
SPECIAL SECTION ON INTELLIGENT LOGISTICS BASED ON BIG DATA

Received May 15, 2020, accepted May 23, 2020, date of publication May 26, 2020, date of current version June 18, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2997812

A Parallel Genetic Algorithm Framework for
Transportation Planning and Logistics
Management
DMITRI I. ARKHIPOV1, DI WU 1,2, (Member, IEEE), TAO WU 3,
AND AMELIA C. REGAN1, (Member, IEEE)
1Department of Computer Science, University of California at Irvine, Irvine, CA 92697-3435, USA
2State Key Laboratory of Advanced Design and Manufacturing of Vehicle Body, Hunan University, Changsha 410082, China
3Key Laboratory of Geospatial Big Data Mining and Application, Hunan Normal University, Changsha 410081, China

Corresponding authors: Di Wu (e-mail: dwu@hnu.edu.cn) and Amelia C. Regan (e-mail: aregan@ics.uci.edu)

This work was supported in part by the University of California Transportation Center, in part by the National Natural Science Foundation
of China under Grant 61972145 and Grant 61932010, in part by the National Key Research and Development Program of China under
Grant 2019YFB1405703, in part by the Huxiang Youth Talent Program under Grant 2018RS3040, and in part by the Open Research Fund
of State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing under Grant 19I05.

ABSTRACT Small to medium sized transportation and logistics companies are usually constrained by lim-
ited computing and IT professional resources on implementing an efficient parallel metaheuristic algorithm
for planning or management solutions. In this paper we extend the standard meta-description for genetic
algorithms (GA) with a simple non-trivial parallel implementation. Our parallel GA framework is chiefly
concerned with the development of a straightforward way for engineers to modify existing genetic algorithm
implementations for real transportation and logistics problems to make use of commonly available hardware
resources without completely reworking complex, useful and usable codes. The framework presented at its
parallel base is a modification of the primitive parallelization concept, but if implemented as described it
may be gradually extended to fit the qualities of any underlying problem better (via the adaptation of the
merging and communications functions).We present our framework and computational results for a classical
transportation related combinatorial optimization problem – the traveling salesman problem with a standard
sequential genetic algorithm implementation. Our empirical analysis shows that this simple extension can
lead to considerable solution improvements. We also tested our assumptions that the framework is easily
implemented by an engineer not initially familiar with genetic algorithms to implement the framework for
another minimummultiprocessor scheduling problem. These case studies verify that our framework is better
than primitive parallelization because it gives empirically better results under equitable conditions. It also
outperforms fine grained parallelization as it is easier and faster to implement.

INDEX TERMS Parallel metaheuristics, genetic algorithm, transportation planning, logistics management.

I. INTRODUCTION
Genetic algorithms (GA) are an iterative search method
in which new answers are produced by combining two
predecessor answers and mimicking the process of natural
selection [1]. Its metaheuristic can routinely generate useful
solutions to optimization and search problems, therefore GA
has been widely used in transportation planning [2]–[5] and
logistics operations management applications and software
systems [6]–[8]. Some current relevant applications include

The associate editor coordinating the review of this manuscript and

approving it for publication was Guangdong Tian .

pavement lifecycle analysis [9], additive manufacturing [10],
accident emergency response [11] and land use planning [12].
Other frameworks for transportation analysis might bene-
fit from the addition of parallel migration implementation
in scenarios such as traffic congestion [13]–[15], vehicular
sensing [16]–[18], activity planning [19]–[21], mobility man-
agement [22]–[24], spatial-temporal modeling [25]–[27] and
others [28]–[31].

A. MOTIVATIONS
Genetic algorithm is a common tool that has been employed
in many transportation and logistics settings. However,

106506 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0001-8697-1817
https://orcid.org/0000-0003-3455-7934
https://orcid.org/0000-0001-9794-294X


D. I. Arkhipov et al.: Parallel GA Framework for Transportation Planning and Logistics Management

in reality, for small to medium sized manufacturing and
distribution companies, or transportation planning agencies
that have limited computing and IT staff resources, running
a genetic algorithm ‘‘black box’’ is usually time-consuming
and inefficient on generating reasonable results for planning
operations or scheduling of processes or logistics operations.
Since such organizations are not large enough to employ high
level programmers or engineers trained in optimization meth-
ods, they might want to improve their planning or schedul-
ing system without spending an inordinate amount of their
limited IT budget on consulting or additional personnel. Fur-
thermore, such companies might not want to ‘‘fix what is not
broke’’ and risk taking on life-cycle costs for a new software
system. Though existing GA frameworks can offer some fine-
grain parallelization for transportation planning and logistics
management, they are indeed painstakingly constructed to
achieve optimal performance for a generic GA (as discussed
in Section II). In addition, these frameworks often require
engineers to heavily modify or even completely rewrite an
already existing GA implementation.

To avoid the complexity and extra work for entry level
engineer to run GA for reasonable transportation and logistics
results, an inexpensive GA framework is needed to parallelize
an existing genetic algorithm more intelligently than prim-
itive parallelization, but with less effort than recoding in a
parallel GA framework [32]. Our system provides a way for
any reasonably well trained computer science or engineering
student or IT professional to extend a standard sequential
genetic algorithm solver in a simple, yet non-trivial parallel
framework that does not require extensive re-working of the
system nor extensive understanding and testing of problem
parameters.

B. OUR APPROACH
Many good parallel meta-heuristics and specifically parallel
genetic algorithms have been explored by other researchers.
Our work is chiefly concerned with the development of
a straightforward way for engineers to modify existing
genetic algorithm implementations for real industrial or sci-
entific problems to make use of commonly available hard-
ware or cloud-based resources [33] without completely
reworking complex, useful and useable codes. Given limited
computing resources in most small to medium sized trans-
portation or logistics companies, we propose a simple but
non-trivial parallel implementation of genetic algorithm for
those companies to achieve inexpensive and efficient trans-
portation planning and logistic management solutions.

Specifically, we extend the standard meta-description of a
genetic algorithm to a parallel environment by assuming that
the algorithm is run on n separate but connected processes
on an n-core multiprocessor machine. We introduce a func-
tional framework consisting of two functions. One of these
functions encodes a communications function indicating the
time intervals at which sequential genetic algorithm solvers
running on independent processors will communicate, and
which sets of such solvers will intercommunicate with one-

another at such time intervals. The second functions encodes
a merge/synchronization policy which defines the nature of
the communications between solves which communicate.
In particular the merge/synchronization policy defines what
data is passed between processes what operations on this data
must be performed as part of the communication. Collectively
these two policies define a large subset of all possible migra-
tion policies, within this framework we implements a simple
example and evaluate it empirically.

