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ABSTRACT Product integration (PI) rules are well known numerical techniques that are used to solve
differential equations of integer and, recently, fractional orders. Due to the high memory dependency of
the PI rules used in solving fractional-order systems (FOS), their hardware implementation is very difficult
and resources-demanding. In this paper, modified versions of the PI rules are introduced to facilitate their
digital implementations. The studied rules are PI rectangular, PI trapezoidal, and predict-evaluate-correct-
evaluate (PECE) rules. The three modified versions of the PI rules are validated using a benchmark system
of differential equations for different sizes of the memory window to show the effect of the window size
on the solution accuracy. Additionally, the three modified versions of the PI rules are used to simulate a
novel fractional-order chaotic system (FOCS) where its bifurcation diagrams are discussed with the window
length parameter. The chaotic system is then implemented on a Field Programmable Gate Array (FPGA).
There are only a few trials in literature to implement the fractional PECE algorithm on FPGA, nevertheless,
the proposed FPGA realization is compared with the most recent of these trials. The FPGA implementations
of the three PI rules are made using Xilinx ISE 14.7 on Artix 7 kit. The achieved throughput are 1280
Mbits/sec for PI rectangular, 128.8 Mbits/sec for PI trapezoidal, and 129.12 Mbits/sec for fractional-order
PECE.

INDEX TERMS Chaotic system, FPGA, fractional calculus, fractional-order systems, product integration
rules.

I. INTRODUCTION
The origins of fractional calculus date back to the beginnings
of calculus itself. The idea started in a correspondence in
1695 between Leibniz and L’Hopital, where they discussed
the possibility of raising the differential operator to the power
of 1/2 [1], [2]. Fractional calculus is the study of non-
integer order derivatives and integrals where the order can
be rational, real, or even complex [1]. Over the last few
decades, researchers showed a huge interest in the study
of FOS due to their flexibility and their ability to model
systems with memory dependency [3]. Also, another advan-
tage of fractional-order modeling is that it regenerates closer
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responses to the real system while maintaining more compact
mathematical formulations than the integer-order counter-
parts [1]. This advantage is a direct result of the additional
tunability attained by introducing fractional orders as new
model parameters. Engineering application of FOS includes:
bioengineering [4]–[6], control [7]–[10], filters [11], [12],
oscillators [13], [14], energy [15], [16], encryption [17], and
chaos [18]–[20].

Chaos is an interesting phenomenon that has a quasi-
random behavior [21]. It presents nonlinear dynamical sys-
tems that are highly sensitive to initial conditions [22], where
a minor change in input leads to a significant difference in
the output [18]. Chaos theory focuses on systems such as
the stock market, weather, neural networks, biology, security,
and encryption [23], [24]. A chaotic system can be either
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continuous (usually called chaotic attractors) or dis-
crete (usually called chaotic maps) [18], [25]. Lorenz
first described the chaos theory in the 1960s by pre-
senting a butterfly attractor while working on weather
prediction [26]. In 1975, Li et al. have stated sim-
ple chaos models for describing similar behavior [27].
Lately, new categories of chaotic systems, self-excited,
and hidden attractors have been proposed in [28], [29].
Chaotic systems can be implemented using analog integrated
circuits or even at the transistor level [30], [31]. However,
due to the non-linearity and to avoid deviation of the chaotic
systems parameters, it is preferred to digitally implement the
chaotic systems. Mainly, FPGA chips have been utilized in
the realization of chaotic generators. FPGAs have a vital
position in digital communications and encryption systems
due to attributes like reprogrammability and high speed [32].

FPGAs intuitively grant rapid prototyping for Application-
Specific Integrated Circuit (ASIC) in low to medium pro-
duction [33]. The time for design-implement-test-debug
cycle may take only hours not months as in ASIC, there-
fore, the modification in the design will be easier [34].
Also, low power consumption, low cost, easy modification,
real-time computing, and high capacity are inherent mer-
its of FPGAs [33]. Additionally, FPGA is characterized by
its flexibility due to the predesigned Configurable Logic
Blocks (CLB) that is used in industrial applications that
match the aimed requirements [35], and the parallel structure
which makes it appropriate for high-speed applications, fur-
thermore it outruns microprocessors. Besides, FPGAs clock
rates work in the hundreds of MegaHertz (MHz). According
to the characteristics of FPGA, it is the most suitable tech-
nology for hardware realization of complex systems, that can
surpass the microprocessor by a ratio of 100 to 1 based on the
system implementation [36].

