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ABSTRACT This paper presents an analysis of the appropriate size and installation position of a battery
energy storage system (BESS) for reducing reverse power flow (RPF). The system focused on photovoltaic
(PV) system power plants. The RPF from the distribution system into the transmission systems impacts the
power system due to the increased penetration of the PV system, which produces more power than load.
The analysis was divided into three parts: 1) Analysis of the initial load and capacity of the PV power plant;
2) Analysis of the initial load and the load when the capacity of the PV power plant is increased; 3) Analysis
of the increased load and capacity of the PV power plant. The stability of the system for each position of the
BESS guided the analysis of the reduction of the RPF according to two criteria: reducing the RPF directly
and smoothing the distribution load curve. The analysis of the appropriate installation position of the BESS
was compared at three positions: 1) at a 115-kV bus; 2) at a 22-kV bus; 3) at a PV power plant. The results
of this research showed that the BESS can reduce the RPF and increase the smoothing of the distribution
load curve. It can also reduce energy loss and maximum power consumption. However, the appropriate
installation position of the BESS was in the PV power plant, because this reduced the energy loss, power
fluctuations and electricity production more than installing the BESS at a 115-kV bus or a 22-kV bus.

INDEX TERMS Battery energy storage system (BESS), energy storage system (ESS), photovoltaic system
(PV), reverse power flow (RPF), small power producers (SPP), very small power producers (VSPP).

NOMENCLATURE
CrBESS Estimated cost of batteries (Baht/kWh)
EBESS Total BESS energy capacity (MWh)
PBESS_Charge Charge power (MW)
PBESS_Discharge Discharge power (MW)
PBESS_Rate Power rating of BESS (MW)
PF . Power factor
PLoad Load demand (MW)
PLoad_PV Load demand with PV system (MW)
PPV Power of a PV generator (MW)
PTarget Power target (MW)
RgBESS Revenue gained from installation the

BESS (million Baht)
STR Power rating of the transformer (MVA)
STR Power rating of the transformer (MVA)
T B Lifetime of the battery (years)

The associate editor coordinating the review of this manuscript and

approving it for publication was Ning Kang .

VMax Maximum voltage (V)
Vmin Minimum voltage (V)
V PCC Voltage at the PCC (p.u.)
ηB Efficiency of the battery (%)
ηTR Efficiency of the transformer (%)
1t Period of the data change: 15 min.

I. INTRODUCTION
At present, the production of energy from renewable
resources in Thailand is increasing because the government
has announced several policies to promote the PV system
sector. As a result, the number of VSPPs has also increased.
For example, a PV system, called a solar farm or PV
power plant, can produce electricity for sale only during the
daytime, or from approximately 06.00 hrs until 18.30 hrs,
which is not enough to control the power flow in 115-kV and
22-kV systems. This results in the PV power plant producing
more power than the demand for electricity (load) requires
and causes RPF into the transmission system. Therefore, in
electric energy storage systems, it is important to control the
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power supply, as it has to be appropriate for the load during
each period.

Energy storage systems (ESSs) are one of the solutions
considered for reducing the number of power plants con-
structed. They can decrease investment in transmission lines,
reduce electricity production and maintain the stability of
the power system by, for example, reducing power fluctu-
ations, shifting peak load, and protecting the system from
outages [1]. They can be divided into several types: flywheels,
capacitors, superconducting magnetic storage systems, com-
pressed air energy storage systems, pumped hydro storage
systems, and BESSs [2]–[5].

BESSs have been demonstrated to be critical and
effective [6], [7]. For example, in Japan, a BESS was used
to reduce fluctuations and to perform constant output con-
trol for stabilizing the output of natural energy genera-
tors [6], [8] such as wind turbine systems [9]–[11] and
PV systems [7], [12]. Additionally, a BESS can perform
peak-load shaving in order to save costs by reducing peak
grid load [13], [14], balancing peak and off-peak electric-
ity consumption [15], and improving power reliability in
the grid, which improves the dispatch ability of renewable
energy sources and provides ancillary services to utility grid
operations [16], [17].

However, when the power produced by the PV systems
in the grid increases, the voltage of the PCC also
increases, potentially causing issues for the distribution
system [18]–[23]. Therefore, improved voltage regulation
methods have been developed to solve the overvoltage
issue [24]–[28]. Recent research has demonstrated that
BESSs could help to prevent the overvoltage caused by
high-penetration PV in distribution systems [23], [29], [30].
Additionally, when the capacity of the PV power plant
installed in the distribution system increases, RPF may cause
problems [31]–[36] and also affect the power loss [32] both
inside and outside of the transmission lines and transformers
[33]. Many researchers have proposed solutions to RPF prob-
lems, such as using a reverse power relay (RPR), which
is simple and reliable for the effective protection against
RPF [34]. Proposed cooperative control methods include heat
pump water heaters (HPWHs) to reduce RPF, increasing
the capacity of storage batteries, and engaging a static var
compensator (SVC) by using a supply and demand interface
(SDI) [35], [36]. The simulation of a controlled battery charge
from solar and wind power generation in 8-20 hrs and a
discharge in 0-8 hrs and 20-24 hrs was implemented using
MATLAB/Simulink [37]. Particle swarm optimization (PSO)
was used to find optimal distributed generation placement
(ODGP) for the reduction of RPF [38].