Our functional framework is proposed for describing solu-
tion migration in a parallel genetic algorithm system. This
GA framework can improve parallel performance through
utilizing multi-core multi-processor resources [34], [35] and
increasing quality of GA solution per time unit while migrat-
ing parallel base. The framework presented at its base is a
simple modification of the primitive parallelization concept,
but if implemented as described it may be gradually extended
to fit the qualities of any underlying problem better (via the
adaptation of the merging and communications functions).
Because we extend the general meta-description of a genetic
algorithm to incorporate solution migration in an easy-to-
implement way, our parallel GA framework is simple enough
to be implemented by any competent third or fourth year com-
puter science or engineering student, or entry level engineer.

The rest of this paper is organized as follows. Section II
gives an overview of related work on parallel GA. Section III
describes our parallel GA framework. Section IV studies the
traveling salesman problem with our framework. Section V
evaluates the minimum multiprocessor scheduling problem
using our framework. Section VI concludes our paper.

II. RELATED WORK
The literature on parallel GA’s and parallel evolutionary algo-
rithms, and more generally parallel metaheuristics is vast.
We mention only a few key review papers here. For extensive
helpful discussions please see the work by Cantú-Paz and
Goldberg [36], [37]. In the language used in those and related
papers, our framework falls into a multi-deme scheme where
each of the n processors contains a deme and there are vary-
ing degrees of migration and synchronization between these.
However unlike the multi-deme scheme described in [36] we
present a framework centering around on the definition of
two functions (communication and merge) within which the
multi-deme scheme of [36] is a particular case.

When parallelizing a genetic algorithm there are two pri-
mary approaches. First, a designer who is starting from
scratch may choose to design the GA to make use of ‘‘system
parallelization’’ at a fine grained level and use a predefined
parallel genetic algorithm framework such as the grid com-
puting framework by Lim et al. [38], Cahon et al’s well
known ParadisEO (see for example [39]), or Bleuler et al’s
PISA (see for example [40]). System parallelization approach
forces the developer to conform to the constraints and inter-
faces imposed by the framework, though in the end much
greater benefits will be realized, relative to more primitive
parallelization. Pursuing such systemic methods achieves a

VOLUME 8, 2020 106507



D. I. Arkhipov et al.: Parallel GA Framework for Transportation Planning and Logistics Management

‘‘state of the art parallel genetic algorithm’’ at the cost of a
potentially significant amount of developer time.

Second, one might try ‘‘primitive parallelization’’. In this
technique n separate threads or processes are created. Each of
the n processes executes m iterations of a sequential genetic
algorithm. After these m iterations from each of the genetic
algorithm solvers, the union of the solutions is taken and then
the best, or possibly the k best solutions are selected. Pursuing
primitive parallelization achieves hardware exploitation at the
cost of an insignificant amount of developer time. However,
solutions derived through primitive parallelization are typi-
cally inferior to those achieved by systemic parallelization.

The problems associated with the first approach is that if
fine grained parallelism is used, the structure of the original
solution may not scale gracefully with changing representa-
tions of the problem. Also, fine grained parallelism is difficult
to discover, implement, and test. If a parallel GA framework
is used then one is bound by the decisions made by the
framework developers, the model of computation they use,
and the interfaces they specify. In addition, if one already
has a sequential GA developed and wishes to parallelize it
quickly, both fine grained parallelism and implementation of
a pre-defined GA framework may be too costly in terms of
developer time. Therefore, given limited computing resources
and IT professionals in most small to medium sized trans-
portation or logistics companies, a tailored implementation
of GA with primitive parallelization is more efficient for a
reasonable solution.

III. PARALLEL GA FRAMEWORK
In this work we propose an extension of the meta description
of genetic algorithms, that would allow for a convenient
process for converting an existing sequential GA, and the
problem it solves, into a parallel GA.

A. GENETIC ALGORITHMS
Genetic (and evolutionary) algorithms refer to a broad class
of heuristic algorithms that have certain characteristics in
common, which perform better in convergence and adaptabil-
ity analyses than algorithms such as article swarm, random
forests, grey wolf algorithm, particle filter. Most of those
characteristics relate to the idea that these algorithms are
intended to model the ‘‘survival of the fittest’’ mechanism of
biological evolution. Genetic algorithms demand that solu-
tions to the problem may be represented in some binary
format, that two or more such solutions can meaningfully be
merged, and that an objective function value can be evaluated
for each such solution.

The simplest meta-description for a sequential genetic
algorithm has the following steps:

1) Encoding
2) Initial Population Generation
3) Repeat until termination criteria are met

a) Evaluation

FIGURE 1. Primitive parallel base implementation.

b) Crossover
c) Mutation

4) Decoding
More detailed description of genetic and evolutionary algo-

rithmic approaches, and the applications of such approaches
can be found in Mitchell [41].

B. PRIMITIVE PARALLELIZATION OF PARALLEL BASE
The problems associated with primitive parallelization stem
from the fact that separating the parallel processes results in
less effective overall solutions. A high level description of
this approach is presented in Figure 1, where T represents a
time line, E symbolizes the terminating time of the process,
and each black line represents the parallel execution of a
genetic algorithm thread. If the populations can undergo some
limited level of mixing without significantly increasing the
complexity of the solution framework, the quality of the
solutions will typically increase. Exploring ways to leverage
this mixing is a primary purpose of this research.

Even at the seemingly trivial level described above, hap-
hazard primitive parallelization may not produce the quality
of solution expected or desired. For example, dividing a set
number M of GA generations across several independently
and concurrently running processes (say P such processes),
then choosing the best of these solutions will more often
than not result in a worse quality solution than running all
M generations on a single process (this of course assuming
no shared memory is used). One might expect that the quality
of solution generated in either way might be similar but with
a speedup factor of P, the reason why this is not so can be
seen from the experiment of setting M = P. In that case
the course of the algorithm is simply picking one of M = P
initially generated solutions and no genetic algorithm is run at
all. Cases whereP < M , exhibit a similar loss of performance
though of course less extreme. The naïve expectation is not
justified because it assumes that each run of the algorithmwill
on average perform a similar amount of work as any other run,
this is not the case.