Fractional-order models increase the complexity of the
dynamic behavior of systems. Accordingly, the alliance of
chaos theory and fractional calculus to have FOCS, makes the
behavior of the systems more complex. Therefore, these sys-
tems could be used in various applications such as synchro-
nization and control [37], encryption [38], economics [39],
and signal generators [40]. Evaluating solutions of fractional
differential equations (FDEs) accurately and efficiently is
much more complicated than the traditional integer-order
case. Also, popular software packages don’t provide this
option as built-in functions [41]. So researchers in this field
have to write their codes to solve fractional-order differ-
ential equations numerically [41]. The persistent memory
of the fractional-order differ-integral operators is one of
the most difficult problems faced when coding a numerical
technique that solves FDEs due to being very computation-
ally exhaustive [42]. Based on this, the numerical methods
for solving FDEs are not ready, in its original form, to be
implemented on hardware platforms like micro-controllers
or FPGAs. So, some manipulations and trade-offs must be
made to achieve this goal, like the use of the short memory
principle [43], [44].

There are different implementations for fractional-order
operators on FPGA. Two different approximations for
fractional-order operators to realize FOS on FPGA were
presented in [36]. Another approximation to control DC
motor using a fractional-order PI controller was imple-
mented on FPGA in [45]. Hardware implementation of
the Grünwald-Letnikov (GL) differ-integral was introduced
in [44] for different memory sizes on FPGA. Also, based
on the GL operator, FPGA implementation of integra-
tor/differentiator was presented in [7]. Furthermore, Infinite
Impulse Response (IIR) was used to implement fractional-
order operators in [46]. Moreover, the LABVIEW envi-
ronment was used to implement fractional-order operators
using GL technique on FPGA, then connecting FPGA with
an external circuit to realize fractional-order Proportional
Integral Differential (FOPID) controller. Direct Torque Con-
trol (DTC) inductionmotor was controlled through the imple-
mented controller on FPGA using MATLAB/Simulink tool
in [47]. Also, FPGA implementation of digital controllers
was realized for power electronics as Space Vector Pulse
Width Modulation (SVPWM) using MATLAB/Simulink and
HDL coder in [48]. In [49], chaos control of fractional-
order motor using sliding mode controllers was implemented
on FPGA. The generation of double-scroll chaotic attractor
based on fractional-order unstable dissipative systems was
introduced in [50]. Various fractional-order chaotic oscilla-
tors were implemented on FPGA using the GL method [51].
Based on the auto-regressive filter, a simple design of
frequency hopping chaotic generator was implemented on
FPGA in [52]. Fractional-order Liu system was realized on
FPGA with topological horseshoe analysis in [53].

Most of the time domain based FPGA implementations of
chaotic systems that did not use MATLAB/ Simulink code
generation were based on the GL fractional differ-integral
and its associated numerical method [44]. The other time
domain based numerical methods, to the best of the authors’
knowledge, were not discussed for FPGA implementation.
Hence, this paper discusses the modification of the product
integration (PI) rules to prepare them for hardware imple-
mentation by employing the short memory principle. This
paper presents three different FPGA implementations of a
fractional-order multi-scroll attractor based on three different
product integration rules. Modified versions of the product
integration rules are proposed to allow the usage of the short
memory principle, which facilitates the hardware implemen-
tation of the FOS on FPGA. Three different algorithms are
used to realize the multi-scroll chaotic attractor on FPGA,
which are: PI rectangular, PI trapezoidal, and the fractional-
order predictor-corrector scheme. The same approaches can
be applied to implement other FOS on hardware.

The paper is organized as follows: section II presents the
theoretical background of the numerical techniques used in
solving FDEs, the proposed modified numerical techniques
which are ready for FPGA implementation, and numeri-
cal validation of the proposed methods. The multi-scroll
chaotic attractor used for hardware realization and FPGA
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implementation with its results of the three algorithms is
discussed in Section III. Finally, the concluding remarks of
this work are summarized in Section IV.

II. THEORETICAL BACKGROUND
The definitions of the fractional-order differ-integrals are
numerous and ever-increasing. They have recently been cat-
egorized into four classes: the classical definitions (F1),
the modified definitions (F2), the local definitions (F3),
and the definitions with non-singular kernel (F4) [54]. The
Caputo definition belongs to the F1 class and is given as [55]:

CDαt0 f (t) =
1

0(m− α)

∫ t

t0
(t − τ )m−α−1f (m)(τ )dτ, (1)

where m− 1 < α ≤ m, m ∈ N. It can be seen as the m−α
order fractional integral of the m-th integer order derivative
of the function f (t).

