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ABSTRACT In this paper, we focus on the transition control of a ducted fan vertical take-off and landing
(VTOL) unmanned aerial vehicle (UAV). To achieve a steady transition from hover to high-speed flight,
a neural-networks-based controller is proposed to learn the system dynamics and compensate for the tracking
error between the aircraft dynamics and the desired dynamic performance. In prior, we derive the nonlinear
system model of the aircraft full-envelope dynamics. Then, we propose a novel neural-networks-based
control scheme and apply it on the underactuated aircraft system. Key features of the proposed controller
consist of projection operator, state predictor and dynamic-formed adaptive input. It is proved and guaranteed
that the tracking errors of both state predictor and neural-networks weights are upper bounded during the
whole neural-networks learning procedure. The very adaptive input is formed into a dynamic structure
that helps achieve a reliable fast convergence performance of the proposed controller, especially in high-
frequency disturbance conditions. Consequently, the closed-loop system of the aircraft is able to track a
certain trajectory with desired dynamic performance. Satisfactory results are obtained from both simulations
and practical flight test in accomplishing the designed flight course.

INDEX TERMS Ducted fan, fast convergence, high-speed flight, neural networks, transition control,
unmanned aerial vehicle (UAV).

I. INTRODUCTION
In recent years, vertical take-off and landing (VTOL)
unmanned aerial vehicles (UAVs) have attracted more and
more attentions in transportation, surveillance, detection
and many other areas. Such a UAV is required to capable
of VTOL, steadily hover and long-endurance high-speed
flight. To meet this need, one preference is the ducted fan
UAV. Ducted fan is well known for its compact layout
which enables the vehicle working safely in crowed urban
environments such as warehouses and alleys. During the
past decades, many classical prototypes of ducted fan, like
iSTAR [1], HoverEye [2] and GTSpy [3], have been invented
and applied successfully. The typical configuration of a
ducted fan contains one duct-fan and four control surfaces.
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To this layout, the fan is shrouded by a solid wall that ‘ducted
fan’ is hence named. Comparing to a single rotor, a ducted fan
features higher aerodynamic efficiency as the fan tip vortex
is strongly blocked and weakened by the duct wall. Basically,
fixed aerodynamic flaps and deflectable control surfaces are
placed below the fan. Being exposed in the flowfiled of the air
exhausted from the fan, the fixed flaps collectively generate
an anti-torquemoment counteracting the fan torque, while the
control surfaces create attitude control moments. Similar to a
helicopter or a quadrotor, this typical configuration results in
an underactuated property of the ducted fan dynamic system.

One important characteristic that distinguishes ducted fan
from rotorcraft is the high-speed level flight capacity. Notice
that, for rotorcrafts like helicopters or quadrotors, flying
at high-speed (>10m/s) requires a large pitching angle of
the rotor disc, which results in more power consumption
than hover. Thus, this high-speed flying status is generally
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considered as transient maneuvering for these rotorcrafts,
not an economical working point. On the contrary, when
flying horizontally at high-speed, a ducted fan is subject
to an aerodynamic lift which is considerably larger than
the associated drag. It is hence indicated that the power
consumption in this high-speed-level-flight condition is less
than that in hover. This special aerodynamic property can
remain effective on a single duct-and-fan structure, even
without a wing. Therefore, similar to a fixed-wing airplane,
a ducted fan is capable of conducting long-distance missions
with high-speed economical cruising. For instance, to the
ducted fan studied in this paper, the power rate of steady flight
at 20m/s is less than 1/3 of that in hover, and the aircraft is
functioned of 15min hovering or 27km flight radius (54km
maximum range).

It is of great significance to study the transition control
for hover to high-speed flight of ducted fan UAV. Till now,
most previous works on this aircraft are concentrated on near-
hover and low-forward-speed control. At near-hover point,
the aircraft dynamics can be simplified into linear system
with underactuated property [4]. In [5], a cascade PID con-
troller is designed to achieve good performance in simula-
tion. More complex control structures are adopted to handle
the nonlinearity with good performance in practice [6], [7].
Taking consideration of uncertainty and disturbance, adap-
tive control schemes [8]–[10] are proposed for better control
accuracy and disturbance rejection performance. However,
it is challenging to design a proper controller for the hover
to high-speed transition process. On one hand, as the relevant
system values suffer great changes from hover to level flight,
the equilibrium point of the aircraft dynamic system encoun-
ters a considerable deviation with highly nonlinearity. On the
other hand, as the forward speed increases, the aerodynamic
effects on the control surfaces are enhanced and the aircraft
becomes more and more sensitive to input noises as well as
relevant disturbances.

Till now, this transition control is mostly studied for tail-
sitter VTOL UAV. In [11], [12], a ducted-fan-pushed fixed-
wing tail-sitter UAV is studied. An L1 adaptive controller is
applied on its transition control based on linearized model.
In [13], a vectored-thrust tail-sitter UAV is studied, the system
model of which is to an extent similar to the ducted fan. In this
work, a robust controller is proposed to tackle the complexity
of aerodynamic effects and conduct the transition process.
In contrast to a typical tail-sitter configuration, a ducted
fan without a wing features highly aerodynamic coupling
and unstable properties. Thus, for the transition control of
a ducted fan UAV, it is essential to deal with the nonlinear-
ity and uncertainty of the aircraft system. Neural networks
(NNs) have been widely employed to aircraft control for its
excellent performance in nonlinearity matching and uncer-
tainty compensation [14]–[18]. In [19], NNs are introduced to
learn the uncertainties online and control a small quadrotor.
In [20], a NNs based robust adaptive controller is proposed
to identify the inertia matrix of a small helicopter. In [21],

NNs are introduced to enhance the performance of a dynamic
inversion control scheme.

Another important issue taken into account is the feasi-
bility for implementing the designed controller. In terms of
controller design of a rotorcraft, a cascade PID controller
is widely used for its convenient in practical parameter tun-
ing at hover. However, controller design for a fixed-wing at
high-speed flight takes much more efforts. Generally, taking
safety into consideration, the parameters of this controller are
directly tuned on the real aircraft in a wind tunnel, or pre-
tuned on a mathematical model which is acquired through
wind tunnel tests or computational fluid dynamics (CFD).
Unfortunately, all of these methods are complicated and
costly on both money and time. Therefore, the basic idea
for the proposed controller in this paper is to build a ref-
erence system, which is easy to tuned such as cascade PD
controller, and use NNs to learn and compensate for all the
uncertainties between the real system and the reference sys-
tem. This control structure is of great advantage in practical
implementation.

One core objective for NNs design is fast convergence of
the weights and reconstruction errors. In [22], an experience
replay based learning algorithm is proposed to obtain fast
learning performance with estimation error uniformly ulti-
mately bounded (UUB). However, the UUB property cannot
guarantee the transient performance in the early stage of
parameter adaptation. In [23], a neural learning controller is
proposed to improve this transient performance on control-
ling marine surface vessels. In order to achieve high tracking
accuracy with fast uncertainty matching, a state predictor is
introduced into the control scheme in [24], in which the NNs
update from both tracking error and prediction error. Gener-
ally, enlarging the learning rate of the weights contributes to
the increasing of estimation convergence rate of NNs. But this
may also lead to great system oscillation or even an overshoot
problem in the early adaptation process. To deal with this
issue, projection operator is invoked into the weights-tuning
law that constrains the NNs weights into certain compact
sets. As a result, the NNs with projection operator show
excellent performance in the reconstruction of time-varying
disturbance and uncertainties [25]–[28].

Based on the concerns above, we propose a novel neural-
networks-based control scheme. The controller is constructed
to track a reference system with tracking error learned and
compensated by NNs. Projection operators and state predic-
tors are introduced into the NNs learning algorithm to achieve
fast convergence performance. Additionally, we design an
adaptive control law with a dynamic form to enhance the
robustness of the closed-loop system. To show the advantage
of the proposed method, a comparison between the proposed
controller and standard approaches is given in Table 1.

