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ABSTRACT An online estimation method for the power system inertia constant under normal operating
conditions is proposed. First of all, a dynamic model relating the active power to the bus frequency at
the generation node is identified in the frequency domain using ambient data measured with the phasor
measurement units (PMUs). Then, the inertia constant at the generation node is extracted from the unit
step response of the identified model in the time domain using the swing equation. Finally, with the sliding
windowmethod and the exponential smoothingmethod, the estimated inertia constant is updated in real-time.
Compared to the conventional methods using large disturbance data or field test data, the proposed method
can estimate the inertia constant under normal operating conditions, and therefore, can provide the tracking
trajectory of the power system inertia constant in real-time. The effectiveness of the proposed method is
validated in the IEEE 39-bus system. The results show that the relative error of the identified inertia constant
is below 5% and the identified inertia constant can be updated within 1s.

INDEX TERMS Inertia constant estimation, ambient signals, subspace identification, step response, sliding
window, exponential smoothing.

I. INTRODUCTION
In the point view of physics, the inertia of a power system is
its capability to resist energy fluctuations caused by external
disturbances, which, in conventional power systems, are sup-
plied mainly by the kinetic energy stored in the rotating mass
of the synchronous generators and quantified by the inertia
constant [1].

With the increasing share of the power electronic inverter
interfaced renewable energy sources (RESs), some changes
have taken place in power system inertia. Many syn-
chronous generators are displaced by RESs, thus leading to
a persistent decrease in the conventionally available inertia
resources [2]–[4]. Meanwhile, with different control strate-
gies and parameters, various inertia suppliers such as virtual
inertia control and energy storage systems are employed to
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improve the power system inertia [5]–[7]. Therefore, the
power system inertia, as well as its quantification, not only
decrease but also become time-varying [8].

In conventional power systems, the inertia constant is
steady over the long term, and therefore, is chosen as a funda-
mental reference to the design of frequency stability controls
andmany of the protection relays [1].When the penetration of
RESs becomes higher, the situation is different. For instance,
the system frequencymay drop badly when the system suffers
an active power deficiency, and consequently, the protection
and control devices such as under-frequency load shedding or
disconnection of generators may be triggered reluctantly [9].
Since there is no mature method to track the power system
inertia in real-time, to avoid the malfunction of the protec-
tion relays and stability controllers, the transmission system
operators (TSOs) must adopt more conservative operational
schemes to ensure the stable operation of the power system,
which inflates the power system operational costs.
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Given the issues mentioned above, the need for online
estimation of power system inertia (constant) is highlighted
and has drawn consistent attention in recent years. According
to the measurement data types, the existing estimation meth-
ods can be categorized into two groups: 1) disturbance data
methods, and 2) non-disturbance data methods.

For most of the estimation methods based on disturbance
measurements, the inertia (constant) is estimated using the
swing equation, utilizing post-event data that record the tran-
sient active power and frequency characteristics of the gener-
ators [10]–[21]. For instance, a procedure for estimating the
total inertia of the Great Britain power system was proposed
in [13], which calculated the total inertia for the whole system
by summing all the estimated regional inertias. An online
algorithm to estimate the system inertia after a disturbance
based on sliding windows of active power and frequency
derivative measurements was proposed in [14]. In [17],
an inertia estimation method based on the extended Kalman
filter was proposed, which needs to assume the time of distur-
bance. Based on the transient and steady state characteristics
of the frequency response after a disturbance, a method to
estimate the equivalent inertia and damping constant simul-
taneously was proposed in [18]. In [19], an approach for
online inertia estimation in the power system network with
solar photovoltaic source was proposed using the synchro-
nized measurements from PMUs. In [20], based on the mea-
sured frequency response for any arbitrary disturbance in
the system, a method to estimate the available inertia in an
islandedmicrogrid was proposed. In addition, some other dis-
turbance data methods have recently been developed. In [21],
an approach based on electromechanical wave theory was
presented to identify the change of power system inertia
distribution. Though both the offline and online methods
based on recorded disturbances can estimate the inertia accu-
rately, they cannot achieve continuous inertia estimation as
the natural transient events are deficient, and the transient
field experiments are expensive.