It is clear that iterations of a GA which start with a more
robust population will produce a yet more robust population
on average. It is also clear that a population generated by
some k runs of a GA will be on average more robust than
a population generated by n runs, where n < k . The increase
in robustness of each successive generation is thus dependent
on the fitness of each previous generation, thus a simple
conversion of temporal iterations for parallel iterations is not

106508 VOLUME 8, 2020



D. I. Arkhipov et al.: Parallel GA Framework for Transportation Planning and Logistics Management

equivalent. In other terms making such a trade-off amounts
to moving towards diversification from intensification. This
effect was very prominent in our experiments quickly leading
us away from this naïve expectation.

C. MIGRATING PARALLEL BASE
We extend the meta description of a genetic algorithm given
earlier to a parallel environment by assuming that the algo-
rithm is run on n separate but connected processes on an
n-core multiprocessor machine and that these processes com-
municate with each other in the following ways: We supply
each processor with a Problem Instance Core or PIC. This
contains the problem instance of interest, an initial population
of solutions, all of the relevant genetic algorithm parameters
(population size, survival rate, elitism rate, mutation rate, etc.)
as well as any additional parameters such as switching mech-
anisms between crossover or mutation methods. Additional
parameters are sometimes encorporated by GA designers
when they wish to incorporate aditional complexity into the
crossover and mutation phases of their GA.

The populations initially generated for each PIC must of
course be distinct; this is the origin of the higher diversity in
our framework. In other words, while the other parameters of
each generated PIC (population size, mutation rate, etc.) may
be identical in each PIC generated from a problem instance,
the actual members of the population must not be identical to
those generated in another PIC. Depending on the details of
the implementation of the core genetic algorithm, additional
parameters may be passed. The PIC must contain all data
necessary for the base GA implementation to execute.

The initial parameter settings at each PIC are again depen-
dent on the details of the base GA implementation and oper-
ator experience. If for example the operator has identified
that a given parameter set works best for instances of their
problem they may choose to give such a setting to each of
the GA processes in the system set up in this framework.
If on the other hand the operator is experimentingwith several
parameter sets they may well choose to create several PICs
(one for each parameter set) and assign each PIC to a GA
solver operating within the described system. The construc-
tion of the system thus allows the operator to test alternative
parameter sets and harness the benefits of each within a single
run of the full system.

The processors then run the GA solver on these inputs
in the first time step, and then engage in a migra-
tion/synchronization phase, which is followed by iteratively
repeating step 3 (see Section III-A) in further time steps until
the overall stopping criteria are met. We show this diagram-
matically in Figures 2. Note that the precise specification
of the communications policy is fairly arbitrary. We have
selected a policy here that is simple to explain and implement,
namely, at the end of each GA run, results obtained on each
processor k are passed to processor k + 1 except for the n’th
processor the results from which are passed to processor 1.
In themost general form the only constraint for a communica-
tions policy used in the system is that each processor receives

FIGURE 2. Information flow at time step 0 (left side) and flow of
migration and synchronization (right side).

a PIC at the beginning of each time step, generally that PIC
will be a PIC resulting from the merging of 1 or more PICs
present in the system at the previous time step. These results
are then merged with the results on the receiving processor.
This merge/synchronization step is also quite general. The K
best individuals in the population are chosen to remain in the
merged PIC, where K is population size determined for the
PIC resulting from the merge operation.

We present this as a simple and implementable solution
with the understanding that experienced engineers might pre-
fer to come up with their own variation on this scheme. The
most general form of a merge/synchronization policy within
this system is simply a function which maps more than one
PICs to a single PIC. This allows the operator to implement
any parameter tuning strategy that they desire, generating
parameters for the resulting PIC from the parameters within
the input PICs. Inputs needed for parameter tuning would be
generated and maintained within each core GA and be used
by the function implementing the merge/synchronization pol-
icy at each processor, at each merge/synchronization phase.
Another component of this process that must be considered
is the periodicity or number of synchronization/migration
phases that occur per full problem execution. This is another
aspect that it is left for the operator to design, in the simplest
case and the policy chosen in this work the operator will chose
a fixed number of generations after which a synchroniza-
tion/merging phase will occur. The synchronization/merging
phase may be triggered by a dynamically satisfied condi-
tion, or as in this work may be assigned statically before the
algorithm is executed. In evaluating our approachwe examine
the quality of solution generated for a given amount of time,
while much of the work on parallel algorithms concentrates
on speed-up of the parallel approach relative to the sequential
approach we look at the difference in end solution quality for
a fixed set if iterations.

D. SOLVING LOCAL MINIMA
One common problem with heuristic approaches in general,
and GAs in particular is that they get stuck in local minima

VOLUME 8, 2020 106509



D. I. Arkhipov et al.: Parallel GA Framework for Transportation Planning and Logistics Management

and then are not able to break out of these. There are many
approaches used to address this. One involves selection strate-
gies that reduce the likelihood of super fit individuals being
constantly selected during the selection phase. Another is to
periodically add diversity by injecting randomly generated
solutions into a working population. In the case of a GA
the problem cannot be addressed by periodically injecting
randomly generated solutions into a working population. The
reason for this is that the randomly generated solutions are too
uncompetitive with the already partially evolved solutions in
the populations and they will quickly be out-competed and
killed off.

Typically a GA will ultimately get stuck at a local min-
imum because some solution or group of solutions become
so dominant that no child solutions are given a reason-
able chance to produce offspring, and if they do, these off-
spring will be similar to these dominant solutions. Techniques
such as choosing appropriate selection strategies serve to
increase the number of generations before such premature
convergence. Keeping each of the populations sequestered to
separate threads or processes, as we would in primitive paral-
lelization, can serve to preserve solution diversity. However
since the threads/processes are executing simultaneouslywith
a different randomly generated populations they are likely to
generate different solutions. The migration technique serves
to disrupt steady state populations by introducing solutions
from other steady state demes. In this paper we chose some-
what arbitrary periods for introducing this disruption, how-
ever a more rigorous approach is possible. Vishnoi [42] gives
a bound on population mixing-times under certain assump-
tions, genetic algorithm designers may use this bound to
determine periodicity of migrations in our framework.