In this paper, we study the transition control of a small
ducted fan UAV with the typical one duct-fan and four con-
trol surfaces layout (See Fig.1 and Fig.2.). Additionally, the
aircraft is installed with an extra front wing for balancing the
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TABLE 1. Comparison between the proposed controller and standard approaches.

FIGURE 1. The ducted fan studied in this paper and its layout.

pitching moment. We first analyze the aerodynamic charac-
teristics of the ducted fan model during the hover to high-
speed transition process. Then a novel neural-networks-based
control scheme for nonlinear system is proposed. Based on
these, a cascade flight control strategy is designed for the tran-
sition control of the ducted fan UAV. The paper is organized
as follows: the aerodynamic analysis and system modeling of
the ducted fan studied in this paper are presented in Section II.
In Section III, a neural-networks-based controller for nonlin-
ear system is proposed with a nominal design and its proof of
stability. In Section IV, based on the proposed NN controller,
a cascade flight strategy is designed for the aircraft to track
certain reference inputs with desired dynamic performance.
Then simulations and flight test results are respectively shown
in Section V and Section VI. Finally, Section VII draws the
main conclusion.

The main contributions of this paper are summarized as
follows:

1) A novel neural-networks-based control scheme for
nonlinear system is proposed. To track a reference
system, NNs and adaptive control law are designed
to eliminate the tracking error between the original
system and the reference system. With the introduction
of projection operators, state predictors and high-order
adaptive control law, the closed-loop system achieves

FIGURE 2. Illustration of the hover to high-speed-level flight transition
process.

a good robustness with fast convergence of the NN
weights. The stability of the proposed controller is
theoretically proved.

2) The proposed NNs control scheme is successfully
applied on the transition control of a ducted fan UAV.
Both simulation and practical flight test results ver-
ify the effectiveness and reliability of the proposed
method. Additionally, we give a comparison result
between the proposed method and an adaptive method
mentioned in [29] in order to reveal the advantage of
the proposed method.

II. AIRCRAFT SYSTEM MODELING
In this section, the 6 degree-of-freedom (DOF) motion
dynamics of the ducted fan is derived from Newton and Euler
Theorems. Then corresponding aerodynamic characteristics
are presented and analyzed particularly for the transition
process. Although neural-networks control is usually model
free, a precise and reliable mathematical model is necessary
and contributes to the follows:
• To make the simulations more convincible and help
choose the proper basis functions of the proposed NNs.

• To deeply indicate the advantage of using neural-
networks by showing the complexity of the system
model in transition.

A. 6-DOF KINEMATICS
Basically, we describe the 6-DOF motion of a rigid body
by adopting two reference frames in Cartesian coordinates.
{XE ,YE ,ZE } denotes the inertial frame defined by north-
east-down. {Xb,Yb,Zb} denotes the body frame attached to
the aircraft. Position in the inertial frame is denoted as
p = [x y z ]T . Velocity in the inertial frame and the body
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FIGURE 3. Definitions of coordinates and state variables.

frame are respectively denoted as VE = [VxE VyE VzE ]T

and Vb = [u v w ]T . In this paper, we adopt Euler angles
ξ = [ϕ θ ψ ]T to describe the aircraft attitude with ‘ZXY’
rotation order (See Fig.3). ω = [p q r ]T denotes the
angular velocity with respect to the body frame. Based on
the ‘ZXY’ rotation order, rotation matrix R from body frame
to inertial frame and the derivatives of Euler angles are given
by:

R =

CψCϕ −SψCθ + CψSϕSθ SψSθ + CψSϕCθ
SψCϕ CψCθ + SψSϕSθ −CψSθ + SψSϕCθ
−Sϕ CϕSθ CϕCθ


ξ̇ = Qω

Q =

 Cθ 0 −Sθ
SθTϕ 1 CθTϕ
Sθ/Cϕ 0 Cθ/Cϕ

 (1)

where C , S, and T respectively denote cosine, sine and tan-
gent functions for short.
Remark 1: In this paper, we adopt ‘ZXY’ rotation order

to define Euler angles rather than ‘ZYX’ which is common-
used in attitude description. During the transition, since the
aircraft pitches and the roll angle ϕ is around zero,Q defined
by (1) is always invertible and far away from singularity (i.e.
ϕ = 90◦). This helps prevent the gimbal lock problem of a
tail sitter UAV.

Velocity of environmental wind disturbance is denoted as
Dw = [Dx(t) Dy(t) Dz(t) ]T in the body frame. Subse-
quently, we define airspeed Vw, angle of attack (AOA) α and

sideslip angle β by:

Vw =
√
(u− Dx)2 +

(
v− Dy

)2
+ (w− Dz)2

cosα = − (w− Dz) /Vw, 0 ≤ α ≤ π

tanβ =
(
v− Dy

)
/ (u− Dx) , −

π

2
≤ β ≤

π

2
(2)

F and M respectively denote the resultant force and
moment, exclusive of gravity, in the body frame:

F = FT + Fm + Fd + Fw
M = Mfan +Mcs +Mf +Mg +Md +Mw (3)

where all the components are discussed below.
The fan is generally regarded as a disc acting a steady thrust

and torque on the aircraft. Hence, according to Newton and
Euler’s Law of Motion, the dynamics of the aircraft is derived
as follows: 

ṗ = VE

V̇E =
1
m
RF+

[
0 0 g

]T
ξ̇ = Qω
ω̇ = J−1 [M+ Jωsk(ω)]

(4)

where m denotes the mass and J = diag(Jx , Jy, Jz) denotes
the inertia matrix of the aircraft. g denotes the gravity accel-
eration. ‘sk’ denotes the skew symmetric matrix to a vector.
The relevant definition in R3 is given by:

sk(x) =

 0 −x3 x2
x3 0 −x1
−x2 x1 0


B. AERODYNAMIC CHARACTERISTICS
Basically, as a special type of tail-sitter VTOL aircraft, a
ducted fan features the same as a rotorcraft at hover or vertical
flight, and acts more like a fixed-wing airplane when levelly
flying with high-speed [30], [31]. In this part, we give the
detailed expressions of all the forces and moments in (3).

1) DRIVING FORCE AND MOMENT
Thrust FT is regarded as the driving force of the aircraft that
can be expressed as:FT =

[
0 0 −T

]T
T = kT (Vw, α)�2

(5)

where� denotes the fan rotation speed. kT (Vw, α) is the thrust
coefficient.

When the fan is operating, remote airflow of speed Vc is
ingested into the fan and accelerated to Ve when exhausted
from the fan. This exhaust velocity Ve can be derived from
the momentum theory of the duct-fan system:

Ve = Vc + Vi = −
w− Dz

2
+

√(
w− Dz

2

)2

+
T

2ρA
(6)

where Vi denotes the induced velocity of the local flow at the
fan. The area of the fan disc is denoted as A.
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FIGURE 4. Illustration of aerodynamic effects on the duct.

MomentMcs created by the control surfaces is regarded as
the driving moment of the aircraft. Its expression is given by:

Mcs = kcsV 2
eHc

H =

−l1 0 l1 0
0 −l1 0 l1
l2 l2 l2 l2


c =

[
c1 c2 c3 c4

]T (7)

where ci denotes the deflection angle of the i-th control
surface. kcs is a constant coefficient. l1 is the lever arm with
respect to roll/pitch axis and l2 is the lever arm with respect
to yaw axis.

2) DUCT EFFECTS
Momentum drag Fm, duct body force Fd and duct aero-
dynamic pitching moment Md are important factors that
differ the ducted fan from a single exposed rotor (e.g. a
helicopter) or a pure solid shape (e.g. a wing) [32]. They are
presented on 2-D plane in Fig.4.

Momentum drag is a reaction to momentum increment of
the air component orthogonal to the fan axis [33]. Addition-
ally, with relative motion to a fluid, the duct shape is subject
to a body force which is proportional to the square of the
airspeed.

Fm = −γmρAVe
[
u− Dx v− Dy 0

]T
Fd =

− (kLd (�,α) cosα + kDd (�,α) sinα) cosβ− (kLd (�,α) cosα + kDd (�,α) sinα) sinβ
−kLd (�,α) sinα + kDd (�,α) cosα

V 2
w

γm =
(
Vs − V ′s

)
/Vs (8)

where coefficient γm is introduced as damping rate. Vw is the
airspeed defined by (2). kLd (�,α) and kDd (�,α) are duct lift
and duct drag coefficients.