Compared to the disturbance data methods, estimators
based on non-disturbance measurements are quite limited.
In [22], a statistical model-based real-time inertia estimation
methodwas proposed, in which themodel was trained to learn
the features that relate the steady-state average frequency
variations and the system inertia. In [23], ambient frequency
and active power data were employed to estimate the effective
inertia of a power system, where a combinedmodel of inertial
response and primary control was identified, and then the
inertia was extracted from the impulse response of the model.
However, the inertia tracking trajectory could not be provided
in real-time in [23]. In our previous work, a closed-loop
identification method was proposed for the power system
equivalent inertia constant online estimation, which could
achieve a precise estimation result, but it required the injec-
tion of an additional probing signal [24].

In this paper, we propose a more robust online estimation
method for the power system inertia constant under normal
operating conditions. Compared to the conventional methods

based on transient test, probing and etc., the proposed method
can achieve a precise inertia constant estimation without any
disturbance event and probing injection, and can provide the
tracking trajectory of the inertia constant in real-time. To our
knowledge, it is the first work to track the inertia constant
under normal operating conditions.

FIGURE 1. Contributions of the study to inertia estimation.

In relation to the existing work on inertia estimation, the
contributions of this study are clarified in Fig. 1 and sum-
marized as follows: 1) it provides a more stable and precise
solution to identify power system inertia constant using ambi-
ent signals; 2) it realizes the estimation of inertia constant at
different hierarchies (individual generator, area and the whole
system) under normal operating conditions; 3) it realizes the
real-time online tracking of inertia constant in the time scales
of seconds under normal operating conditions, which can
timely provide important information for stable operation of
the power system.

The remainder of the paper is organized as follows: section
II provides the theoretical fundamentals about power system
inertia; section III introduces the proposed inertia constant
online estimation method; section IV presents simulation
results in the IEEE 39-bus system to verify the feasibility of
the proposed method; section V concludes the paper.

II. THEORETICAL FUNDAMENTALS
A. INERTIAL RESPONSE AND INERTIA CONSTANT
After a disturbance, the frequency response of a traditional
power system will sequentially go through three stages:
the inertial response, the primary response and the sec-
ondary response [13]. During the inertial response, the rotat-
ing kinetic energy stored in the synchronous generators is
released spontaneously to maintain the power balance, thus
reducing the rate of change of frequency (RoCoF).

The rotational kinetic energy of a synchronous generator
is usually normalized to an inertia constant, which is defined
as the ratio of the stored rotational kinetic energy at the
rated rotating speed to the rated capacity of the synchronous
generator [1], namely:

Hi =
Ei
Si

(1)
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where Hi is the inertia constant of generator i, Ei is the rota-
tional kinetic energy of generator i and Si is the rated capacity
of generator i. Physically, Hi represents the time duration to
supply energy for the demand that equals to the rated capacity
of the generator, without any additional mechanical input.

In a power-electronics-dominated power system, the
converter-interfaced RESs are initially inertia-free and the
system frequency response does not have clear three-stages.
However, virtual inertial response can be obtained with
control of electrical converters, then converter-interfaced
RESs can provide equivalent inertia for the power sys-
tem. Besides, the dynamics of inertial response provided by
converter-interfaced RESs can be described by a first-order
differential equation [25], [26], which is similar to the swing
equation of the synchronous generator. Namely, the iner-
tial response of converter-interfaced RESs is mathematically
equivalent to that of the synchronous generators [27]. There-
fore, when estimating the equivalent inertia constant of the
converter-interfaced RESs, it is reasonable to regard them
as the equivalent synchronous generators and the proposed
estimation method can be employed.

Further, in a multimachine power system, if we consider
the other inertia contributors as the equivalent synchronous
generators, then the equivalent inertia constant of the entire
power system can be calculated as follows:

Hsys =
1
Ssys

N∑
i=1

HiSi (2)

where Hsys is the equivalent inertia constant of the system,
Ssys is the rated capacity of the system and N is the number
of generators.

B. SWING EQUATION
The dynamics between active power and frequency of a
synchronous generator in a short time frame after a power
mismatch can be modeled by the swing equation. For
synchronous generator i, considering the damping effects,
the swing equation can be written as [1]

ḟr,i =
1
2Hi

(Pm,i − Pe,i − Di1fr,i) (3)

where Pm,i and Pe,i are the mechanical power (in p.u.) and
the electrical power (in p.u.) of generator i, respectively;
fr,i is the rotor electrical frequency (in p.u.) of generator i; and
Di is the damping coefficient of generator i. Physically, when
suffering a power mismatch, the RoCoF of the synchronous
generator is constrained by the inertia constant and the damp-
ing coefficient in a short time frame, thus the frequency of the
generator cannot change suddenly and the frequency stability
can be improved.