This opens up an opportunity. If migrants cross from thread
to thread at certain time intervals then it is likely that they
will not be out-competed by the population already present
at the arriving thread. That is unless of course the migrants
start arriving too often, meaning that the genetic pool at
one process/thread is more or less identical to the pool at
another, and solutions generated by mixing these pools will
not diverge from the populations already in them. A param-
eter setting or a dynamically determined variable may deter-
mine the frequency of such migration (in our research a fixed
period was defined for each experiment). Of course since the
threads are run in parallel, each migration will necessitate
a synchronization of the threads and thus introduce a small
delay in overall execution. Results indicate that this delay is
warranted for a small number of synchronizations.

E. FRAMEWORK COMPONENTS AND WORKFLOW
The common availability of multicore machines, clustered
computers and cloud computing, and the advantage of keep-
ing distinct groups of individuals with similar levels of evo-
lution as breeding stock leads to a very general and simple
to implement framework for GAs. The components of such a
framework are 1) the initial population and initial parameter
generationmechanisms. 2) The specifics of the sequential GA

FIGURE 3. Merging phases.

implementations used in the framework. 3) A setting to stati-
cally or dynamically determine the synchronization period 4)
the communications function indicating which two PICs will
bemerged, and onwhichGA process the resulting PICwill be
run after synchronization. 5) The PIC merge function which
will map n PICs to one PIC. 6) And, finally, a termination
condition for the framework as a whole. Clearly a sequential
GA can be easily implemented in this framework. The ease
and generality of the framework allow many diverse parallel
GAs to be developed without significant code alteration to the
core sequential GAs.

Algorithm 1 Parallel GA Framework
1: procedure MigratingGA
2: P← Problem instance for original sequential GA
3: GA← The original sequential GA
4: POP[0 . . .N − 1]← GenerateNinitialpopulations
5: parfor k ← 1,N do
6: SOL[k]← GA(POP[k])
7: end parfor
8: for (i, j) ∈ DOM (f ) do
9: POP[f (i, j)]← Merge(SOL[i], SOL[j])

Algorithm 1 describes the workflow of our parallel GA
framework, where DOM (f ) indicates the domain of the com-
munication function f , i.e. the pairs of GAs that communicate
as per the communications policy. f (i, j) is dependent on the
communications function chosen, Merge(. . .) represents the
merge function mentioned earlier.

At a high level theMerge(. . .) approach is described in Fig-
ure 3, where T represents a time line, E symbolizes the
terminating time of the process, each black line represents
the parallel execution of a genetic algorithm thread, and M1
and M2 are both merge phases. As described previously in
merge phases solutions gradually migrate from one popula-
tion to another according to the communications and merging
functions.

IV. CASE STUDY I: TRAVELING SALESMAN PROBLEM
We began our evaluation by testing our framework on one of
the most often used combinatorial optimization problems in
transportation planning and logistics management, the Trav-
eling Salesman Problem (TSP) [43]. General GA and its

106510 VOLUME 8, 2020



D. I. Arkhipov et al.: Parallel GA Framework for Transportation Planning and Logistics Management

parallel algorithms have been widely used to address many
TSP variants [44]. Like our parameter choices and migra-
tion/synchronization scheme, we merely use TSP as a simple
exploratory example (a proof of concept). Of interest here
is not so much the solutions found under the different sce-
nario setups, but the relative performance under these setups.
Clearly if the goal were to improve the absolute solution qual-
ity than any number of intermediate or final route improve-
ment heuristics could and would be added. However, to fairly
place our particular implementation’s absolute performence
relavtive to published results on tested problem instances we
run a simple 2-OPT heuristic on finally generated solutions
(see Table 2).

A. TEST ENVIRONMENT
The framework and experiments werewritten the Python. The
tests were performed on a 24 GB memory machine with a
2.4 GHz processor with the following caches (a 32 Kb 8-way
set associative level one cache; 256Kb 8-way set associative
level 2 cache; and a 6144Kb 12-way set associative level
3 cache). Four threads were used in all experiments.

B. PROBLEM INSTANCES
We performed extensive testing on TSP instances. These
problem Instances were drawn from the well-known TSPLIB
problems [45]. We present the results for problems instances
eil51, st70, kroA100, pr226 and pr1002 where the numbers
in the problem names represent the number of nodes in each
problem instance.

Each test was run twelve times under all GA system config-
urations. In each of these configurations there was either one
GA solver working synchronously or four solvers working in
parallel. The details of the three final GA system configura-
tions are described below:

1) (SSB) Standard Sequential Base: All iterations are run
on a single GA machine. No migration, no synchro-
nization takes place. We arbitrarily selected to run I =
1024, 2048, 4096 iterations.

2) (PPB) Primitive Parallel Base: four GA solvers are
run in parallel, each runs the same number of gener-
ations/iterations as in the base case. At the end of this
parallel phase the best solution from the four solution
sets is returned.

3) (MPB) Migrating Parallel Base, four GA solvers are
run in parallel. They are synchronized the number of
times stated in Table 1. Each solver in the system
operates over the full number of iterations. Thus at
the end of the run in total of 4I iterations have taken
place in the system, where I = 1024, 2048, 4096 as
specified in Table 1. However because synchronization
time is negligible, both cases take approximately the
same amount of time when run on a machine with
4 cores (as was done in this experiment).

The time required for each system to run can be expressed
in terms of the time required for SSB,B, with additional terms

TABLE 1. Relative performance of SSB, PPB and MPB.

ε1 and ε2; where ε1 and ε2 are negligible in relation to B and
ε1 < ε2.

Time(SSB) < Time(PPB) < Time(MPB) (1)

B < B+ ε1 < B+ ε2 (2)

The additional terms ε1 and ε2 represent the time required
to select the best solution in PPB and the time for synchro-
nization for MPB. The number of iterations performed in
PPB and MPB is identical. In each case we finish each of
the twelve separate runs by running an inexpensive 2-opt
improvement heuristic. We do this simply so that we can
demonstrate performance within the range of heuristics that
are tuned specifically to TSP problems – the relative perfor-
mance of the three heuristics is unchanged. So, in each case
we incur some additional time for the O(n2) 2-opt improve-
ment. This time is not uniform, as it varies across solutions,
even for the same problem instance, but it is nearly uniform
across these three similar solutions for the same problem
instance. Therefore, it Bf is the final time required for SSB
heuristic to run, including the 2-opt improvement, then the
relative solution times are approximately expressed by:

Bf < Bf + ε1 < Bf + ε2 (3)

Comparing the solution quality of SSB, to PPB and MPB
over a number of arbitrarily selected problems from the TSP
lib, it is easy to see that MPB outperforms both of the others.
Specifically, MPS outperforms PPB. This shows the advan-
tage of using the technique described. Table 1 and Figure 4
show these results (in the figure we leave out pr1002 so that
the graph can more easily show the differences).