Therefore, ways of increasing the efficiency of BESSs
must be analyzed, such as choosing the optimal instal-
lation position of a BESS [31], the optimal size of a
BESS [13], [29], [30], [39], [40], the optimal size of a BESS
for time-of-use rates [39], [41], [42], the optimal grid voltage
control [22], the optimal use of existing methods to control

the charging and discharging processes [43]–[47], and the
BESS type [48].

This paper focuses on the analysis of the appropriate size
and installation position of a BESS for the reduction of RPF
from the distribution system into transmission systems due
to the impact of increased penetration of PV systems, which
produce more power than load. The analysis considers three
cases.

Case 1: The initial load and capacity of the PV power plant.
Case 2: The initial load with increased capacity of the PV

power plant.
Case 3: The increased load and capacity of the PV power

plant.
In each of the three cases, the analysis will consider the

standard for the voltage at the point of common coupling
(PCC), the requirements for installing a PV system in the dis-
tribution systems and the load at the highest efficiency of the
transformer [49]. The analysis of the appropriate installation
position of the BESS will consider three positions:

1) A 115-kV high-side bus in the substation.
2) A 22-kV low-side bus in the substation.
3) A PV power plant in the distribution system.
For each position, the analysis of the reduction of the

RPF will consider two criteria: the reduction of the RPF and
the smoothing of the distribution load curve. However, as a
practical benefit of this paper, there will be an estimated
cost analysis of BESSs for the Provincial Electricity Author-
ity (PEA), and the comparison will be performed using the
electricity price from the Electricity Generating Authority
of Thailand (EGAT) according to the time of use (TOU)
rate [50].

II. CASE STUDY OF A POWER SYSTEM
NETWORK MODEL
A power system network model in the DigSILENT Power
Factory program is selected and modified in this paper to
reduce the RPF into the transmission system due to the impact
of increased penetration of the PV system for the distribution
system of the PEA in Thailand.

A. ABBREVIATIONS AND ACRONYMS
The distribution model includes a fundamental distribution
system, which is shown in Figure 1. The model consists of a
power transformer (HTM). The HTM has a 115-kV high-side
bus and a 22-kV low-side bus. The HTM size is 2 units,
and its power rating is 50 MVA. In this type of connection,
the primary winding is connected at the delta point and the
secondary winding is connected at the star point, with a
neutral ground. The distribution system includes two main
buses and ten feeders. A PV power plant was installed at
each feeder. The distribution model and tools for the network
simulation used the Time Sweep function of the DigSILENT
Power Factory program to analyze the load profile. Therefore,
it can calculate the peak demand for each feeder that fol-
lows the standards of the PEA interconnection code [49]
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FIGURE 1. Single-line diagram of a radial power system model for the PEA of Thailand.

TABLE 1. Peak demand of the feeders.

given in equation (1).

PLoadMax = STRRate × η
TR
80% × PF . (1)

Table 1 shows the calculation of the peak demand for each
feeder based on the efficiency of the transformer (80% of the
MVA rating). It can be seen that in Cases 1 and 2, there is the
same peak demand for the initial load, and the peak demand
in Case 3 increases.

Figure 2 shows the load profile without the PV power plant
in the three cases; the load profile was measured from the

FIGURE 2. Load profile without the PV power plant.

measurement position (M1) in Figure 1. It was found that the
total of peak demand is 35.31 MW in Cases 1 and 2 (stable
load), and it is 72.01 MW in Case 3 (increasing load).

B. PV POWER PLANT DESCRIPTION
In this section, the capacity of the PV in the three cases is
analyzed by considering requirements for installing the PV
power plant in the distribution system. Therefore, we cal-
culate the maximum capacity of the PV for each feeder in
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TABLE 2. Maximum capacity of PV generation.

FIGURE 3. PV generation profile for all PV generation.

accordance with the PEA interconnection code [49] with
equation (2).

PPVMax = STRRate × η
TR
75% × PF . (2)

Additionally, the voltage standard (±10%) at the PCCmust
be considered because the protection system (the under- and
overvoltage relays) was set based on the voltage standard,
which can be calculated by:

Vmin
90% ≤ V

PCC
≤ VMax

110% (3)

Table 2 shows the calculated maximum capacity of PV
generation according to equation (2) that results in the highest
efficiency of the transformer (75% of the MVA rating), but
it must not be higher than the voltage standard at the PCC
according to equation (3).