In practice, the Caputo definition is preferred over other
definitions of the F1 class as it uses integer order initial con-
dition in its Laplace transformwhile the others use fractional-
order ones [55]. This is due to the fact that researchers
are accustomed to measuring integer order initial conditions
rather than fractional-order ones.

The initial value problem for an FDE that is described by
the Caputo derivative is given by [56]:
CDαt0y(t) = f (t, y(t)),

y(t0) = y0, y′(t0) = y(1)0 , . . . , y
(m−1)(t0) = y(m−1)0 , (2)

where f (t, y(t)) is a continuous function and y0, y
(1)
0 , . . . ,

y(m−1)0 are the set of integer order initial conditions.
Applying the Riemann-Liouville fractional integral to both

sides of Eqn.(2) yields [41]:

y(t)=Tm−1[ y; t0](t)+
1

0(α)

∫ t

t0
(t−τ )α−1f (τ, y(τ ))dτ, (3)

where Tm−1[y; t0](t) = y0 for 0 < α < 1. Eqn.(2) is known
as weakly singular Volterra integral equation (VIE). VIEs
are a well studied topic and there are several theories and
numerical techniques associated with them [41].

Step-by-step numerical techniques used for solving dif-
ferential equations are either one-step or multi-step. In the
former, the approximation result of the solution at only the
previous step is used to evaluate the current step. Whereas,
in the latter, more than one previous step is used to evaluate
the current step. Fractional differential equations are known
for their memory dependency, which makes choosing multi-
step methods for their solutions a must. These multi-step
methods can be considered a convolution quadrature given
in general as [41]:

yn = φn +
n∑
j=0

cn−j f (tj, yj), (4)

where φn and cn are known coefficients that depend on the
employed technique and tn = t0 + nh is the equally spaced
grid with h > 0. There are only two classes of multi-step

methods that were studied in the literature: product integra-
tion rule and fractional linear multi-step methods [41]. This
work is concerned with the PI rules only.

A. ORIGINAL PI RULES
Based on the PI rules, the solution of the Eqn.(3) can be
written in a piece-wise manner as [56]:

y(tn) = y0 +
1

0(α)

n−1∑
j=0

∫ tj+1

tj
(tn − τ )α−1f (τ, y(τ ))dτ, (5)

where 0 < α < 1. f (τ, y(τ )) is segmented to sub-intervals
[tj, tj+1] and approximated using polynomials to evaluate the
integral. Different choices of the polynomials leads to differ-
ent PI rules. Implicit or explicit rules are implemented based
on the way the integral approximation is carried out. Implicit
methods involves solving nonlinear equations as yn depends
on f (tn, yn). However, in explicit methods yn doesn’t depend
on f (tn, yn) but on f (tn−1, yn−1) and past approximates of f
and y. Hence, explicit methods are better suited for hardware
implementations.

If f (τ, y(τ )) in Eqn.(5) is approximated using a constant
value in each sub-interval, two methods will result. The
explicit PI rectangular rule is given by [41]:

yn = y0 + hα
n−1∑
j=0

b(α)n−j−1 f (tj, yj), n = 1, 2, 3, . . . (6)

where b(α)n =
(n+1)α−nα
0(α+1) . The implicit version of the PI

rectangular rule is given by [41]:

yn = y0 + hα
n∑
j=1

b(α)n−j f (tj, yj), n = 1, 2, 3, . . . (7)

If f (τ, y(τ )) in Eqn.(5) is approximated using a first order
polynomial in each sub-interval [56]:

f (τ, y(τ ))

≈ f (tj+1, yj+1)

+
τ − tj+1

h

(
f (tj+1, yj+1)− f (tj, yj)

)
, τ ∈ [tj, tj+1],

(8)

the implicit type trapezoidal rule will result and is given by:

yn = y0 + hα

ã(α)n f0+
n∑
j=1

a(α)n−j f (tj, yj)

 , n = 1, 2, 3, . . .

(9)

where

ã(α)n =
(n− 1)α+1 − nα(n− α − 1)

0(α + 2)
, (10a)

a(α)n =


1

0(α + 2)
n = 0

(n− 1)α+1 − 2nα+1 + (n+ 1)α+1

0(α + 2)
n = 1, 2, . . .