As an approximation, the dynamic behavior of a certain
area or the system can be represented as an equivalent syn-
chronous generator j, which leads to the aggregated swing
equation as follows:

ḟj =
1
2Hj

(Pm,j − Pe,j − Dj1fj) (4)

where Pm,j and Pe,j denotes the total mechanical power and
the total electrical power of the area or the system (in p.u.),
respectively; fj denotes the aggregated frequency of the area
or the system (in p.u.); Hj denotes the equivalent inertia
constant of the area or the system; and Dj denotes the total
damping coefficient of the area or the system. The theoretical
value of Hj can be calculated using (2).

Under normal operating conditions, all the variables in
(3) vary around the steady-state operating point. Therefore,
formula (3) can be written as the incremental formulation
around the steady-state operating point as follows:

1ḟr,i =
1
2Hi

(1Pm,i −1Pe,i − Di1fr,i) (5)

Assuming 1Pm,i to be zero and taking the Laplace trans-
form on both sides of (5), we can reformulate the swing
equation as a first-order transfer function:

Gi(s) =
1fr,i(s)
1Pe,i(s)

≈ −
1

2His+ Di
(6)

where1fr,i represents the rotor electrical frequency deviation
of generator i, 1Pe,i represents the electrical power devi-
ation of generator i, and Gi(s) (s is the Laplace operator)
is the transfer function from 1Pe,i to 1fr,i, which is char-
acterized by Hi and Di. Besides, the transfer function from
1Pe,j to 1fj is similar to that in (6), which is characterized
by Hj and Dj.

III. METHODOLOGY
The methodology proposed in this paper is for power system
inertia constant real-time online estimation under normal
operating conditions, which is shown in Fig.2. The key pro-
cedures include signal selection and preprocessing, system
identification, inertia constant extraction and inertia constant
tracking. All the key procedures can be realized automati-
cally with low computational burden, and their details are
expanded in the following subsections.

A. SIGNAL SELECTION AND PREPROCESSING
According to section II-B, the dynamic model of genera-
tor i can be identified using electrical power Pe,i as the input
and rotor electrical frequency fr,i as the output. However,
Pe,i and fr,i in the real power system are difficult to measure.
As a substitute, Pe,i and fr,i can be approximated by the
active power output Pi and the frequency fi at the generator
connection bus, respectively. In practice, Pi and fi can be
measured by PMUs installed at the generator connection bus.
Therefore, we can identify the dynamic model of generator i
using active power output Pi as the input and bus frequency
fi as the output. Namely, the following equation holds:

Gi(s) ≈
1fi(s)
1Pi(s)

≈ −
1

2His+ Di
(7)

Additionally, it is possible to identify the dynamic model
of a certain area (or the system) using the total active power
output and the aggregated frequency of the area (or the sys-
tem) as input and output, respectively. It would be simple
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FIGURE 2. Flow chart of the proposed methodology.

to obtain the total active power output by summing up all
active power outputs in the area (or the system). To aggregate
the frequency, however, the center of the inertia frequency is
commonly used, which is an average frequency weighted by
the inertia of each node and cannot be measured directly [23].

Here we propose a simplified aggregated frequency to
represent the center of inertia frequency. The frequency of
the area (or the system) is evaluated by a weighted average of
the measured frequencies as follows:

fj =

∑i=Nj
i=1 wifi∑i=Nj
i=1 wi

(8)

where fi denotes the frequency at the generator connection
bus, and Nj denotes the number of online generators in the
area (or the system). Here, the weights wi are determined
based on the following consideration: the larger the inertia
constant of generator i, the smaller the variations of the bus
frequency fi under normal operating conditions. Therefore,
the weights wi are defined as the inverse of the variance of
bus frequency fi, namely, wi = 1/var(fi).
Under normal operating conditions, the ambient data mea-

sured by PMUs are commonly polluted with noise, so signal
preprocessing is a necessary procedure to improve identifica-
tion efficiency and accuracy before running an identification
algorithm [28], [29]. First, all the signals are converted into
per unit values by dividing their base values. Then, all the
signals are detrended by removing their mean values and pre-
filtered using a noncausal Butterworth low-pass filter. As the
typical values forHi are in the range of 2-10 s [1], a noncausal
Butterworth low-pass filter with a 0.5 Hz cut-off frequency
is suitable to attenuate the higher frequency components that

can impair the inertia constant estimation. Finally, the signals
are downsampled to the range of 5-10 Hz to avoid the numer-
ical problems when running the identification algorithm.