VOLUME 8, 2020 106511



D. I. Arkhipov et al.: Parallel GA Framework for Transportation Planning and Logistics Management

FIGURE 4. Average performance of sequential, primitive parallel and
migrating parallel GAs.

The number of synchronizations performed was dependent
upon problem size. No attempt was made to find the absolute
optimal value for this parameter, but we did increase it with
an increase in the number of nodes and in the case of st70 and
eil71, this increase was non monotonic. Testing indicated that
eight synchronizations worked better for st70 but four worked
better for eil71. As a general rule we found that the number
of synchronization needed for the framework to perform
optimally increased slowly as the size of the problem size
increased. The tuning of this parameter is not the principal
subject of this work, and is an avenue of possible extensions
to this work.

The results clearly justify the application of the
parallel migration technique as compared to the primi-
tive parallel approach. Figure 4 Shows the relative per-
formance of the three heuristics is the same across
problems, with the migrating parallel outperforming
the primitive parallel which outperforms the sequential
case.

While our framework was not tuned for the TSP specif-
ically, we show how it performs relative to some published
results that were tuned for TSP problems. These results are
shown in Table 2. The performance of our framework is
competitive with the performance of several other works on
the comparison problems. We should note of course that
there are some implementations – for example which use
a Lin-Kernigan heuristic [46] combined with a GA, that
consistently achieve unbelievably good for the TSP even
for very large problems. The results shown in Table 2 are
merely examples of typical comparable systems. We would
like to not that while there are genetic algorithm based solvers
for the TSP that outperform our system, these solvers are
often highly tuned to the TSP and use heuristics such as
Lin-Kernigan which are difficult to generalize to different
problems. The framework presented differs on the other hand
is almost trivially adaptable to other problem combinatorial
problems given the presence of a previously written sequen-
tial genetic algorithm solver. In Table 2 we cite results from
[47]–[49].

TABLE 2. Performance of our GA vs. recently published results.

V. CASE STUDY II: MINIMUM MULTIPROCESSOR
SCHEDULING PROBLEM
Next we found a fourth year computer science undergraduate
student who was willing to do a short term project testing our
GA framework and we arbitrarily selected a multiprocessor
scheduling problem for that test. GA was not specifically
designed for multiprocessor scheduling, but we used such
problems to demonstrate how our simple additional solution
scaffolding can significantly improve solution quality.

To investigate the gains exhibited by an application of
our GA framework would generalize to problems other than
the TSP we implemented a generalization of the minimum
multiprocessor scheduling (MMS) problem from Gary and
Johnson [50]. We used this opportunity to test our claim that
a developer with little experience with genetic algorithms and
optimization could easily deploy our framework given exist-
ing sequential genetic algorithm codes. The student was given
a problem description, a brief synopsis of genetic algorithms
as they apply to optimization, and code for a genetic algo-
rithm solving the MMS problem sequentially. He was able
both to successfully apply the framework to the sequential
genetic algorithm code for solving the MMS problem and
testing it empirically in a short time. His results show similar
gains in using MPB as compared to both PPB and SSB as
those described in the earlier TSP results.

A. MMS PROBLEM DESCRIPTION
We are given T tasks (t0, . . . , tT−1), and P machines
(p0, . . . , pP−1). Each task t when run on any machine will
take Length(t) discrete time units to complete. There exists
a universal logical clock which will give the logical time in
discrete time units at any given instant.

A solution to the MMS problem entails a task to (machine,
start time) mappingM [ti] = (pi, tistart ) where ti is a task from
the set Tasks, pj is a machine from the set machines, and tistart
is the time ti begins to be executed on pj. The ending time of
a task ti is tistart + Length(ti). The mapping is constrained as
follows: No task may begin execution on a machine at which

106512 VOLUME 8, 2020



D. I. Arkhipov et al.: Parallel GA Framework for Transportation Planning and Logistics Management

FIGURE 5. Comparison across test cases.

another task is already executing. In other words, given a task
ti beginning execution on machine pj at time tistart it must be
the case that for any other task tk , task tk either starts after
task ti finishes or task tk finishes before task ti starts:
Assignment M [ti] = (pi, tistart ) is valid only if for all tk in

Tasks such that:

(k 6= 1) ∧ (M [tk ] = (pj, tkstart ))

→ (tkstart ≥ (tistart + Length(ti)))

∨ ((tkstart + Length(tk )) < tistart ) (4)

A mapping M is valid if the above condition holds for all
tasks.

Define EndTime(Si) to be the end time of the latest sched-
uled task in solution Si. A solution Si is considered an
optimal solution of a given problem instance if and only if
EndTime(Si) ≤ EndTime(Sj), For all alternative solution Sj.

B. TEST CASES
Unlike the empirical tests done on the traveling salesman
problem, we did not have a well know library of problems and
optimal solutions to choose from, so we generated problem
instances randomly. Since we were generating randomized
test cases for this problem we were unable to show algorith-
mic performance as a deviation from the optimal value (since
we did not know those). Instead we show the deviation of
each solution from the best solutions found (all of which were
found by MPB). As before, this is a minimization problem.
A group of 30 problem instances was generated, each with a
randomly chosen number of machines from within the range
[40, 50], a random number of assigned tasks from the range
[200, 600], and each task with an arbitrary duration chosen
from [1, 2000]. Each of the previously described techniques
for solving the problem using a genetic algorithm (SSB,
PPB, MPB) was applied to this test set and the results cat-
aloged. For each technique, and every test the results below
were averaged over 30 runs of each algorithm on each file.
A crossover probability of 80% and a mutation probability of
5% were used. We show these results in Figure 5 and Table 3.