(10b)
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Formulating an explicit variant of the trapezoidal PI rule is
not a straight-forward procedure and is rarely encountered in
literature. One of these variants is given as [57]:

yn = y0 + hα

ã(α)n f0 +
n−1∑
j=1

a(α)n−j f (tj, yj)


+hα(−a0 f (tn−2, yn−2)+2a0 f (tn−1, yn−1)), n ≥ 2

(11)

The predictor corrector scheme is the result of combining
the rectangular PI explicit rule with the trapezoidal PI implicit
rule as:

yPn = y0 + hα
n−1∑
j=0

b(α)n−j−1 f (tj, yj),

yn = y0 + hα

ã(α)n f0 +
n−1∑
j=1

a(α)n−j f (tj, yj)+ a
(α)
0 f (tn, yPn )

 ,
n = 1, 2, 3, . . . (12)

This is done to avoid solving nonlinear equations in the
implicit PI rule.

B. PROPOSED FPGA READY PI RULES
The coefficients in the original version of the PI rules are
heavy-tailed, which leads to an indispensable dependency
on almost all the previous calculated samples of the solu-
tion. This is a huge drawback when it comes to hardware
realization. So, new expressions are proposed to reduce this
long memory dependency and allow the hardware to store
only a relatively small window of the past estimates. The
relative magnitudes of the originally used coefficients and
their suggested first-order differences are shown in Fig. 1.
It depicts that themagnitude of the coefficient or its first-order
difference for any value of α decreases as the iteration number
increases except at α = 1 where they remain constant. Also,
at the same iteration number, the magnitude of the coefficient
or its first-order difference decreases as α increases.

The main idea is to evaluate the expression yn − yn−1 for
each of the explicit versions of the original PI rules. The
difference between the coefficients at iteration n and at n− 1
is much less in magnitude than the coefficient itself. This
reduces the dependency on the oldest values of y.
The proposed version of the PI rectangular rule is given by:

yn = yn−1 + hα
n−2∑
j=0

(b(α)n−j−1 − b
(α)
n−j−2)f (tj, yj)

+hαb0 f (tn−1, yn−1), n ≥ 2, (13)

where the first sample, at n = 1, is calculated using Eqn. (6).
A windowed version of the modified PI rectangular rule is
given by:

yn = yn−1 + hα

 n−2∑
j=n−2−TR

(b(α)n−j−1 − b
(α)
n−j−2) f (tj, yj)


+hαb0 f (tn−1, yn−1), n ≥ TR+ 2, (14)

FIGURE 1. Comparison between the original coefficients (left), used in
the original numerical methods, and their first order differences which
are proposed for easier FPGA implementation (right).

FIGURE 2. Benchmark results of Eqn.(20), numerical solutions on the left
and their relative errors on the right, using the modified PI rectangular
rule using step size h = 0.01 at different window sizes.

where TR is the window size and the first TR+ 1 samples are
calculated using Eqn. (13).
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FIGURE 3. Benchmark results of Eqn.(20), numerical solutions on the left
and their relative errors on the right, using the modified PI trapezoidal
rule using step size h = 0.01 at different window sizes.

The modified version of the PI trapezoidal rule:

yn = yn−1 + hα(ã(α)n − ã
(α)
n−1)f0

+hα
n−2∑
j=1

(a(α)n−j − a
(α)
n−j−1)f (tj, yj)

+hαa1 f (tn−1, yn−1)− hαa0( f (tn−2, yn−2)

−f (tn−3, yn−3))+ 2hαa0( f (tn−1, yn−1)

−f (tn−2, yn−2)), n ≥ 3, (15)

where the first two samples, at n = 1 and n = 2, are calcu-
lated using Eqn. (11). A windowed version of the modified
PI trapezoidal rule is given by:

yn
= yn−1 + hα(ã(α)n − ã

(α)
n−1)f0

+hα
n−2∑

j=n−2−TR

(a(α)n−j−a
(α)
n−j−1)f (tj, yj)+h

αa1 f (tn−1, yn−1)

−hαa0( f (tn−2, yn−2)− f (tn−3, yn−3))

+2hαa0( f (tn−1, yn−1)− f (tn−2, yn−2)), n ≥ TR+ 3,

(16)

where the first TR+2 samples are calculated using Eqn.(15).
Due to hardware window limitations, the expression
ã(α)n −ã

(α)
n−1 is approximated by a rational function of the form:

ã(α)n − ã
(α)
n−1 =

p1n+ p2
n2 + q1n+ q2

. (17)

FIGURE 4. Benchmark results of Eqn.(20), numerical solutions on the left
and their relative errors on the right, using the modified PECE algorithm
using step size h = 0.01 at different window sizes.