B. SYSTEM IDENTIFICATION
Generally, the power system is nonlinear. However, under
normal operating conditions, the disturbance to the power
system is small, so the nonlinear power system can be approx-
imated by a linear state space model around the steady-state
operating point. An nth other multi-input-multi-output state
space model can be described as follows:

xk+1 = Axk + Buk + ωk

yk = Cxk + Duk + vk (9)

where xk ∈ Rn is the state vector; uk ∈ Rm is the input
vector; yk ∈ Rl is the output vector; and A∈ Rn×n, B∈ Rn×m,
C∈ Rl×n, and D∈ Rl×m are system matrixes to be identified.
Additionally, ωk and νk denote random sequences of process
noises and measurement noises, respectively.

Subspace identificationmethods are effective algorithms to
identify the state space model with ambient data and can be
implemented in different ways [30]. As a widely used algo-
rithm in subspace identification [28], the N4SID (Numerical
algorithm for Subspace State Space System IDentification)
algorithm is used in this paper. Themain feature of the N4SID
algorithm is to calculate matrix0k through oblique projection
as follows:

0k =

(
Y f |

[
Up
Yp

])
/U f (10)

where / denotes the oblique projection. Then, singular value
decomposition (SVD) is applied on 0k to determine the order
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of the identified model. Specifically, the order of the identi-
fied model is equal to the number of the dominant singular
values of matrix 0k . The SVD can be partitioned into the
following form:

W10kW2 =
[
U1 U2

] [ S1 0
0 S2

] [
VT

1
VT

2

]
≈ U1S1VT

1

(11)

whereW1 andW2 are the identity weighing matrixes. In (11),
the insignificant singular values are neglected by remov-
ing S2 as the dominant singular values determine the main
dynamics of the system. Finally, the system matrixes A, B, C
and D can be obtained by solving the linear equations. Read-
ers can refer to [28] for the details of the N4SID algorithm.

Generally, the order of the real system is rather high
as it contains many complicated control systems. However,
a model with a lower order is identified in this part. Though
the order of the identified model is lower than the order of
the real power system, it is accurate enough to capture the
dynamics of the inertial response. The N4SID algorithm can
search the best order for the identified model automatically
after setting a range of orders from nmin to nmax. Empirically,
nmin can be set as 1 and nmax can be set as 10 for inertia
constant estimation.

After running the identification algorithm, the reliability
of the identified model should be verified by model cross-
validation. The model cross-validation can be performed by
comparing the validated output ŷ(t) and the original output
y(t). To evaluate the reliability of the identified model quan-
titatively, the fitting ratio (FR) between the validated output
ŷ(t) and original output y(t) is defined as follows:

FR =

(
1−

∑N
t=1 (ŷ(t)− y(t))

2∑N
t=1 y(t)2

)
× 100% (12)

where N is the number of samples.

C. INERTIA CONSTANT EXTRACTION
Theoretically, the state space model includes the inertia con-
stant but as an implicit value, so further analysis should be
employed for the identified model. A direct way is to extract
the inertia constant from the model itself in the frequency
domain after some transformation. First, the state space
model can be transformed into a transfer function from 1Pi
to 1fi. Then, the transfer function is reduced to a first order
inertia function the same as (7) and finally, the inertia constant
Hi is estimated together with Di. However, large error may
be introduced during the order reduction process, leading to
inaccurate estimation of the inertia constant. For this reason,
we propose a method to extract the inertia constant from the
step response of the identified model in the time domain.

According to section III-B, the real power system can be
approximated by a linear model and the model is reliable if
the model cross-validation performs well. In other words, the
identified model can be regarded as the real power system
model to some extent. In this perspective, when a certain

disturbance is applied to the identified model, the disturbance
source can be regarded as the active power deviation 1Pi
and the corresponding response can be regarded as the bus
frequency deviation 1fi.