The PV generation profile (Figure 3) was measured by
using the total PV generation in each case. It was found that
the maximum PV generation is 61.39 MW in Case 3 and the
minimum PV generation is 45.99 MW in Case 1.

The load profiles with PV generation in Cases 1, 2 and
3 were measured as RPF1, RPF2 and RPF3 respectively, and
the measurements were taken from the measurement position
(M1) shown in Figure 4. They can be calculated by:

PLoad_PVy,m,d,t = PLoady,m,d,t − P
PV
y,m,d,t (4)

FIGURE 4. Load profile with PV generation.

FIGURE 5. Voltage profile at the PCC.

Figure 4 shows that the RPF2 in the transmission system
has the highest overall RPF, at 52.73 MW, and RPF3 has the
smallest, at 21.47 MW.

The voltage profiles were compared with and without
the PV power plant in the distribution system (10 feeders)
shown in Figure 5. It was found that when the PV system
was installed, the voltage at the PCC increased significantly,
in which case the voltage at the PCC was not allowed to go
over the voltage standard of the PEA interconnection code
shown in equation (3).

The PV power plants were installed at each feeder in the
distribution system based on the maximum capacity of PV
generation (Table 2) shown in Figure 6.

The results for energy and power were simulated by
the time sweep function in the DigSILENT Power Factory
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FIGURE 6. Geographical diagram of the distribution system network of the PEA in Thailand. Feeders 1-10 (a-j). Location symbols (k).

TABLE 3. Results for energy and power.

program in order to analyze the appropriate size and
installation position of the BESS, as shown in Table 3.

III. ANALYSIS OF THE APPROPRIATE SIZE AND
INSTALLATION LOCATION
This section shows the analysis of the appropriate size and
installation location of the BESS in order to reduce the RPF
into the transmission systems.

A. ANALYSIS OF THE APPROPRIATE SIZE OF THE BESS
The objectives of the analysis of the appropriate size of the
BESS within the power target were determined as follows:

1) The power target for the reduction of the RPF can be
calculated by:

PTargetRPF = 0 (5)

2) The power target for the smoothing of the distribution
load curve can be calculated by:

PTargetSmooth =

t2∑
t1

(PLoad_PVy,m,d,t )

t2
(6)

Examples of the power targets for the reduction of the RPF
and the smoothing of the distribution load curve are shown
in Figures 7 and 8, respectively.

The charge power was determined in equation (6).
The charge powers for the RPF and the smoothing of the
distribution load curve are given in equations (7) and (8),
respectively.

The discharge power was determined in equation (9). The
charge power for the RPF and the smoothing of the dis-
tribution load curve are given in equations (10) and (11),
respectively.
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FIGURE 7. Examples of power targets for reduction of the RPF.

FIGURE 8. Examples of power targets for the smoothing of the
distribution load curve.

The charge and discharge power profile of the BESS in all
cases was calculated from equations (4)-(11). The reduction
of the RPF and the smoothing of the distribution load curve
were compared when the BESS was installed at the 115-kV
high-side bus in the substation, at the 22-kV low-side bus in
the substation, and in the PV power plant in the distribution
system. The results show the charge power when the electric
power is negative and the discharge power when the electric
power is positive, as shown in Figure 9.

PLoad_PVy,m,d,t ≤ (PTargetRPF ||P
Target
Smooth) (7)

PBESS_Chargey,m,d,t = PLoad_PVy,m,d,t (8)

PBESS_Chargey,m,d,t = PLoad_PVy,m,d,t − P
Target
Smooth (9)

PLoad_PVy,m,d,t ≥ (PTargetRPF ||P
Target
Smooth) (10)

PBESS_Dischargey,m,d,t =

t2∑
t1

(−PBESS_Chargey,m,d,t )

T − (t2− t1)
(11)

PBESS_Dischargey,m,d,t = PLoad_PVy,m,d,t − P
Target
Smooth (12)

Therefore, the analysis of the appropriate size of the
BESS is based on the determination of 2 characteristics:

FIGURE 9. Charge and discharge power profiles of the BESS for the
reduction of the RPF (a) and the smoothing of the distribution
load curve (b).

1) the charging energy of the BESS; 2) the power rating of
the BESS. The charging energy of the BESSwas calculated as
the sum of the charge powers or discharge powers multiplied
by the change in time (15 minutes or 0.25 hours). It can be
calculated as in equations (12) and (13). Moreover, the power
rating of the BESS was determined by the maximum of
charge power or discharge as shown in equation (14).