Duct aerodynamic pitching moment Md is a result from
asymmetric pressure distribution on the duct body [33],

FIGURE 5. Illustration of definitions and aerodynamic effects on the wing.

FIGURE 6. CFD results of duct aerodynamic pitching moment under
different airspeed, angle of attack and fan rotation speed.

mainly on the duct lip. Basically, this moment can be
expressed as [3]:

Md = εmsk(Fm)+ εd sk(Fd ) (9)

where εm and εd denote the lever arms of momentum drag
and duct body force, respectively.

Themathematic expression of this moment consists of both
proportional and quadratic terms with respect to airspeed
Vw, the coefficients of which are complicatedly coupled with
AOA α and fan rotation speed � [34]. To demonstrate the
complexity of this moment, CFD results for the ducted fan
studied in this paper are shown in Fig.6, in which positive
moment and negative moment correspond respectively with
nose up and nose down of the aircraft.

3) FRONT WING EFFECTS
Aerodynamic effects on the front wing consist of wing force
Fw and wing moment Mw. First, we defined the local air-
speeds and local AOAs in associated with the left wing and
the right wing (See Fig.5).

Vwl =
√
(u+ rlw − Dx)2 + (w− Dz)2

Vwr =
√
(u− rlw − Dx)2 + (w− Dz)2

VOLUME 8, 2020 100139



Z. Cheng et al.: Neural-Networks Control for Hover to High-Speed-Level-Flight Transition of Ducted Fan UAV

cosαl = − (w− Dz) /Vwl, 0 ≤ αl ≤ π

cosαr = − (w− Dz) /Vwr , 0 ≤ αr ≤ π (10)

where lw is the lever arm from the aerodynamic center of the
left/right wing part to the Zb axis.

Wing force Fw is the resultant force of the lifts and drags:

Fw=

− (Lwl cosαl+Lwr cosαr+Dwl sinαl+Dwr sinαr )0
−Lwl sinαl−Lwr sinαr+Dwl cosαl+Dwr cosαr


Lwl = kLw(αl)V 2

wl,Lwr = kLw(αr )V 2
wr

Dwl = kDw(αl)V 2
wl,Dwr = kDw(αr )V 2

wr (11)

where kLw(α) and kDw(α) are lift and drag coefficients of the
half wing part which are functions of AOA.

Wing momentMw is given as:

Mw =

 0
Mw2
Mw3

 =
 0
kMw(αl)V 2

wl + kMw(αr )V
2
wr

−lwLwl + lwLwr

 (12)

where kMw(α) is moment coefficient of the half wing part
which is a function of AOA.

4) OTHER TERMS
As for the rest terms of (3), fan torque Mfan, anti-rotation
torque Mf generated by the fixed flaps, and fan gyroscopic
effectMg are given as:

Mfan =
[
0 0 kQ(Vw, α)�2

]T
Mf =

[
0 0 kf V 2

e
]T

Mg =
[
−q p 0

]T Jfan� (13)

where kQ(Vw, α) is the torque coefficient. kf is a constant
coefficient and Jfan denotes the inertia of the fan.

III. NOMINAL NEURAL NETWORKS DESIGN
In this section, a novel neural networks control strategy for
nonlinear system is proposed. First, we divide the system
dynamics into two parts. One is completely known and for-
mulated into a reference system containing the reference
inputs and the desired dynamics. The other part consists of
all the uncertainties. Then neural networks are introduced to
reconstruct the unknown system dynamics. In terms of NNs
learning algorithm, projection operators and state predictors
are invoked. To track the reference system, adaptive control
law with a dynamic form is designed to cancel the tracking
errors.

Consider the following nonlinear system:

ẋ = f(x)+ g(x)u (14)

where x = x(t) ∈ Rn, u = u(t) ∈ Rm (with n ≥ m),
respectively denote the state vector, and the control input
vector; Functions f : Rn

→ Rn, g : Rn
→ Rn×m, are con-

tinuously differentiable. Taking consideration of unknown

system dynamics and parameter uncertainties, we divide sys-
tem (14) into the following two parts:

f(x) = f̄(x)+ f̃(x)
g(x) = ḡ(x)+ g̃(x)
u = ū+ ũ

(15)

where f̄(x) and ḡ(x) are completely known or measurable
while f̃(x) and g̃(x) contain all the uncertainties and mea-
surement errors. Correspondingly, the control input is divided
into a nominal term ū and an adaptive term ũ. Then, we can
determine the desired dynamic performance ẋm and nominal
input ū to form a reference system such that:

ẋm = f̄(x)+ ḡ(x)ū (16)

With the definitions (15)(16), we can rewrite the nonlinear
system (14) into:

ẋ = ẋm + e

e = f̃(x)+ ḡ(x)ũ+ g̃(x)ũ+ g̃(x)ū (17)

In prior, we introduce an auxiliary system to handle the
system uncertainties. First, we reconstruct the uncertain terms
f̃(x) , g̃(x) with parameterized neural networks:{

f̃(x) =WT
f 8f(x)

g̃(x) =WT
g8g(x)

(18)

where Wf ∈ RNf×n and Wg ∈ RNg×n denote the unknown
weight matrices.8f : Rn

→ RNf ,8g : Rn
→ RNg×m denote

the proper basis functions with Nf ,Ng denoting the numbers
of neurons. Subsequently, the nonlinear system (14) can be
reformed into the following:

ẋ=
[
f̄(x)+WT

f 8f(x)
]
+

[
ḡ(x)+WT

g8g(x)
] (

ū+ ũ
)

(19)

With this parameterization, the system uncertainty corre-
sponds to the uncertainty of weight matrices. Based on the
parameterized system, we design a state predictor to estimate
the dynamics of the original nonlinear system:

˙̂x = f̄(x)+ ŴT
f 8f(x)+ ḡ(x)u+ ŴT

g8g(x)u−Kx
(
x̂− x

)
(20)

where Kx = diag(Kx1, · · · ,Kxn) is a positive definite gain
matrix and Ŵf, Ŵg are the estimations ofWf,Wg. The objec-
tive is that the predictor (20) tracks the nonlinear system
dynamics (19). To achieve this, the following evolutions are
designed:

˙̂Wf = 0fProj�f
(Ŵf,−8f(x)

(
x̂− x

)T )
˙̂Wg = 0gProj�g (Ŵg,−8g(x)u

(
x̂− x

)T ) (21)

where0f = diag(0f1, · · · , 0fn) and0g = diag(0g1, · · · , 0gn)
are constant learning ratematrices which are positive definite.
Proj� denotes the projection operator of matrix. �f ⊂

Rn×Nf , �g ⊂ Rn×Ng are convex compact sets that Ŵf ∈

�f, Ŵg ∈ �g. See Appendix A for detailed definitions and
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properties of projection operator. Combining (20) with (21),
an auxiliary system is established as [35]:
˙̂x = f̄(x)+ ŴT

f 8f + ḡ(x)u+ ŴT
g8gu−Kx

(
x̂− x

)
˙̂Wf = 0fProj�f

(Ŵf,−8f
(
x̂− x

)T )
˙̂Wg = 0gProj�g (Ŵg,−8gu

(
x̂− x

)T ) (22)

Recalling (17), In order to track the reference system ẋm,
specific adaptive input ũ is to be adopted such that e = 0.
On the first attempt, we can simply choose the adaptive term
as ũ = −[ḡ(x)+ g̃(x)]†[f̃(x)+ g̃(x)ū] with ‘(.)†’ denoting the
pseudo-inverse of non-square matrix. However, this control
law is not expressed in affine and the inverse calculation could
make ũ too sensitive to the noise in g̃(x) in some special cases,
and probably results in unacceptable oscillation or divergence
of the closed-loop system. Instead, we design the adaptive
control input ũ by a dynamic form as:

˙̃u = −0u

[
ḡ(x)+ ŴT

g8g

]T
ê(ũ)

ê(ũ) = ŴT
f 8f + ḡ(x)ũ+ ŴT

g8gũ+ ŴT
g8gū (23)

where 0u = diag(0u1, · · · , 0un), 0ui > 0 is a constant gain
matrix.
Theorem 1: The states and dynamics of auxiliary sys-

tem (22) converge to those of original nonlinear system. And
the state prediction error x̃ = x̂− x is upper bounded by:∥∥x̃∥∥2 ≤ λmax(0

−1
f )Wfmax + λmax(0−1g )Wgmax (24)

Proof: The proof of Theorem 1 is given in Appendix B.
Theorem 2: The dynamics of the closed-loop system with

auxiliary system (22) and control input (23) tracks the desired
dynamic performance ẋm with tracking error e→ 0.