If we disturb Gi(s) with an unit step signal, namely,1Pi =
−ε(t) (ε(t) is the unit step function), then1fi can be expressed
as (13) in Laplace domain.

1fi(s) =
1

2His+ Di

1
s

(13)

The equation can be solved directly and be written as
follows in the time domain:

1fi(t) =
1
Di

(1− e−
Di
2Hi

t ) (14)

Then the slope of the unit step response at t = 0 can be
calculated as:

1ḟi |t=0 =
1
2Hi

(15)

According to (15), the inertia constant Hi is determined by
the initial RoCoF1ḟi |t=0 , namely the initial slope of the unit
step response of Gi(s). Therefore, we can disturb the iden-
tified model with a unit step signal and calculate the initial
slope of the corresponding response as 1ḟi |t=0 . The prob-
lem turns into how to estimate 1ḟi |t=0 after the disturbance
as accurate as possible. As the inertial response activates
immediately after the disturbance and lasts a short time,
we recommend calculating 1ḟi |t=0 with a 500 ms sample-
by-sample sliding window1 over 1-2 s period [13] from the
unit step response of the identified model. For power systems
of various sizes, the data length of the unit step response for
the 1ḟi |t=0 calculation can be adjusted properly according
to the dynamics of the systems. During each sliding window,
1ḟi |t=0 is estimated as the slope of a linear fit to the response.
The maximum slope is then taken to represent the 1ḟi |t=0
during the inertial response period following the disturbance.

Note that, the discrete time identified model should be
converted into continuous time model before evaluating step
response. Then, the continuous timemodel should be checked
for stability in s-domain, namely, the real part of poles should
be less than zero. The functions d2c, step, polyfit inMATLAB
can be used in this part for inertia constant extraction.

The proposed RoCoF calculation method is also applicable
for the event data of real power systems. In other words,
the inertia constant can be estimated from the event data
based on the proposed RoCoF calculation method and the
swing equation. In this case, the event data can be treated as
a complementary of ambient data.

D. INERTIA CONSTANT TRACKING
In this part, slidingwindow2 method and exponential smooth-
ing method are used to update the estimated results in real-
time, thus realizing the online tracking of the inertia constant.

1,2 The sliding windows in these two parts are different. The former is for
RoCoF calculation, and the latter is for inertia constant tracking.
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For the sliding window method, a fixed size time window
is used to estimate the inertia constant, and the window is
gradually updated for the next estimation. The performance
of the sliding windowmethod is dependent on both the choice
of sliding window length and the estimation refresh rate.

Generally, the estimation accuracy increases with sliding
window length. However, no estimates are available during
the first sliding window, and the time delay of the first esti-
mation result can be reduced with a shorter sliding window
length. The estimation refresh rate determines how fast a
new estimation should be done. Though a faster refresh rate
makes the estimator more responsive for real-time estimation
as well as tracks change of inertia constant better, it increases
computational burden, thus leading to a longer execution
time.

Though the inertia constant extracted from the identified
models can be updated in real-time, there may be a few
low FR models that introduce inaccurate estimates, leading
to large fluctuations of the inertia constant. To smooth the
estimates from the lowFRmodels, the exponential smoothing
method was used, whose original form is defined as:

νt = αθt + (1− α)νt−1 (16)

where νt and νt−1 are the smoothing value at time t and
time t − 1, respectively; θt is the actual value at time t; and α
is the smoothing constant, ranging from 0 to 1.

In addition, the inertia constant extracted from the unstable
identified model is far from the real value, which should be
detected and removed. In this paper, we replace the abnormal
estimates from the unstable identified model at time t with
the estimates at time t − 1.

Combining the methods mentioned above, the inertia con-
stant can be updated as follows:

Ht =

{
µkt ht + (1− µkt )Ht−1, if stable
Ht−1, if unstable

(17)

whereHt andHt−1 are the smoothing value of inertia constant
at time t and time t−1, respectively; ht is the inertia constant
extracted from the identified model at time t; µt is the fitting
coefficient at time t , which is equal to FR divided by 100;
and k is the exponent, which can be set from 20 to 80 to get
a good smoothing effect.