Overall, we found an average improvement of MPB over
PPB of 3.25% in terms of solution quality and an average
improvement of 6.02% ofMPB over SSB. These are averages
of 30 runs for 30 randomly generated tests. We believe that
these results justify the usefulness of the technique as wewere
able to achieve an improvement over the primitive designwith

TABLE 3. Performance of MPB relative to SSB and PPB.

even the most trivial merging and communications functions.
Further, a well implemented genetic algorithm will already
be generating fairly good results. So, while do not know the
optimal solutions in this case, an average these improvements
are on top of reasonably good solutions. It seems clear that an
even greater improvement would be attained if communica-
tions and merging functions relevant to the problem domain
were applied. The results clearly show an advantage of using
the MPB method as opposed to primitive parallelization as in
the PPB approach.

VI. CONCLUSION
This paper presents an intermediate alternative for a genetic
algorithm designer between dismissing recent advances in
computer hardware or adapting to them very primitively,
and re-coding the underlying algorithm to incorporate these
advances but at the expense of development time. The parallel
GA framework presented at its base is a simple modification
of the primitive parallelization concept, but if implemented
as described it may be gradually extended to fit the quali-
ties of any underlying problem better. The framework itself
does not aim to be a competitor with advanced and rigor-
ous frameworks such as ParadisEO or PISA, it is instead a
simple extension of the primitive parallelization technique
that improves performance and still leaves room for further
incremental extension. The empirical results demonstrate that

VOLUME 8, 2020 106513



D. I. Arkhipov et al.: Parallel GA Framework for Transportation Planning and Logistics Management

the presented framework can improve the efficiency of a
primitively parallelized genetic algorithm. The framework is
not aimed specifically at the optimization problems we used
as test cases and can be applied to any candidate combinato-
rial optimization problem. The empirical results given here,
the generality of the approach presented, and the relative ease
of implementation of the approach suggest that our parallel
GA framework is a preferable option to either primitive par-
allelization or fine grained parallelization when development
time is a binding constraint. This case is further reinforced by
the experience of an undergraduate researcher in applying the
technique quickly to the minimummultiprocessor scheduling
problem.

ACKNOWLEDGMENT
The authors would like to thank the anonymous reviewers for
their insightful comments. They would also like to thank Jad
Aboidiab for testing the minimummultiprocessor scheduling
problem.

REFERENCES
[1] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach.

Upper Saddle River, NJ, USA: Prentice-Hall, 2003.
[2] M. Ren, Z. Fan, J. Wu, L. Zhou, and Z. Du, ‘‘Design and optimization

of underground logistics transportation networks,’’ IEEE Access, vol. 7,
pp. 83384–83395, 2019.

[3] J. A. Paul and M. Zhang, ‘‘Supply location and transportation planning for
hurricanes: A two-stage stochastic programming framework,’’Eur. J. Oper.
Res., vol. 274, no. 1, pp. 108–125, Apr. 2019.

[4] M. K. Mehlawat, D. Kannan, P. Gupta, and U. Aggarwal, ‘‘Sustainable
transportation planning for a three-stage fixed chargemulti-objective trans-
portation problem,’’ Ann. Oper. Res., pp. 1–37, 2019.

[5] M. Abbasi, M. Rafiee, M. R. Khosravi, A. Jolfaei, V. G. Menon, and
J. M. Koushyar, ‘‘An efficient parallel genetic algorithm solution for vehi-
cle routing problem in cloud implementation of the intelligent transporta-
tion systems,’’ J. Cloud Comput., vol. 9, no. 1, p. 6, Dec. 2020.

[6] T. Vidal, T. G. Crainic, M. Gendreau, N. Lahrichi, and W. Rei, ‘‘A hybrid
genetic algorithm for multidepot and periodic vehicle routing problems,’’
Oper. Res., vol. 60, no. 3, pp. 611–624, Jun. 2012.

[7] M. Allahviranloo, J. Y. J. Chow, and W. W. Recker, ‘‘Selective vehicle
routing problems under uncertainty without recourse,’’ Transp. Res. E,
Logistics Transp. Rev., vol. 62, pp. 68–88, Feb. 2014.

[8] M. Elhoseny, A. Tharwat, and A. E. Hassanien, ‘‘Bezier curve based path
planning in a dynamic field using modified genetic algorithm,’’ J. Comput.
Sci., vol. 25, pp. 339–350, Mar. 2018.

[9] J. Santos, A. Ferreira, and G. Flintsch, ‘‘An adaptive hybrid genetic algo-
rithm for pavement management,’’ Int. J. Pavement Eng., vol. 20, no. 3,
pp. 266–286, Mar. 2019.

[10] B. Vaissier, J.-P. Pernot, L. Chougrani, and P. Véron, ‘‘Genetic-algorithm
based framework for lattice support structure optimization in additive
manufacturing,’’ Comput.-Aided Des., vol. 110, pp. 11–23, May 2019.

[11] B. Saeidian,M. S.Mesgari, andM.Ghodousi, ‘‘Evaluation and comparison
of genetic algorithm and bees algorithm for location–allocation of earth-
quake relief centers,’’ Int. J. Disaster Risk Reduction, vol. 15, pp. 94–107,
Mar. 2016.

[12] S.-C. Huang, M.-K. Jiau, and C.-H. Lin, ‘‘A genetic-algorithm-based
approach to solve carpool service problems in cloud computing,’’ IEEE
Trans. Intell. Transp. Syst., vol. 16, no. 1, pp. 352–364, Feb. 2015.

[13] F. Stefanello, L. S. Buriol, M. J. Hirsch, P. M. Pardalos, T. Querido,
M. G. C. Resende, and M. Ritt, ‘‘On the minimization of traffic conges-
tion in road networks with tolls,’’ Ann. Oper. Res., vol. 249, nos. 1–2,
pp. 119–139, Feb. 2017.

[14] K. Hermawan and A. Regan, ‘‘On-demand, app-based ride services: A
study of emerging ground transportation modes serving Los Angeles inter-
national airport (LAX),’’ J. Transp. Res. Forum, vol. 56, no. 3, pp. 111–128,
2017.

[15] K. Hermawan and A. C. Regan, ‘‘Impacts on vehicle occupancy and airport
curb congestion of transportation network companies at airports,’’ Transp.
Res. Rec., vol. 2672, no. 23, pp. 52–58, 2018.