Proof: The proof of Theorem 2 is given in Appendix C.
Remark 2: Known parts f̄(x) and ḡ(x) can be arbitrarily

chosen, usually constant to make ẋm linear. Even if we remain
them as nonlinear functions, there exists a certain input ū
such that ẋm can be linearized through feedback linearization
technique. It is worth pointing out that more information
about these two parts helps achieve more satisfactory control
performance.

Due to the introduction of projection operator, it is guaran-
teed that the tracking errors of both state predictor and NNs
weights are upper bounded during theNN learning procedure.
According to Theorem 1, the upper bound of the state predic-
tion error (24) is exclusive of time. This implies a stronger
property than UUB that the transient performance of these
tracking errors maintains upper bounded especially at the
early stage of parameter adaption. Consequently, in order to
achieve fast convergence of the tracking process, it is reliable
to increase the learning rates 0f,0g without the occurrence
of parameter overshoot. In other perspective, large values of
learning rates result in high-gain feedback control, which,
in some case, could cause serious oscillations of the system
states and reduce tolerance of time delay. This limits the high-
frequency disturbance rejection ability of the closed-loop sys-
tem. On the contrary, the designed adaptive control input (23)

shares the same structure as a low-pass filter that prevents
the actuators from vibrating with high-frequency. As a result,
the deterioration in robustness resulting from large learning
rates is neutralized. This also leads to the attenuation of noises
from both states and input signals. In conclusion, the closed-
loop system with the auxiliary system (22) and adaptive
control input (23) is capable of fast parameter convergence
with good disturbance rejection performance, and works well
under certain noises. In Section V, simulation results are
shown in Fig.8, Fig.9 and Fig.10 to demonstrate this property.

IV. FLIGHT CONTROL DESIGN
In this section, aircraft dynamics (4) is reconstructed into a
better arranged nonlinear cascade form. Then, we apply the
proposed NNs-based control scheme on two cascade closed-
loop systems. With all the efforts, the aircraft is able to track
a certain trajectory from hover to high-speed flight.

A. SYSTEM RECONSTRUCTION
Define the state variables and the regulated system inputs:

x =
[
xT1 xT2 xT3 xT4

]T
=

[
pT VT

E ξT ω
T
]T

u = [T uTa ]T (25)

whereas xi = [xi1 xi2 xi3 ]T ∈ R3, i = 1, · · · , 4.
T ∈ R marks the thrust input and ua ∈ R3 marks the
regulated moment inputs. The regulated moment inputs are
obtained by:

ua =
[
ua1 ua2 ua3

]T
= Hc (26)

where mapping matrix H and deflection angles of control
surfaces c are given in (7). Since there are no derivative
terms in expression (7), we can conclude that virtual control
input ua shares the same response dynamics with practical
movements of the actuators. Subsequently, we separate the
input terms apart from the dynamic system (4) and integrate
the rest into standard nonlinear forms, let:

f1(x) =
1
m

[Fm + Fd + Fw]

g1(x3) = R

f2(x) = J−1
[
Mfan +Mf +Mg +Md +Mw + Jωsk(ω)

]
g2(x,T ) = kcsV 2

e J
−1 (27)

Eventually, we complete the system descriptions by substi-
tuting (25)(26)(27) into (4):

ẋ1 = x2

ẋ2 = g1(x3)f1 +
[
0 0 g

]T
− g1(x3)

[
0 0 T/m

]T
ẋ3 = Qx4
ẋ4 = f2 + g2(x,T )ua

(28)

B. FLIGHT CONTROL DESIGN
Essentially, the hover to high-speed transition is a process that
the aircraft continuously pitches down and accelerates to a
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high cruising speed. To this end, the objective of controller
design is to force the aircraft tracking a certain trajectory that
formulates this process.

The first 2 rows of (28) are position and velocity dynam-
ics of the aircraft, which is generally considered as system
outer-loop. Meanwhile, the last 2 rows of (28) demonstrate
the attitude dynamics of the rigid body, which is generally
regarded as system inner-loop. Together, these two loops
establish an underactuated cascade structure of the aircraft
system. Furthermore, although equations (28) can describe
the whole transition process without constructively change,
component values of the system vary greatly from the original
hover condition to the final high-speed flight condition as
aforementioned. In terms of control strategy, we apply the
nominal neural networks design in Section III on both inner-
loop and outer-loop.

1) INNER-LOOP DESIGN
The attitude dynamics is extracted from the last 2 rows of
system (28): {

ẋ3 = Qx4
ẋ4 = f2 + g2(x,T )ua

(29)

Note that the input signals are coupled with both thrust
input T andmoment inputs ua. In this paper, we only consider
ua to be the control inputs of the inner-loop while a relevant
neural network is to be designed to estimate and compensate
for the effect of T . Meanwhile, Since Q is measurable and
consist of no uncertainty, we only introduce neural networks
to reconstruct the dynamics of angular velocity x4:

ẋ4 =
[
f̄2 +WT

181

]
+

[
ḡ2 +WT

282

] (
ūa+ũa

)
(30)

In practice, neither f2, the aerodynamic moment, nor g2,
the efficiency of control surfaces is measurable. In this case,
let: f̄2 = 0, ḡ2 = g2h = const whereas g2h is the value of
g2(x,T ) at hover working point which can be easily deter-
mined by experiments. Then, the reference system of x4 is
designed as linear feedback system:

ẋ4m = g2hūa
ūa = K4 (x4d − x4) (31)

where K4 is a positive feedback gain matrix, and x4d is
the reference input of x4. Hence, the nonlinear dynamics of
angular velocity x4 can be rewritten into:

ẋ4 = ẋ4m + e4
e4 = WT

181+g2hũa+W
T
282ũa+WT

282ūa (32)

Subsequently, the auxiliary system is designed as:
˙̂x4 = ẋ4m + ê4 −Kx1

(
x̂4 − x4

)
ê4 = ŴT

181+g2hũa+Ŵ
T
282ũa+Ŵ

T
282ūa

˙̂W1 = 01Proj�1
(Ŵ1,−81

(
x̂4 − x4

)T )
˙̂W2 = 02Proj�2

(Ŵ2,−82ua
(
x̂4 − x4

)T )
(33)

Note that g2 represents the efficiency of the control sur-
faces which is positive definite. Thus, the application of (23)
on adaptive control input ũa can be simplified as:

˙̃ua = −0uaê4 (34)

Eventually, we complete the inner-loop into PD controller
by defining the reference system of x3:

x4d = Q−1
{
K3 (x3d−x3)−(g2hK4)

−1

·

(
dQ
dx3

)T
3(Qx4) x4

}
ẍ3m = −g2hK4K3x3 − g2hK4ẋ3 + g2hK4K3x3d(

dQ
dx3

)T
=

[ (
dQ
dx31

)T (
dQ
dx32

)T (
dQ
dx33

)T ]
3×9

(35)

where K3 is a positive feedback gain matrix. The notation
‘3(.)’ denotes a special operator for a vector x ∈ R3 that:

3(x) =
[
x1 · I3×3 x2 · I3×3 x3 · I3×3

]T (36)

Theorem 3: To the closed-loop system for (29) with con-
trol strategy of (31)(33)(34)(35), the state x3 (Euler angles)
tracks the reference input x3d with desired dynamics ẍ3m and
tracking error goes to zero with time.