IV. CASE STUDY
A. SYSTEM BACKGROUND
The proposed method was tested in the IEEE 39-bus system,
which is a simplified model of high voltage transmission
system in the northeast of the USA (New England area). The
system consists of 10 generators, 39 buses, 19 loads, 34 lines
and 12 transformers. The rated frequency is 60 Hz and the
main voltage level is 345 kV. Generator 1 is the equivalent
generator for the external power grid, and generator 2 is the
balance generator. Automatic voltage regulators and gover-
nors are used for generator 2-10. The time domain simula-
tions are carried out using Digsilent/ Powerfactory software.
The single line diagram of the test system is shown in Fig. 3.

FIGURE 3. Single line diagram of the IEEE 39-bus system [31].

B. ONLINE INERTIA CONSTANT ESTIMATION
In this part, the inertia constant estimation accuracy of the
proposed method is validated in the widely used IEEE 39-bus
system mentioned above. All 19 loads in the 39-bus system
are injected with Gaussian noise filtered by a low-pass filter
with a cut-off frequency of 5 Hz, thus simulating the small
random load fluctuations and other related small variations
of real power systems during normal operating conditions.
Then, the inertia constant of all the individual generators as
well as the equivalent inertia constant of both the areas and
the whole system is estimated using the methods introduced
in section III-A to C.

1) ONLINE INERTIA CONSTANT ESTIMATION OF THE
INDIVIDUAL GENERATOR
The experiment of a single estimation can be carried out with
the following procedures:
Step 1: The bus frequency fi at the generator connection

bus and the active power output Pi are measured by PMUs.
The length of the measurements is 200 s and the sampling
rate is 100 Hz. The first 100 s signals are used for model
identification, and the last 100 s signals are used for model
cross-validation.
Step 2: Data preprocessing is employed to the signals.

The bus frequency fi and the active power output Pi are
converted into per unit values by dividing their base values
60 Hz and 100 MW, respectively; the trend is removed; the
high-frequency components are filtered using a noncausal
low-pass filter with a cut-off frequency of 0.5 Hz; and the
sampling rate is decreased from 100 Hz to 5 Hz to avoid
numerical unstable problems.

Fig. 4 shows the preprocessed active power and bus fre-
quency of generator 2. The fluctuations of both the active
power and the bus frequency under normal operating condi-
tions is rather small. The preprocessedmeasurements of other
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FIGURE 4. Preprocessed measurements of generator 2.

generators are not provided here since they are similar to that
in Fig. 4.
Step 3: With the processed active power Pi and bus

frequency fi, the state space model with Pi as input and
fi as output is identified using N4SID. Then the model
cross-validation is carried out to evaluate the reliability of the
identified model.

FIGURE 5. Model cross-validation result of generator 2.

Fig. 5 shows the model cross-validation result of genera-
tor 2. The model cross-validation results of other generators
are not provided here since they are similar to that in Fig. 5.
It indicates a reliable model is identified as the validated
output fits the original output well.
Step 4: The inertia constant of the generator is extracted

from the identified model using the method proposed in
section III-C. The identified model is disturbed with a unit
step signal; the unit step response of the identified model is
collected; the initial RoCoF is calculated from the unit step
response of the identified model; and the inertia constant is
extracted using (15).

Fig. 6 shows the unit step response of the identified model
of generator 2 as well as the calculation of initial RoCoF

FIGURE 6. Calculation of the initial RoCoF during inertial response.

TABLE 1. Estimated inertia constant of all generators.

during inertial response, where the first 0.5 s of the result is
enlarged. Table 1 shows the detailed results of the inertia con-
stant estimation with a rated apparent power (Sb) of 100 MW.
In Table 1, the estimated inertia constant (Hest ) is very close
to the real inertia constant (Href ), and the largest relative error
for the estimated inertia constant (Hest ) is below 5%, thus the
feasibility of the proposedmethod to estimate inertia constant
of individual generator is verified.

Generally, the results from a single estimation are uncer-
tain. To evaluate the accuracy of the proposed method and
to further reduce the relative error by averaging the results
frommultiple estimations, the sliding windowmethod is used
to obtain various estimated results from one measurement
period. In our simulations, a 10-minute measurement with a
window length of 200 s and a refresh rate of 1 s is used; in
total, 401 inertia constant estimations are carried out. For each
estimation, steps 1-4 are employed sequentially; then, all the
estimated results are obtained. After all of the estimations are
completed, the results from the identified model with an FR
above 95% are selected for statistical analysis, which means
the point estimation and the 95% confidence interval (CI)
estimation are carried out.