The rational function coefficients are extracted using
MATLAB curve fitting toolbox.

As mentioned before, the predictor-corrector scheme is
a combination between the explicit PI rectangular rule and
the implicit PI trapezoidal rule. The modified version of the
PECE is given by:

yPn = yn−1 + h
α
n−2∑
j=0

(b(α)n−j−1 − b
(α)
n−j−2)f (tj, yj)

+hαb0 f (tn−1, yn−1),

yn= yn−1 + hα(ã(α)n − ã
(α)
n−1)f0

+hα
n−2∑
j=1

(a(α)n−j − a
(α)
n−j−1)f (tj, yj)

+hαa(α)0 ( f (tn,yPn )−f (tn−1,yn−1))+h
αa(α)1 f (tn−1, yn−1),

n ≥ 3, (18)

where the first two samples, at n = 1 and n = 2, are calcu-
lated using Eqn. (12). A windowed version of the modified
predictor corrector scheme is given by:

yPn = yn−1 + h
α

n−2∑
j=n−2−TR

(b(α)n−j−1 − b
(α)
n−j−2)f (tj, yj)

+hαb0 f (tn−1, yn−1),

yn= yn−1 + hα(ã(α)n − ã
(α)
n−1)f0

+hα
n−2∑

j=n−1−TR

(a(α)n−j − a
(α)
n−j−1)f (tj, yj)
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FIGURE 5. Block diagram of multi-scroll chaotic attractor.

FIGURE 6. Block diagram of the non-linear function f (w).

+hαa(α)0 ( f (tn,yPn )−f (tn−1,yn−1))+h
αa(α)1 f (tn−1,yn−1),

n ≥ TR+ 3, (19)

where the first TR+2 samples are calculated using Eqn. (18).

C. NUMERICAL VALIDATION OF THE PROPOSED
METHODS
A set of five benchmark Caputo FDEs were proposed to com-
pare performances of different numerical algorithms [58].
From these five problems, the following is chosen to bench-
mark the modified PI rules:

CD0.5
0 x(t) =

1
√
(π )

(
6
√
(y(t)− 0.5)(z(t)− 0.3)+

√
t
)
,

CD0.2
0 y(t) = 0(2.2)(x(t)− 1),

CD0.6
0 z(t) =

0(2.8)
0(2.2)

(y(t)− 0.5), (20)

where the initial conditions are x(0) = 1.0, y(0) = 0.5, and
z(0) = 0.3. The analytical solutions are given by [58]:

x(t) = t + 1, y(t) = t1.2 + 0.5, z(t) = t1.8 + 0.3 (21)

The benchmark results of Eqn. (20) using the modified
numerical methods in Eqn. (14), Eqn. (16), and Eqn(19) and
their relative errors are shown in Fig. 2, Fig. 3, and Fig. 4,
respectively. The simulations are made between t = 0 and

t = 5 at a step size h = 0.01 and different window
sizes namely: TR = 50, 100, 200, 350, and 500(the total
number of samples). The relative error levels vary signifi-
cantly over the time interval of interest and between different
implementations. The relative error levels in the modified PI
rectangular implementation is higher than the modified PI
trapezoidal rule, which in turn is higher than the modified
PECE. In case of the modified PI rectangular and trapezoidal
rules, the relative error drops down significantly around the
position where the window effect takes place, at t = h ∗ TR,
and then rises up till it reaches its maximum value at the end
of the interval (t = 5, n = 500), except for the case when the
window is the same size as the studied time interval (window
effect is removed, TR = n). However, in the case of the
modified PECE rule, the relative error rises immediately at
t = h ∗ TR without going down as in the previous two cases.
The GL based approach is not included in the comparison

because it gives complex values results when it is used to
simulate the benchmark system in Eqn. 20. The GL approach
is a generalization of the classical Euler method used in the
simulation of the integer order system [41], [56]. This can be
considered one of the main drawbacks of the GL approach
due to its lower accuracy levels when compared with other
approaches like the FO-PECE method for example [59].