Proof: The proof of Theorem 3 is given in Appendix D.

2) OUTER-LOOP DESIGN
By the accomplishment of the inner-loop, the Euler angle x3
always tracks the reference input x3d with bounded tracking
error x̃3 which converges to zero. In terms of outer-loop
design, we consider x3,T as the inputs to the translation
dynamics, and x3d , u1 as the inputs to the dynamic system
of x3,T . The tracking errors between x3d , u1 and x3,T are
respectively denoted as x̃3, T̃ , which are considered as input
uncertainties of the translational dynamics.{

x3 = u3 + x̃3, u3x3d
T = mu1 + T̃ , u1 = kT0�2/m

(37)

where kT0 is a constant thrust coefficient that could be arbi-
trarily chosen. In this paper, kT0 is determined as the value
of kT at hover condition which is easily acquired by exper-
iments. Subsequently, the translation dynamics is extracted
from the first 2 rows of system (28): ẋ1 = x2

ẋ2 = g1(x3)f1+
[
0 0 g

]T
−g1(x3)

[
0 0 T/m

]T (38)

Note that the gravity-excluded resultant force acting on
the aircraft can be completely measured and calculated by
an IMU sensor in practice. Based on this, different from the
inner-loop design, the main issue for outer-loop design is to
compensate for the input uncertainties defined by (37). Let:

u3 = ū3 + ũ3
u1 = ū1 + ũ1

ϒ = f1 −
[
0 0 ū1 + ũ1 + T̃/m

]T (39)
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FIGURE 7. Neural-networks-based flight control structure.

where ϒ = [ϒ1 ϒ2 ϒ3]
T denotes the acceleration due

to the gravity-excluded resultant force which are completely
measurable. In terms of the rotation matrix g1(x3), we divide
it into pure u3-related terms and uncertainty containing terms
by using the first-order Taylor expansion. First, notice that
there always exists a NN that:

g1 , (x3) = ḡ1 + g̃13
(
ũ3 +WT

383

)


ḡ1 , g1(ū3)

g̃1 ,
(
∂g1(ū3)
∂ū3

)T
=

[(
∂g1(ū3)
∂ ū31

)T (
∂g1(ū3)
∂ ū32

)T (
∂g1(ū3)
∂ ū33

)T]
3×9
(40)

where the notation ‘3(.)’ is pre-defined by (36). Then we
reconstruct the translation dynamics (38) into:

ẋ1 = x2
ẋ2 =

[
ḡ1 + g̃13

(
ũ3 +WT

383

)]
ϒ +

[
0 0 g

]T
= ḡ1ϒ1 + g̃14(ϒ)

(
ũ3 +WT

383

)
+
[
0 0 g

]T
= ẋ2m + e2

e2 = g̃14(ϒ)
(
ũ3 +WT

383

)
+ ḡ1

[
0 0 ϒ3 + ū1

]T (41)

where the reference system with desired dynamics ẋ2m for
acceleration ẋ2 is given by:

ẋ2m = ḡ1
[
ϒ1 ϒ2 −ū1

]T
+
[
0 0 g

]T (42)

And the notation ‘4’ denotes a special operator for a vector
x ∈ R3 that:

4(x) =

 x 03×1 03×1
03×1 x 03×1
03×1 03×1 x


9×3

(43)

Subsequently, the auxiliary system is designed as:

˙̂x2 = ẋ2m + ê2(ũ3, ũ1)−Kx2
(
x̂2 − x2

)
ê2(ũ3, ũ1) = g̃14(ϒ)

(
ũ3 + ŴT

383

)
+ ḡ1

[
0 0 ϒ3 + ū1

]T
˙̂W3 = 03Proj�3

[
Ŵ3,−83

(
x̂2 − x2

)T g̃14(ϒ)
] (44)

To complete the outer-loop controller, the nominal control
inputs and adaptive control inputs are given as:

˙̃u3 = −0u3
[
g̃14(ϒ)

]T ê2(ũ3, ũ1)
˙̃u1 = −0u1

[
0 0 1

]
ḡT1 ê2(ũ3, ũ1)

ū3 =
[
ū31 ū32 ū33

]T
=

[
µ1 − χ1 µ2 − χ2 x3d3

]T
ū1 =

[
0 0 −1

]
ḡT1
[
a2dx a2dy a2d3 − g

]T
(45)

where

χ1 = arctan
[

a2dy
(a2d3 − g)

]
χ2 = arctan

[
−

a2dx
(a2d3 − g) cos ū31 + a2dy sin ū31

]
µ1 = arcsin

 ϒ2√
(a2d3 − g)2 + a22dy


µ2 = arcsin

 −ϒ1√[
(a2d3−g) cos ū31+a2dy sin ū31

]2
+a22dx


a2dx = (a2d1 cos ū33 + a2d2 sin ū33)
a2dy = (−a2d1 sin ū33 + a2d2 cos ū33)

(46)
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where a2d = [a2d1 a2d2 a2d3 ]T is the desired acceleration
vector in the inertial frame, which is obtained by a feedback
form of velocity x2 including reference input x2d and diago-
nal positive definite gain matrix K2:

a2d = K2(x2d − x2) (47)

Since there are no model-linked dynamics on the first row
of (38), the controller design ends up with velocity tracking.
Theorem 4: To the closed-loop system for (38) with control

strategy of (39)(44)(45)(46)(47), the state x2 tracks the refer-
ence input x2d with desired dynamics ẋ2m = a2d and tracking
error goes to zero with time.

Proof: The proof of Theorem 4 is given in Appendix D.
It is also implied in Appendix D that the inputs x3,T of

the translational dynamics tracks the nominal inputs ū3, ū1
defined by (45) with all the input uncertainties eliminated.

The complete control structure is shown in Fig.7. Com-
bining the inner-loop and outer-loop designs, the closed-
loop system is able to track a certain trajectory which is
describe by four independent state variables [x2d x3d3 ] =
[VxE VyE VzE ψ ] (i.e., velocity in the inertial frame and
yaw angle). It is also guaranteed that during the tracking
process, the system performance follows a desired reference
system. In terms of engineering practice for the aircraft,
the reference system is usually determined as linear system
formed with PD controllers that the corresponding parame-
ters can be easily tuned at hover. During the hover to high-
speed transition process, the system performance always
tracks this reference system while encountering momen-
tous changes in component values as well as time-varying
disturbance.

V. SIMULATIONS
In this section, simulation results are presented in order to
show the performance of the proposed NNs-based controller.
The ducted fan UAV studied in its paper is numerically
modeled and equipped with the proposed control strategy
in Section IV. Dynamic system and its simulation are built
and programed in MATLABTM. The relevant aerodynamic
coefficients of the aircraft model are identified by CFD and
functional-established by cubic spline interpolation. Then,
three different simulations are conduct as follows:

A. SIMULATION 1: HOVER UNDER DISTURBANCE
In the first simulation, we intend to study the effect of
parameter uncertainties on the dynamic response of proposed
control scheme by verifying the fast convergence capacity of
the ducted fan UAV in high-frequency disturbance condition.
The aircraft is commanded to steadily hover at 10 meters’
height and head to the north (i.e. yaw angle ψ = 0).
Time-varying environmental wind disturbance, which is set
as cosine function along YE axis with amplitude of 5m/s,
is added to the dynamic model of the aircraft. Simulation
results on roll channel under different control parameters are
shown in Fig.8, including performance of angular velocity p
and NN matching result for exogenous moment effect f21.