[16] Y. Zhang, L. Bao, S.-H. Yang, M. Welling, and D. Wu, ‘‘Localization
algorithms for wireless sensor retrieval,’’ Comput. J., vol. 53, no. 10,
pp. 1594–1605, 2010.

[17] D. Wu, Y. Zhang, J. Luo, and R. Li, ‘‘Efficient data dissemination by
crowdsensing in vehicular networks,’’ in Proc. IEEE Int. Symp. Qual.
Service (IWQoS), 2014, pp. 314–319.

[18] F. Shi, D. Wu, D. I. Arkhipov, Q. Liu, A. C. Regan, and J. A. McCann,
‘‘Parkcrowd: Reliable crowdsensing for aggregation and dissemination of
parking space information,’’ IEEE Trans. Intell. Transp. Syst., vol. 20,
no. 11, pp. 4032–4044, 2018.

[19] T. D. T. Nguyen, T.-T. Huynh, and H.-A. Pham, ‘‘An improved human
activity recognition by using genetic algorithm to optimize feature vector,’’
in Proc. 10th Int. Conf. Knowl. Syst. Eng. (KSE), 2018, pp. 123–128.

[20] K. Nitisiri, M. Gen, and H. Ohwada, ‘‘A parallel multi-objective genetic
algorithm with learning based mutation for railway scheduling,’’ Comput.
Ind. Eng., vol. 130, pp. 381–394, Apr. 2019.

[21] D. Wu, L. Lambrinos, T. Przepiorka, D. I. Arkhipov, Q. Liu,
A. C. Regan, and J. A. McCann, ‘‘Enabling efficient offline mobile
access to online social media on urban underground metro sys-
tems,’’ IEEE Trans. Intell. Transp. Syst., early access, Apr. 29, 2019,
doi: 10.1109/TITS.2019.2911624.

[22] D. Wu, X. Nie, E. Asmare, D. Arkhipov, Z. Qin, R. Li, J. McCann,
and K. Li, ‘‘Towards distributed SDN: Mobility management and flow
scheduling in software defined urban IoT,’’ IEEE Trans. Parallel Distrib.
Syst., vol. 31, no. 6, pp. 1400–1418, 2020.

[23] Z. Tu, R. Li, Y. Li, G. Wang, D. Wu, P. Hui, L. Su, and D. Jin, ‘‘Your
apps give you away: Distinguishing mobile users by their app usage
fingerprints,’’Proc. ACM Interact., Mobile, Wearable Ubiquitous Technol.,
vol. 2, no. 3, pp. 1–23, 2018.

[24] A. Lewis and A. Regan, ‘‘Enabling paratransit services with blockchain
based contracts,’’ in Proc. Comput. Conf. London, U.K.: SIA, 2020.

[25] D. Wu, Z. Jiang, X. Xie, X. Wei, W. Yu, and R. Li, ‘‘LSTM learning
with Bayesian and Gaussian processing for anomaly detection in industrial
IoT,’’ IEEE Trans. Ind. Informat., vol. 16, no. 8, pp. 5244–5253, 2020.

[26] T. Wu, J. Qin, and Y. Wan, ‘‘TOST: A topological semantic model for GPS
trajectories inside road networks,’’ ISPRS Int. J. Geo-Inf., vol. 8, p. 410,
Sep. 2019.

[27] M. Tang, Z. Li, and G. Tian, ‘‘A data-driven-based wavelet support vector
approach for passenger flow forecasting of the metropolitan hub,’’ IEEE
Access, vol. 7, pp. 7176–7183, 2019.

[28] B. Ning, T. Tang, H. Dong, D.Wen, D. Liu, S. Gao, and J.Wang, ‘‘An intro-
duction to parallel control and management for high-speed railway sys-
tems,’’ IEEE Trans. Intell. Transp. Syst., vol. 12, no. 4, pp. 1473–1483,
Dec. 2011.

[29] G. Sun, D. Liao, V. Anand, D. Zhao, and H. Yu, ‘‘A new technique
for efficient live migration of multiple virtual machines,’’ Future Gener.
Comput. Syst., vol. 55, pp. 74–86, Feb. 2016.

[30] D. I. Arkhipov, D. Wu, and A. C. Regan, ‘‘A simple genetic algorithm
parallelization toolkit (SGAPTk) for transportation planners and logistics
managers,’’ pp. 1–18, 2015.

[31] L. Jiacheng and L. Lei, ‘‘A hybrid genetic algorithm based on informa-
tion entropy and game theory,’’ IEEE Access, vol. 8, pp. 36602–36611,
2020.

[32] F.-Y. Wang, ‘‘Parallel control and management for intelligent
transportation systems: Concepts, architectures, and applications,’’
IEEE Trans. Intell. Transp. Syst., vol. 11, no. 3, pp. 630–638,
Sep. 2010.

[33] J. Zhang, F.-Y. Wang, K. Wang, W.-H. Lin, X. Xu, and C. Chen, ‘‘Data-
driven intelligent transportation systems: A survey,’’ IEEE Trans. Intell.
Transp. Syst., vol. 12, no. 4, pp. 1624–1639, Dec. 2011.

[34] J. Lee, K. G. Shin, I. Shin, and A. Easwaran, ‘‘Composition of schedulabil-
ity analyses for real-time multiprocessor systems,’’ IEEE Trans. Comput.,
vol. 64, no. 4, pp. 941–954, Apr. 2015.

[35] N. Hou, F. He, Y. Zhou, Y. Chen, and X. Yan, ‘‘A parallel genetic
algorithm with dispersion correction for HW/SW partitioning on multi-
core CPU and many-core GPU,’’ IEEE Access, vol. 6, pp. 883–898,
2018.

[36] E. Cantú-Paz, ‘‘A survey of parallel genetic algorithms,’’ Calculateurs
Paralleles, Reseaux Syst. Repartis, vol. 10, no. 2, pp. 141–171, 1998.

106514 VOLUME 8, 2020

http://dx.doi.org/10.1109/TITS.2019.2911624


D. I. Arkhipov et al.: Parallel GA Framework for Transportation Planning and Logistics Management

[37] E. Cantú-Paz and D. E. Goldberg, ‘‘On the scalability of paral-
lel genetic algorithms,’’ Evol. Comput., vol. 7, no. 4, pp. 429–449,
Dec. 1999.