Fig. 7 shows the normal distribution behavior of the esti-
mated inertia constant (Hest ) of generator 2. It can see that
106 inertia constant estimates are selected for statistical anal-
ysis. The distribution of the estimated inertia constant from
other generators is not provided here due to the limited space.
Table 2 shows the statistical analysis results of the estimated
inertia constant. In Table 2, we can see that the average of the
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TABLE 2. Statistical analysis results of the estimated inertia constant.

FIGURE 7. Distribution of the estimated inertia constant of generator 2.

estimated inertia constant (Havg) is nearly the same as the real
inertia constant (Href ), and all the real inertia constant (Href )
values lie in the 95% CI. The variance of the estimated inertia
constant (ρH ) is rather small, meaning that the estimated
values (Hest ) fluctuate around the real values (Href ) in a
small range. Further, the relative error of all the estimated
inertia constants is approximately 2%, which is less than the
results of a single estimation, indicating sufficiently good
performance of the proposed method.

2) ONLINE EQUIVALENT INERTIA CONSTANT ESTIMATION
OF THE AREA AND THE WHOLE SYSTEM
Considering the coherence of the generators after a large
disturbance, the 39-bus system can be divided into 4 areas,
as shown in Fig. 2 [32]. Then, the equivalent inertia constant
of the area and the whole system is estimated following
steps 1 to 4. Note that the equivalent inertia constant of the
area and the whole system is estimated by summing the active
power outputs and aggregating the bus frequencies.

To evaluate the accuracy of the developed method and to
further reduce the relative error, the sliding window method
is used to obtain various estimates from one measurement
period. In our simulations, a 10-minute measurement with
a window length of 200 s and a refresh rate of 1 s is
used; in total, 401 inertia constant estimations are carried
out. In each estimation, steps 1 to 4 mentioned above are
employed sequentially. After all of the estimations are com-
pleted, the results from the identifiedmodel with an FR above
95% are selected for statistical analysis.

FIGURE 8. Distribution of the estimated inertia constant of area 2.

Fig. 8 shows the normal distribution behavior of the esti-
mated inertia constant (Hest ) of area 2. It can see that 258 iner-
tia constant estimates are selected for statistical analysis. The
distribution of the estimates from other areas is not shown
here because of space considerations. Table 3 shows the
statistical analysis results for the estimations. In Table 3,
we can find out that the average of the estimated inertia
constant (Havg) is nearly the same as the real inertia con-
stant (Href ), and all of the real inertia constant (Href ) values
are in 95% CI. The variance of the estimated inertia con-
stant (ρH ) is small, indicating the estimated values (Hest )
narrowly fluctuate around the real values (Href ). Further,
the relative errors of all the estimated values are below 5%,
thus verifying the effectiveness of the proposed method for
estimating the equivalent inertia constant of the area or the
whole system.

3) COMPARISON WITH THE DISTURBANCE DATA METHOD
The disturbance data method in [13] is carried out to compare
with the method proposed in this paper.

Step 1: The active power of Load 15 is increased from
320 MW to 1820MW suddenly, resulting in an active power
deficiency in the system. In this case, the active power imbal-
ance 1P is equal to 15 (in p.u.).

Step 2: The transient frequency following this event is
measured. A five-order low pass Butterworth filter with a
cutoff frequency of 0.5 Hz is used to isolate the dominant
system inertial response. The processed transient frequency
is shown in Fig. 9.
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TABLE 3. Statistical analysis results of the estimated inertia constant.

FIGURE 9. Preprocessed transient frequency measurement.

Step 3: The RoCoF is calculated using a 500-ms sample-
by-sample sliding window, over a 2 s period following the
event. The maximum value is then taken to represent the
RoCoF following the event before the primary frequency
response starts to take effect.

Step 4: With the method in [13], the equivalent inertia
constant of the whole system is estimated as 809.98 s. The
estimate value is close to the real value of 782.7 s and the
relative error is 3.49%.

Besides, the relative error of the estimated inertia constant
from the disturbance data method and that from the method
proposed in this paper are both below 5%, thus verifying the
effectiveness of the proposed method further.