In this simulation, taking consideration of simplicity,
the basis function is chosen as 81 = [1], and the associated
learning rate is then 01 = 01I3×3. The associated NN weight
Ŵ11 is constrained into the compact set �11 = {−3 ≤ Ŵ11
≤ 3} by projection operator. Effect of exogenous moment f21
is the first component of f2 defined by (27). 0ua1 is the first
component of gain matrix 0ua of the adaptive control input
ũa defined by (34).
Fig.8 (a) shows the environmental disturbance act on the

closed-loop system of the aircraft. Fig.8 (b) shows the perfor-
mance of angular velocity p in counteracting this disturbance.
In Fig.8 (b), the red dash curve marks the reference input
x4d1, which is the first component of x4d defined by (25).
This reference input is generated from the outer-loop of the
controller. The black curve marks the system output merely
acquired from the reference system without any influence of
the NN controller. The green curve, brown curve, and blue
curve mark the corresponding system output under different
learning rates 01 and adaptive gains 0uc1. Fig.8 (c) shows
the NN matching results for exogenous moment effect f21.
In Fig.8 (c), the red dash curve marks the real value of
f21 which is calculated from the aircraft model. The green
curve, brown curve, and blue curve mark the corresponding
NN matching results under different parameters. Apparently,
increasing the learning rate helps improve the performance
for uncertainty identification of the proposed NNs, while the
adaptive control input guarantees a competent robustness. It is
seen from the blue curve in Fig.8 (c) that the NN weight Ŵ11
is limited to �11 as the learning rate 01 increasing. As a
result, we achieve an excellent and reliable NN matching
ability for unknown terms. Consequently, shown in Fig.8 (b),
as the disturbance identification and rejection ability being
enhanced, performance for tracking certain reference input
of the closed-loop system improves. This reveal an excellent
performance and robustness of the proposed control scheme
under parameter uncertainties.

B. SIMULATION 2: HOVER TO HIGH-SPEED TRANSITION
In the second simulation, we intend to give an overview of
the hover to high-speed transition of the ducted fan UAV.
Driven by a certain trajectory, the aircraft is commanded to
accelerate at 2m/s2 along XE axis with altitude stabilized
at 10m. This course is set to start at hover and end with
horizontal velocity of 20m/s. Since the flight control strategy
in Section IV ends up with velocity control, we introduce a
simple feedback controller to generate the desired velocity
commands along YE ,ZE axis. Thus, the complete driven
trajectory is described by:

x2d1 =

{
2t, x2d1 < x2d1f
x2d1f , x2d1 = x2d1f

x2d2 = −Kp2x12
x2d3 = Kp3(x1d3 − x13)
x3d3 = ū33 = 0

(48)

where Kp2 and Kp3 are constant positive feedback gains.
x2d1f is the final horizontal velocity and x1d3 is the
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FIGURE 8. Results of simulation 1 on roll channel under different control
parameters. (a) Disturbance. (b) Angular velocity. (c) Exogenous moment
effect and its NN matching results.

desired altitude. In this simulation, x2d1f = 20m/s and
x1d3 = −10. Moreover, the basis function vector is chosen
as 81 = [α0 |VE | α20 |VE | α0 |VE |

2 α20 |VE |
2]

T
whereas

|VE | =
√
u2 + v2 + w2, cosα0 = −w/ |VE |,and the asso-

ciated learning rate is determined as 01 = diag(2,2,0.1,0.1).
It is worth pointing out that these basis functions are particu-
larly determined based on the prior knowledge of f2 in order
to reduce the neurons and show the effectiveness of the pro-
posed method. For more accurate and reliable approximation
results, more higher-order terms should be involved into 81.

The corresponding simulation results are shown in Fig.9.
Fig.9 (a)-(c) present the relevant system states during the tran-
sition. Throughout the whole process, the aircraft gradually
heads down and continuously accelerates to the final velocity
and adjusts itself to cruising flight at 20m/s. A more visual-
ized result of the flight trajectory is presented in Fig.9 (d).
Additionally, typical trajectories of NN weights are shown
in Fig.9 (e)-(h). It is seen that NN weights adapt fast from
0s to 10s and quickly converge after 10s. This due to the
fact that the flight data for NN training is not complete until
10s. After this time node, the transition is finished and the
aircraft states are stabilized. Hence, as the NN is sufficiently
trained, fast convergence for corresponding NN weights are
then observed.

C. SIMULATION 3: TRANSITION UNDER DISTURBANCE
AND NOISES
In the third simulation, we intend to verity the disturbance
rejection ability of the proposed control scheme in the

FIGURE 9. Results of simulation 2 for transition control. (a) Horizontal
velocity. (b) Altitude. (c) Pitch angle. (d) Illustration of flight trajectory.
(e)-(h) Trajectories of NN weights.

transition control. During this process, sine environmental
wind disturbance with amplitude of 5m/s is invoked into
the system. To simulate a real IMU sensing result, Gaussian
noises are added into the measurements of angular velocity
ω and resultant force ϒ in the body frame. The associated
transition course is set to start at hover and endwith horizontal
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FIGURE 10. Results of simulation 3 for transition control. (a) Wind
disturbance. (b)-(f) Results from proposed method. (g)-(k) Results from
method in [29].

velocity of 15m/s. The driven trajectory is defined by (48)
with final speed x2d1f = 15m/s and altitude x1d3 = −10.
Additionally, to show the advantage of the proposed NNs

control scheme, we conduct a comparison between the
proposed method and the adaptive method for tail-sitter UAV

proposed in [29]. The main differences between these two
methods are concluded as follows:

• We use NNs to estimate the uncertainties in this paper.
While in [29], parameters for estimate the relevant
uncertainties are designed based on the prior knowledge
of the system model.

• The adaptive input in this paper is designed into a
dynamic form to avoid adaptational actions in the
denominator. While in [29], the adaptive control law is
designed by a standard form with adaptive parameters
occurred in the denominator.

The corresponding simulation results including more
inner details about the NNs-based controller are shown
in Fig.10. Fig.10 (a) shows the environmental disturbance
act on the closed-loop system of the aircraft. Fig.10 (b)-(f)
shows the transition control results of the proposed method,
while the comparison results are given in Fig.10 (g)-(k).
Fig.10 (b)(g) show the performance of horizontal velocity
VxE . In Fig.10 (b)(g), the red dash curve marks the refer-
ence input x2d1 and the black curve marks the system state
VxE = x21. Fig.10 (c)(h) show the performance of altitude z.
In Fig.10 (c)(h), the red dash curve marks the reference input
−10 and black curve marks the system state z = x13. The
corresponding position feedback controller is defined by (48).
Fig.10 (d)(i) show the performance of pitch Euler angle θ .
In Fig.10 (d), the red curve marks the reference input which
is the nominal attitude input ū32 defined by (45), and the black
curve marks the system state θ = x32. The blue curve marks
the attitude input u32 of the outer-loop system defined by (37).
Fig.10 (e)(j) show the performance of angular velocity q.
In Fig.10 (e)(j), the red curve marks the reference input x4d2
and the black curve marks the system state q = x42. The blue
curve marks the corresponding measurement of the state with
measurement noise. Fig.10 (f)(k) show the action of thrust.
In Fig.10 (f), the red curve marks the reference input which
is the nominal thrust input ū1 defined by (45) and the black
curve marks the actual thrust T . The blue curve marks the
thrust input u1 of the outer-loop system defined by (37).
According to the simulation results shown in Fig.10, the

closed-loop system of the ducted fan reveals a good distur-
bance rejection performance. The aircraft is able to follow
the desired trajectory to accomplish the hover to high-speed
transition. Although suffering great changes on system val-
ues, the closed-loop system on attitude control (inner-loop)
still exhibits a fast and accurate performance for tracking
the reference signals, which is shown in Fig.10 (e). In the
meanwhile, it is seen from Fig.10 (d)(f) that the adaptive
inputs ũ3, ũ1 of the outer-loop effectively compensate for the
input uncertainties and make the actual input track the corre-
sponding reference signals. Consequently, in strongly gusty
environment, the aircraft’s attitude and thrust is adjusted auto-
matically to counteract the effect of wind disturbance. A good
robustness of the closed-loop system is hence revealed.

Comparing the results of the proposed method
(Fig.10 (b)-(f)) with the results of the adaptive method in [29]
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FIGURE 11. Flight test results for hover to high-speed transition.
(a) Horizontal velocity. (b) Altitude. (c) Pitch angle. (d) Angular velocity.