[38] D. Lim, Y.-S. Ong, Y. Jin, B. Sendhoff, and B.-S. Lee, ‘‘Efficient hierar-
chical parallel genetic algorithms using grid computing,’’ Future Gener.
Comput. Syst., vol. 23, no. 4, pp. 658–670, May 2007.

[39] S. Cahon, N. Melab, and E.-G. Talbi, ‘‘ParadisEO: A framework for the
reusable design of parallel and distributed metaheuristics,’’ J. Heuristics,
vol. 10, no. 3, pp. 357–380, May 2004.

[40] S. Bleuler, M. Laumanns, L. Thiele, and E. Zitzler, ‘‘PISA—A plat-
form and programming language independent interface for search algo-
rithms,’’ in Proc. Int. Conf. Evol. Multi-Criterion Optim. Springer, 2003,
pp. 494–508.

[41] M. Mitchell, An Introduction to Genetic Algorithms. Cambridge, MA,
USA: MIT Press, 1998.

[42] N. K. Vishnoi, ‘‘The speed of evolution,’’ in Proc. 26th Annu. ACM-SIAM
Symp. Discrete Algorithms, 2015, pp. 1590–1601.

[43] J.-Y. Potvin, ‘‘Genetic algorithms for the traveling salesman problem,’’
Ann. Oper. Res., vol. 63, no. 3, pp. 337–370, 1996.

[44] G. A. Sena, D. Megherbi, and G. Isern, ‘‘Implementation of a paral-
lel genetic algorithm on a cluster of workstations: Traveling salesman
problem, a case study,’’ Future Gener. Comput. Syst., vol. 17, no. 4,
pp. 477–488, Jan. 2001.

[45] G. Reinelt, ‘‘TSPLIB—A traveling salesman problem library,’’ ORSA J.
Comput., vol. 3, no. 4, pp. 376–384, 1991.

[46] S. Lin and B. W. Kernighan, ‘‘An effective heuristic algorithm for the
traveling-salesman problem,’’ Oper. Res., vol. 21, no. 2, pp. 498–516,
Apr. 1973.

[47] S. K. Amous, T. Loukil, S. Elaoud, and C. Dhaenens, ‘‘A new genetic
algorithm applied to the traveling salesman problem,’’ Int. J. Pure Appl.
Math., vol. 48, no. 2, pp. 151–166, 2008.

[48] Y. Wei, Y. Hu, and K. Gu, ‘‘Parallel search strategies for TSPs using
a greedy genetic algorithm,’’ in Proc. 3rd Int. Conf. Natural Comput.
(ICNC), 2007, pp. 786–790.

[49] S. S. Ray, S. Bandyopadhyay, and S. K. Pal, ‘‘New genetic operators
for solving TSP: Application to microarray gene ordering,’’ in Pattern
Recognition and Machine Intelligence. Berlin, Germany: Springer, 2005,
pp. 617–622.

[50] M. R. Gary and D. S. Johnson, Computers and Intractability: A Guide to
the Theory of NP-Completeness. San Francisco, CA, USA: Freeman, 1979.

DMITRI I. ARKHIPOV received the B.S. degree
in information and computer science, the M.S.
degree in computer science, and the Ph.D. degree
in computer science from the University of Cal-
ifornia, Irvine, in 2009, 2012, and 2016 respec-
tively. He is currently a Postdoctoral Researcher
with the Department of Computer Science, Uni-
versity of California. His research interests include
parallel and distributed systems, large scale combi-
natorial optimization, and cyber-physical systems.

DI WU (Member, IEEE) received the Ph.D.
degree in computer science from the University
of California at Irvine, Irvine, CA, USA, in 2013.
He was a Researcher with the Intel Collabora-
tive Research Institute for Sustainable Connected
Cites, a Research Associate with the Imperial
College London, a Staff Research Associate with
the University of California at Irvine, a Visit-
ing Researcher at IBM Research, and a Student
Research Associate at SRI International. He is cur-

rently a Professor with Hunan University, China, and an Adjunct Researcher
with the University of California at Irvine. His research interests include
future networking, intelligent analytics, and smart architecture. He has
actively served on many conference committees. He is an Associate Editor
of the IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS.

TAO WU received the B.S. degree in resources
environment and the management of urban and
rural planning from theWuhan University of Tech-
nology, Wuhan, China, the M.S. degree in car-
tography and geography information system from
Central South University, Changsha, China, and
the Ph.D. degree in geographic information sci-
ence from the Joint Doctoral Program between
Wuhan University and Central South Univer-
sity. He is currently working as a Postdoctoral

Researcher with the Key Laboratory of Geospatial Big Data Mining and
Application, Changsha. His research interests include geographic informa-
tion systems, large scale spatio-temporal trajectory data mining, and smart
cities.

AMELIA C. REGAN (Member, IEEE) received
the B.A.S. degree in systems engineering from
the University of Pennsylvania, the M.S. degree in
applied mathematics from Johns Hopkins Univer-
sity, and the M.S. and Ph.D. degrees in transporta-
tion systems engineering from The University of
Texas at Austin, Austin. Prior to receive the Ph.D.
degree, she was an Operations Research Analyst
with the Association of American Railroads and
United Parcel Service. She has also taught short

courses at the Athens University of Business and Economics and theNational
Technical University of Denmark. She is currently a Professor of com-
puter science and transportation systems engineering with the University
of California, Irvine. Her research is focused on algorithm development for
optimization of transportation and communication systems.

VOLUME 8, 2020 106515


	INTRODUCTION
	MOTIVATIONS
	OUR APPROACH

	RELATED WORK
	PARALLEL GA FRAMEWORK
	GENETIC ALGORITHMS
	PRIMITIVE PARALLELIZATION OF PARALLEL BASE
	MIGRATING PARALLEL BASE
	SOLVING LOCAL MINIMA
	FRAMEWORK COMPONENTS AND WORKFLOW

	CASE STUDY I: TRAVELING SALESMAN PROBLEM
	TEST ENVIRONMENT
	PROBLEM INSTANCES

	CASE STUDY II: MINIMUM MULTIPROCESSOR SCHEDULING PROBLEM
	MMS PROBLEM DESCRIPTION
	TEST CASES

	CONCLUSION
	REFERENCES
	Biographies
	DMITRI I. ARKHIPOV
	DI WU
	TAO WU
	AMELIA C. REGAN