EBESS =
t2∑
t1

(
PBESS_Chargey,m,d,t

)
×1t (13)

EBESS =
t2∑
t1

(
PBESS_Dischargey,m,d,t

)
×1t (14)

PBESS_Rate ≥ (PBESS_ChargeMAX ||PBESS_DischargeMAX ) (15)

The charging energy and power rating of the BESS for
the reduction of the RPF and the smoothing of the distribu-
tion load curve are shown in Table 4. Next, we analyze the
appropriate installation location of the BESS.

Figure 10 shows the load profile with the BESS in all cases,
which was measured from the measurement position (M1)
in Figure 1. It was found that the BESS reduced the RPF and
increased the smoothing of the distribution load curve. It can
also reduce the maximum power consumption rate.

B. APPROPRIATE INSTALLATION LOCATION OF THE BESS
This section shows an analysis of the optimal location of
the BESS based on the results for all BESS installation
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TABLE 4. Charging energy and power rating of the BESS.

FIGURE 10. Load profile with the BESS for the reduction of the reverse
power flow (a) and the smoothing of the distribution load curve (b).

locations that could reduce the energy loss the most, as shown
in Table 5 and Figure 11.

Table 5 shows the energy loss in the distribution system
before and after the BESS is installed.

Figure 11 shows the power loss profile with the BESS
for the reduction of the RPF (a) and the smoothing of the
distribution load curve (b). It was found that the energy loss in
Case 3 is more than that in Cases 1 and 2, and that installing
the BESS in the PV power plant can reduce energy losses
more than installing the BESS at the 115-kV BUS or 22-kV
BUS in the substation.

Therefore, the best BESS installation location is the PV
power plant, since this reduces the energy loss the most,
especially by smoothing the distribution load curve.

TABLE 5. Energy loss in the distribution system.

FIGURE 11. Power loss profile with the BESS for the reduction of reverse
power flow (a) and the smoothing of the distribution load curve (b).

IV. REASONABLE COST ANALYSIS
This section is an analysis of the estimated cost of the BESS
for the investment forecast of BESS installation at the 22-kV
BUS in the substation of the PEA. The reason that the esti-
mated cost of the BESS has to be analyzed is that the BESS is
very expensive and may not be worth the investment required
to install it in the electrical system of Thailand.

Therefore, the analysis of the estimated cost of the BESS
can be found from the reduced energy loss by calculating the
electricity cost according to the TOU rate in the PEA system
[50] shown in Table 6 to find the revenue gained from BESS
installation, as shown in Table 7.

Table 6 shows the wholesale electricity charge for the
PEA transmission system. The prices are 3.6199 Baht/unit
(peak period) and 2.3341 Baht/unit (off-peak period), where
peak and off-peak periods are calculated from the average
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TABLE 6. Electricity cost based on the time-of-use rate in Thailand for the
PEA system.

TABLE 7. Revenue gained from BESS installation at the PV power plant
by smoothing.

TABLE 8. Four values of the battery parameter.

numbers of normal days and holidays in 1 year (365 days):
241 normal days, 104 weekend holidays and 20 royal
holidays.

Table 7 shows the reduced electrical power loss compared
to the revenue gained from the BESS installation in the PV
power plant by smoothing. In addition, installing batteries in
the PV power plant can help reduce themaximum energy loss.
If the size of the BESS increases, the energy loss decreases.
Regarding the energy efficiency of the BESS in this research,
the analysis is compared across all four types of batteries [51],
as shown in Table 8.

The estimated cost analysis of the BESS takes into account
the break-even point, the efficiency, and the lifetime of each
of the four types of batteries in Table 8, which can be
calculated with equation (15).

CrBESS =
RgBESS × T B × ηB

EBESS
(16)

In this regard, the analysis of the estimated cost of the
BESS will be performed based on the performance of the
batteries at 5 and 15 years to compare the estimated costs of
the four types of batteries, as shown in Table 9.

Table 9 shows the estimated costs of the four types of
batteries for BESS installation in the PV power plant for
the smoothing of the distribution load curve. It was found

TABLE 9. Estimated cost of batteries for BESS installation at the PV
power plant for smoothing.

that the estimated cost of the BESS must be lower than
1,440.67 Baht/kWh to break even within 15 years and must
be under 395.48 Baht/kWh to break even within 5 years.

V. CONCLUSION
This paper presents an analysis of the appropriate size and
installation position of a BESS using the DigSILENT Power
Factory program for the reduction of RPF in transmission
systems. The analysis results show that a BESS can reduce
the RPF and increase the smoothing of the distribution load
curve. It can also reduce energy loss and reduce maximum
power consumption. The power system is more stable, and
revenue is gained from the BESS installation. However,
the best installation position of the BESS is in the PV power
plant because in this position, the BESS can reduce the energy
loss, power fluctuations and electricity production more than
if it is installed at a 115-kV high-side bus (21.13% daily
reduction in energy loss) or a 22-kV low-side bus (19.09%)
in a substation. These results can aid in making the decision
to install a BESS for the reduction of RPF in transmission
systems.
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