(Fig.10 (g)-(k)), the advantage of the proposed NNs control
scheme is obvious. Sever tracking errors of the attitude are
observed at high-speed flight in Fig.10 (i)(j). This due to fact
that the approximations of the uncertain terms f2 and g2 by the
adaptive method are not accurate enough comparing with the
NNs method in this paper. In the meanwhile, since there are
no uncertainty compensations to the outer-loop in the adap-
tive method, horizontal velocity at high-speed in Fig.10 (g)
suffers greater oscillations than that in Fig.10 (b). And the
altitude loss of the adaptive method (Fig.10 (h)) is nearly
double of that in the proposed method (Fig.10 (c)). Based on
these results, we can conclude that the proposed NNs control
scheme guarantees a more steady flight under disturbances
and noises.

VI. FLIGHT TEST
In this section, experimental results are presented from
practical flight tests (Fig.12). The ducted fan UAV studied
in this paper is mounted with inertial measurement unit
(IMU) and GPS to measure the relevant system states. Mod-
ules including data fusion, state estimation, communication
and control scheme are coded into the airborne processor.
The controller update and data download frequency is set as
100Hz. Taking environmental disturbance and flight safety

FIGURE 12. Flight test photographs.

into consideration, the transition course is set to start at hover
and end with horizontal velocity of 15m/s, similar to that
in simulation 3 in Section V. To implement the hover to
high-speed transition, we first launch the aircraft and make
it hover at an acceptable altitude. Then the driven trajectory
defined by (48) with final speed of x2d1f is sent to the airborne
processor to control the aircraft accomplishing a transition
process. In terms of implementation, we first choose a small
final speed such as x2d1f = 5m/s to pre-train the neural
networks. Convergent weights are set as initial values of the
weights in the next move. Continue this step until the final
speed gradually increases to the desired one x2d1f = 15m/s.
After that, the NNs are completely trained and a steady flight
is then guaranteed.

The corresponding flight test results are shown in Fig.11,
in which relevant definitions are similar to that in
simulation 3. In Fig.11 (a), the red dash curve marks the
reference input x2d1 and the black curve marks the system
state VxE = x21. In Fig.11(b), the red dash curve marks
the reference input −5.3 and black curve marks the system
state z = x13. In Fig.11 (c), the red dash curve marks the
reference input ū32 and the black curve marks the system
state θ = x32. The blue dash curve marks the attitude input
u32 of the outer-loop system. In Fig.11 (d), the red dash curve
marks the reference input x4d2 and the black curve marks the
system state q = x42. It is seen in Fig.11 (b) that the actual
altitude loss is less than 0.4m. Consistent with the simulation
results in Section V, these flight test results demonstrate that
the aircraft is capable to closely follow the mission trajectory.

VII. CONCLUSION
This paper concentrates on the transition control for hover
to high-speed-level-flight of a ducted fan UAV. During this
special process, nonlinearity and uncertainty of system val-
ues are emphasized as main issues. To tackle the problem,
we propose a novel neural-networks-based controller that
performs well in identifying uncertainties and tracking ref-
erence signals. In prior, key aerodynamic characteristics of
the transition process are presented and analyzed. Then we
model the dynamic system of the aircraft and reform it into
a cascade underactuated nonlinear structure. In the mean-
while, the nominal controller design for nonlinear system
based on neural networks is proposed and proved for stability.
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Subsequently, the proposed control strategy is applied on the
ducted fan model. As a result, the closed-loop system of the
aircraft is capable of tracking a certain trajectory with desired
dynamic performance. Three simulations are conduct in this
paper. Simulation 1 shows a fast convergence capacity of the
proposed NNs controller by hover experiments under high-
frequency disturbance. In simulation 2 and 3 we exhibit the
hover to high-speed transition, the results of which show a
good robustness of the closed-loop system. Furthermore, this
transition process is successfully performed by practice flight
test. In all, we conclude that the proposed control scheme is
feasible and effective.

APPENDIX A
PROJECTION OPERATOR
Definition A.1:Consider a convex compact set with a smooth
boundary given by:

Sc = {θ ∈ Rn
|f (θ ) ≤ c}, 0 ≤ c ≤ 1

where f : Rn
→ R is a smooth convex function given by:

f (θ ) =
(ε0 + 1) θT θ − θ2max

ε0θ
2
max

with θmax being the norm bound imposed on the vector θ , and
ε0 > 0 is the projection tolerance bound of our choice. The
projection operator is defined as:

Proj�(θ , y) =



y if f (θ ) < 0
y if f (θ ) ≥ 0 and ∇f T y ≤ 0

y−
∇f
‖∇f ‖

〈
∇f
‖∇f ‖

, y
〉
f (θ )

if f (θ ) ≥ 0 and ∇f T y > 0

where � = S1 = {θ ∈ Rn
|f (θ ) ≤ 1}.

Property A.1: The projection operator does not alter y if
θ belongs to S0. In the set {θ ∈ Rn

|0 ≤ f (θ ) ≤ 1}, if
∇f T y > 0, the projection operator subtracts a vector normal
to the boundary �̄f (θ ) = {θ ∈ Rn

|f (θ̄ ) = f (θ )}, so that we
get a smooth transformation from the original vector filed y
to an inward or tangent vector field for � [36].
Property A.2: Given the vectors y ∈ Rn, θ ∈ � and

θ∗ ∈ S0 ⊂ � ⊂ Rn we have [36]:(
θ − θ∗

)T (Proj�(θ , y)− y
)
≤ 0 (49)

In this paper, we extend these definition and property to a
matrix form.
Definition A.2: The projection operator of a matrix is

defined as:

Proj�(2,Y) =
[
Proj�1

(θ1,y1) · · · Proj�m (θm,ym)
]
(50)

where 2 = [θ1 · · · θm ] ∈ Rn×m with θ i ∈ �i ⊂ Rn, and
y = [y1 · · · ym ] ∈ Rn×m, and � = {2 ∈ Rn×m

|θ i ∈ �i}.

Property A.3: Given the matrices Y ∈ Rn×m,2 ∈ Rn×m

with θ i ∈ �i, and 2∗ =
[
θ∗1 · · · θ

∗
m
]
∈ Rn×m with θ∗i ∈

S0 ⊂ �i, we have:

tr
[(
2−2∗

)T (Proj�(2,Y)− Y
)]
≤ 0 (51)

APPENDIX B
PROOF OF THEOREM 1
For the nonlinear system (14), recall the parameterized
system (19):

ẋ =
[
f̄(x)+WT

f 8f(x)
]
+

[
ḡ(x)+WT

g8g(x)
] (

ū+ ũ
)

and the auxiliary system (22):
˙̂x = f̄(x)+ ŴT

f 8f + ḡ(x)u+ ŴT
g8gu−Kx

(
x̂− x

)
˙̂Wf = 0fProj�f

(Ŵf,−8f
(
x̂− x

)T )
˙̂Wg = 0gProj�g (Ŵg,−8gu

(
x̂− x

)T )
Define the tracking error x̃ = x̂ − x, W̃f = Ŵf −Wf and

W̃g = Ŵg−Wg. Then, we can derive the error dynamics as:
˙̃x = W̃T

f 8f + W̃T
g8gu−Kxx̃

˙̃Wf = 0fProj�f
(Ŵf,−8fx̃T )

˙̃Wg = 0gProj�g (Ŵg,−8gux̃T )

(52)

Consider the following Lyapunov function candidate:

V (t) =
1
2
x̃T x̃+

1
2
tr(W̃T

f 0
−1
f W̃f)+

1
2
tr(W̃T

g 0
−1
g W̃g) (53)

where tr denotes the trace of matrix. Apparently, V (t) ≥ 0 as
0f,0g are positive definite diagonal matrices. UsingProperty
A.3 of projection operator, one can obtain: W̃T

f

[
8fx̃T + Proj�f

(Ŵf,−8fx̃T )
]
≤ 0

W̃T
g

[
8gux̃T + Proj�g (Ŵg,−8gux̃T )

]
≤ 0

(54)

Then, we calculate the time derivative of the Lyapunov
function along the trajectories of the system as:

V̇ (t) = x̃T ˙̃x+ tr(W̃T
f 0
−1
f
˙̃Wf)+ tr(W̃T

g 0
−1
g
˙̃Wg)

= x̃T
(
W̃T

f 8f + W̃T
g8gu−Kxx̃

)
+ tr

[
W̃T

f 0
−1
f 0fProj�f

(Ŵf,−8fx̃T )
]

+ tr
[
W̃T

g 0
−1
g 0gProj�g (Ŵg,−8gux̃T )

]
=

[
x̃T W̃T

f 8f

]
+

[
x̃T W̃T

g8gu
]
− x̃TKxx̃

+ tr
[
W̃T

f Proj�f
(Ŵf,−8fx̃T )

]
+ tr

[
W̃T

g Proj�g (Ŵg,−8gux̃T )
]

= tr(8fx̃T W̃T
f )+ tr(8gux̃T W̃T

g )− x̃TKxx̃

+ tr
[
W̃T

f Proj�f
(Ŵf,−8fx̃T )

]
+ tr

[
W̃T

g Proj�g (Ŵg,−8gux̃T )
]
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= tr
{
W̃T

f

[
8fx̃T + Proj�f

(Ŵf,−8fx̃T )
]}

+ tr
{
W̃T

g

[
8gux̃T + Proj�g (Ŵg,−8gux̃T )

]}
− x̃TKxx̃

= −x̃TKxx̃ ≤ 0 (55)

This shows the stability in the sense of Lyapunov so that x̃,
W̃f and W̃g are bounded. Furthermore, we have:

1
2

∥∥x̃∥∥2 ≤ V (t) ≤ V (0) ≤ 1
2
λmax(0

−1
f )tr(W̃T

f (0)W̃f(0))

+
1
2
λmax(0−1g )tr(W̃T

g (0)W̃g(0)) (56)

where ‘λmax’ denotes the maximum eigenvalue of matrix.
The designed projection operators in (22) guarantee that
Ŵf ∈ �f, Ŵg ∈ �g [35]. Then according to Definition A.1,
one can obtain:

1
2
λmax(0

−1
f )tr(W̃T

f (0)W̃f(0))

≤
1
2
λmax(0

−1
f )Wfmax

1
2
λmax(0−1g )tr(W̃T

g (0)W̃g(0))

≤
1
2
λmax(0−1g )Wgmax (57)

with

Wfmax4
(
W2

f1max +W2
f2max + · · · +W2

fnmax

)
Wgmax4

(
W2

g1max +W2
g2max + · · · +W2

gnmax

)
(58)

where Wfimax,Wgimax are the norm bounds of vec-
tors Wfi,Wgi defined by Definition A.1 in Appendix A.
Substituting (57), (58) into (56) we can obtain the bound of
the prediction error x̃:∥∥x̃∥∥2 ≤ λmax(0

−1
f )Wfmax + λmax(0−1g )Wgmax (59)

The second derivative of the Lyapunov function V (t) is
derived as:

V̈ (t) = −2x̃TKx ˙̃x (60)

Recalling (52), the boundness of x̃, W̃f and W̃g verifies
the boundness of ˙̃x and hence of V̈ (t). This implies that V̇ (t)
is uniformly continuous. According to Barbalat’s Lemma,
we have limt→∞ V̇ (t) = 0, which leads to limt→∞ x̃ =
0. Since ˙̃x is uniformly continuous, the application of Bar-
balat’s Lemma also gives us limt→∞ ˙̃x = 0. Consequently,
we can conclude that the states and dynamics of the auxiliary
system converge to those of the original nonlinear system.
This complete the proof.

APPENDIX C
PROOF OF THEOREM 2
Recall the parameterized system (19) with desired dynamic
performance ẋm(16):

ẋ = ẋm + e

e = WT
f 8f(x)+ḡ(x)ũ+WT

g8g(x) ˜u+W
T
g8g(x)ū (61)

And the auxiliary system (22):
˙̂x = ẋm + ê(ũ)−Kxx̃

ê(ũ) = ŴT
f 8f+ḡ(x)ũ+ Ŵ

T
g8gũ+ ŴT

g8gū
˙̂Wf = 0fProj�f

(Ŵf,−8f(x)
(
x̂− x

)T )
˙̂Wg = 0gProj�g (Ŵg,−8g(x)u

(
x̂− x

)T )
(62)

Comparing (61) with (62), one obtain:

e = −˙̃x−Kxx̃+ ê(ũ) (63)

According to Theorem 1, as t → ∞, one has ˙̃x → 0 and
x̃ → 0. Therefore, e → 0 is equivalent to ê → 0. First,
the time derivatives of ê along input ũ is derived as:

˙̂e(ũ) =
(
∂ ê
∂ũ

)T
˙̃u =

[
ḡ(x)+ ŴT

g8g

]
˙̃u (64)

Consider the following Lyapunov function candidate:

V (t) =
1
2
êT ê ≥ 0 (65)

And subsequently we calculate the time derivative of the
Lyapunov function:

V̇ (t) = êT ˙̂e = êT
[
ḡ(x)+ ŴT

g8g

]
˙̃u (66)

Substituting (23) into (66) yields:

V̇ (t) = −êT
[
ḡ(x)+ ŴT

g8g

]
0u

[
ḡ(x)+ ŴT

g8g

]T
ê ≤ 0

(67)

Note that V̇ (t) = 0 if and only if ê = 0. By Lyapunov
theory, we can conclude that the equilibrium point ê = 0 is
asymptotically stable (i.e. limt→∞ ê = 0), which is equiva-
lent to e→ 0 as aforementioned. This complete the proof.

APPENDIX D
PROOF OF THEOREM 3 AND THEOREM 4
Recalling the closed-loop system for (29) with control strat-
egy of (31)(33)(34)(35), the second derivative of x3 is derived
as:

ẍ3 =
d (Qx4)

dt

= Qẋ4 +
(
dQ
dx3

)T
3(ẋ3) x4

= Qg2hK4

(
Q−1K3 (x3d−x3)− x4

)
+Qe4

−Qg2hK4 (g2hK4)
−1Q−1

(
dQ
dx3

)T
3(Qx4) x4

+

(
dQ
dx3

)T
3(ẋ3) x4

= ẍ3m +Qe4
e4 = WT

181+g2hũa+W
T
282ũa+WT

282ūa (68)

According to Theorem 1 and Theorem 2, we have
limt→∞ e4 = 0, which is equivalent to ẍ3 → ẍ3m. Note
that the expression of ẍ3m by (35) is a stable linear system.
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Then the equilibrium point of x3 is resolved from ẍ3m = 0,
which is consequently x3 = x3d . This complete the proof of
Theorem 3.
Recalling the closed-loop system for (38) with control

strategy of (39)(44)(45)(46)(47), substituting (45)(46) into
(42) and recall the expression of g1 by (1), one obtain:

ẋ2m = a2d = K2(x2d − x2) (69)

Let x̃2 = x̂2 − x2, W̃3 = Ŵ3 −W3. Then, we can derive
the error dynamics as:{

˙̃x2 = g̃14(ϒ)W̃T
383 −Kx2x̃2

˙̃W3 = 03Proj�3

[
Ŵ3,−83x̃T2 g̃14(ϒ1)

] (70)

According to Theorem 1, we have x̃2 → 0, ˙̃x2 → 0. The
time derivative of x2 is derived as:

ẋ2 = (ẋ2m + e2) = K2(x2d − x2)+ e2
e2 = −˙̃x2 −Kx2x̃2 + ê2(ũ3, ũ1)

˙̂e2 =
(
∂ ê2
∂ũ3

)T
˙̃u3 +

(
∂ ê2
∂u1

)T
˙̃u1

= g̃14(ϒ) ˙̃u3 + ḡ1
[
0 0 1

]T ˙̃u1 (71)

According to Theorem 2, we have limt→∞ e2 = 0, which
leads to ẋ2 → ẋ2m. Note that linear system ẋ2m is asymptot-
ically stable. Then equilibrium point of x2 is resolved from
ẋ2m = 0, which is consequently x2 = x2d . This complete the
proof of Theorem 4.
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