21].

Due to the non-linearity, the detection performance of the
parameter-adjusted Algorithm (PAA) here is not the same
as that of the method in [21]. According to the definitions
of formulas (1), (7) in [21], and the derivation results of
(20) and (23), combined with the simulation results of the
literature, Figure 4 in [21], we can see that in the method
of [21], The SINR of the output is linearly related to the
SNR of the input. The detection capability is linearly cor-
related with the SNR. In the meantime, Figure 13 shows
that with the rise of SNR, the detection efficiency of PAA
algorithm is slower than that of the other two methods. Even
with the improvement of SNR, the algorithm in this paper
is almost overtaken by the other two methods. Since the
efficiency of PAA algorithm is related to the intensity of
noise, the noise energy decreases, and the detection efficiency
decreases naturally. In other words, under the condition of
high signal-to-noise ratio (SNR), the detection efficiency of
PAA is similar to or even worse than that of the mainstream
method, while under the condition of low SNR, the detection
efficiency of PAA is obviously better than that of the main-
stream method. Therefore, this method is more suitable for
weak signal detection.

The method in this paper has a good effect on BPSK signal
detection, because this paper designs a detector based on
Neyman-Pearson criterion. The BPSK signal is a 0-1 coded
signal, which corresponds to the presence or absence of
the signal, which is a typical binary test problem. In the
absence of prior information, a detector designed based on
Neyman- Pearson criterion has an excellent effect on such
binary detection. However, if it becomes a problem of multi-
variate hypothesis testing, the performance of the algorithm
in this paper will decline, and the detector needs to be
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FIGURE 14. Comparison of the performance of detection algorithms.

redesigned, or the multivariate test is converted into multi-
ple binary test problems before it can be used. Therefore,
the algorithm in this paper has a strong advantage for the
detection of BPSK signals.

Finally, the performance of the proposed method without
prior information is discussed. To further compare the per-
formance of the method in this study, the algorithm here
is compared with the detection algorithm in [45]. For the
comparison of the detection algorithms optimized also based
on SR resonance, the setting of simulation parameters is
consistent with the simulation conditions in Fig. 6 in [45], and
the false alarm probability is 0.1. Monte Carlo experiment is
also performed 200 times, and the results are averaged. The
results of comparison are shown in Fig. 14.

It is suggested from the above comparison that though
Parameter-adjusted Algorithm (PAA) is slightly better than
IED (Improved Energy Detection) and superior to the classi-
cal ED (Energy Detection), there is no significant improve-
ment in terms of the results. This is because the IED method
proposed in [45] needs to know the parameters of the signal to
be tested, and then set a, b in SR system. The method in this
study is not required to know all parameters of the signal to
be detected, and the signal detection can be realized only by
estimating the frequency band of the signal, which can reduce
the dependency of prior information and relax the applicable
conditions. Thus, the method has higher applicability.

In the meantime, another reason why the detection result
of this method is slightly better than that of IED method
when the prior information is less than that of IED method is
that, IED method strives to reduce the influence of SNRWall
and achieves good results. Yet this method and corresponding
parameters are difficult to achieve both the reduction of the
influence of SNRWall and the dual goal of optimal detection,
so the improvement of detection performance is actually
limited. The algorithm proposed in this paper takes the bit
error rate as the feedback quantity, adaptively adjusts the
system parameters according to the parameter characteristics
of BPSK signal, and dynamically matches the parameters,
thereby achieving better signal detection. Therefore, though
the prior information is less than that of the IED method,
the detection result can be better than that of the IED method.

TABLE 1. Improvements compared to the existing algorithms.

For the secure communication in the form of cooperation, the
efficiency of this method is obviously not as good as that
of the cooperative receiver. Therefore, this method is more
suitable for signal detection without prior information.

Through above simulation, signal processing and detection
flow built in this study can realize good detection and demod-
ulation to BPSK signal under low SNR, to enhance capa-
bility to detect weak signal under strong noise background
obviously.

In summary, the proposed algorithm can achieve better
detection of BPSK signals. The main improvement points of
this paper are shown in Table 1.

VII. CONCLUSIONS
(1) A set of bistable stochastic resonance model based on

scale change is built by utilizing BSR system, efficiency of
detection to BPSK signal is improved and nonlinear signal
detector is built based on Neyman-Pearson criterion in this
study. A set of complete signal detection flow is built by
combining them, which realizes detection to weak BPSK
signal under strong noise and no prior information.

(2) Aimed at the restriction that classical bistable stochastic
resonance system can only process low-amplitude periodic
signal at low-frequency stage, this study improves stochas-
tic resonance model and expands its applicable scope by
referring to scale change thought and verifies effective-
ness of method proposed through theoretical derivation and
experimental verification.

(3) Because existence or inexistence of signal will be
determined first to detect BPSK signal under strong noise
background, priori knowledge on BPSK signal is limited,
and PDF of noise is changed after noise passes stochastic
resonance system, nonlinear detector is designed based on
Neyman-Pearson criterion, and complete flow on detector
construction and parameter determination is given based
on generalized Gaussian noise, and detector design under
different noise types is realized.

(4) Quantitatively expressing algorithm efficiency of sys-
tem proposed in this study through theoretical analysis and
equation derivation has promotion significance to theoret-
ical research of stochastic resonance. Construct feed-back
system based on expression of algorithm efficiency to gain
optimum value of detection efficiency. Algorithm proposed
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in this study is not only applicable to BPSK signal, but also
applicable to other communication, photology and even fault
signal etc., which provides good reference for subsequent
signal detection theory and practical project application.
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