C. ONLINE INERTIA CONSTANT TRACKING
In this part, the inertia constant online tracking capability of
the proposed method is validated in the IEEE 39-bus system.
Here, each synchronous generator of the 39-bus system is
regarded as an equivalent generator, which is aggregated by
all the generators of a certain area. The inertia constant of
the synchronous generator of the 39-bus system is changed to
simulate the time-varying equivalent inertia constant caused
by the switching of the generators in the area. Considering
a measurement length of 120 min, the inertia constant of all
generators remains atH1 during the first 40min, then changes
to H2 and remains there from 40 to 80 min. The inertia
constant stays at H3 during the last 40 min. H1, H2 and H3
can be regarded as the inertia constant vectors here that repre-
sent the inertia constant of all generators in different periods.

TABLE 4. Inertia constant of all generators in different periods.

Table 4 shows the inertia constant of all generators in different
periods.

All the loads in IEEE 39-bus system are modeled to be
random, the same as section IV-B. Then, the inertia constant
of all generators in the 39-bus system is tracked using the
methods introduced in section III-A to D. The active power
output Pi and bus frequency fi with a 120-min length are
measured by PMUs. The sliding window method with a
window length of 100 s and a refresh rate of 1 s is employed.
For each sliding window, steps 2-4 in section IV-B-1) are
employed sequentially and then, the estimates are smoothed
using the exponential smoothing method in (17). Once the
measurements from the slidingwindow are obtained, the iner-
tia constant will be estimated immediately. The execution
time of a single estimation is less than 1 s, which means that
the inertia constant can be updated before new samples are
completely collected, leading to real-time online tracking of
the inertia constant.

FIGURE 10. Inertia constant tracking trajectory of generator 7.

Inertia constant tracking trajectories of generator 7 and
generator 8 are shown in Fig. 10 and Fig. 11, respectively.
The inertia constant tracking trajectories of other generators
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FIGURE 11. Inertia constant tracking trajectory of generator 8.

are not provided here for the limited space. Both Fig. 10 and
Fig. 11 show that the inertia constant tracking trajectories
fluctuate around the reference trajectories in a small range,
meaning that the inertia constant can be tracked accurately in
real-time using the proposed method.

According to section III-D, the execution time of the pro-
cedures depends on the choice of sliding window length and
estimation refresh rate. Table 5 shows the execution time for
different settings of sliding window length and refresh rate
with a 120-min measurement. The simulations are carried out
in a regular office laptop with Inter(R) Core(TM) i7-7700HQ
and CPU at 2.80 GHz.

TABLE 5. Execution time for different settings.

The results of the first four settings show that the execution
time is inversely proportional to the refresh rate as fewer
estimations are done with a slower refresh rate. The execution
time of the fifth setting is comparable to the execution time
of the first setting, indicating that a larger sliding window
length will increase the computational burden. Addition-
ally, processing onemeasurement period takes approximately
6.22-31.36% of its length using the laptop introduced above.
On average, it takes 3.73-18.81 s to analyze 1 min of the mea-
surements. In addition, a sliding window length of 100-200 s
with a refresh rate of 1-2 s is responsive enough to obtain
reliably accurate results in our simulations.

For various power systems, the sliding window length can
be adjusted properly until an acceptable dynamic model can
be identified and the faster refresh rated can be determined
to track the inertia constant better using a more powerful
computer. All the analyses above confirm that the proposed
method is suitable for power system inertia constant real-time
online tracking.

V. CONCLUSION
This paper proposed an online estimation method for power
system inertia constant under normal operating conditions.

First, the dynamic model between active power output and
bus frequency measured by PMUs was identified using the
subspace identification method. Then, the inertia constant
was extracted from the unit step response of the identified
model in the time domain. Finally, the slidingwindowmethod
and the exponential smoothing method were used to update
the inertia constant in real-time.

The proposed method was tested in the IEEE 39-bus sys-
tem. The results confirmed that different hierarchical power
system inertia constant (individual generator, area and the
whole system) could be estimated with high accuracy using
ambient data, which could overcome the disadvantages of the
disturbance data methods. Moreover, by using the proposed
method, the inertia constant could be updated on a time scale
of seconds, and the inertia constant tracking trajectories could
also be provided in real-time.
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