III. FPGA IMPLEMENTATION OF MULTI-SCROLL
CHAOTIC OSCILLATOR
A. THEORETICAL ANALYSIS
In this section, the chaotic attractor used for hardware real-
ization is discussed. Some of the chaotic attractors generate
multi-scrolls, where they are related to a modified version of
double-scroll attractors like Chua [60]. The employed chaotic
attractor is defined as follows [61]:

CDq10 x = f (y), (22a)
CDq20 y = f (z)− f (y), (22b)
CDq30 z = −bf (y)− af (x), (22c)

where qi ∈ (0, 1), i = 1, 2, 3. f (w) is defined as f (w) =
w− g(w) where g(w) is defined in a piecewise-linear (PWL)
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FIGURE 7. Block diagram of PI-RECT method.

FIGURE 8. Block diagram of PI-TRAP method.

form as follows:

g(w) =


L + 4, w < L
8floor(w/8)+ 4, L ≥ w ≤ U
U + 4, w > U

, (23)

where U = 24 and L = −24 are integers multiples
of eight, represent the lower and upper bound of the step
function. Also, q1, q2, and q3 are the non-integer orders,
and a = 1.25 and b = 0.75 are the system parameters.

The output of the floor function returns a maximum integer
not greater than x/8.
The equilibrium points of this system can be found by

solving [61]:

f (y) = 0,

f (z)− f (y) = 0,

−bf (y)− af (x) = 0. (24)
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FIGURE 9. Block diagram of PI-RECT-TRAP method.

FIGURE 10. Hardware setup of PI-TRAP algorithm.

The solution is found to be [61]:

x∗ = y∗ = z∗ = 8i+ 4, i ∈ {±3,±2,±1, 0}. (25)

This means that the system under investigation has 73 equi-
librium points. These points appear in the simulations as the
center points of the scrolls where the attractor rotates about
but never crosses them.

The proposed system can be solved using any of the
three proposedmethods; Product IntegrationRectangular (PI-
RECT) method, Product Integration Trapezoidal (PI-TRAP)
method, and Product Integration Rectangular-Trapezoidal

FIGURE 11. Hardware implementation of (a) PI-RECT
Algorithm (b) PI-TRAP Algorithm (c) PI-RECT-TRAP Algorithm.

(PI-RECT-TRAP) method as previously discussed in
Section II

There are different types of data representation, fixed-
point or floating-point. Fixed-point is described as follows
one bit for sign, bits for integer part and bits for the frac-
tional part, while floating-point is divided as one bit for
sign, bits for exponent and bits for mantissa [62]. Subse-
quently, the floating-point seems to be similar to scientific
notation and more accurate, but fixed-point is commonly
used for hardware implementations to save cost and increase
the speed. Therefore, fixed-point representation is chosen
to implement the proposed systems to save the hardware
resources by maintaining the quality of the implementation.

Figure 5 shows the overall block diagram describing the
proposed hardware realization of the FOCS by PI-RECT or
PI-TRAPmethods. For implementing the proposed system on
FPGA, three registers are needed to save the primary states
of the system x, y, and z. Each state is computed by a com-
binational circuit using 32-bit fixed-point for each register,
divided into 7-bit and 25-bit for the integer and fractional
parts, respectively.

The nonlinear function of the system g(w) is implemented
in the PWL form with three pieces as described by Eqn. (23);
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TABLE 1. FPGA hardware resources summary.

TABLE 2. The impact of parameters variation on the chaotic behavior using PI-RECT Algorithm.

therefore, a multiplexer is required to select the operation,
where the selection lines depend on the value of w. The
hardware realization of 8floor(w/8) in Eqn. (23) is executed
by taking the four Most Significant Bits (MSBs) of the input
of the function g(w) as shown in Fig.6.

B. RECTANGULAR ALGORITHM
In Fig.7, an illustration of the PI-RECT module is presented.
The first values of the three main states of the system are
initialized as (x = 0.01, y = 0.01, and z = 0.01). Then
the second iteration is calculated as in Eqn.6

For implementing the proposed algorithm, LUT1 (see
Fig. 7) is used to store the difference of (b(α)n−j−1 − b(α)n−j−2)
as stated by Eqn.14 labeled by bn_diff in Fig.7.
Txi is the combinational circuit required to compute the

numerical solution of the system in Eqn.22. In Fig.7, Txi is
multiplied by the coefficients from bn_diff0 to bn_diffn−1.
dataxi in LUT2 is used to save the values of the adder
from Txibn_diff0 + dataxi to Txibn_diffn−1 + dataxn−1.
Then, the result from the adder is added to Txibn0, and
multiplied by hq1 . The output of every clock cycle is taken as
Txibn_diff0 + datax0.

C. TRAPEZOIDAL ALGORITHM
The first values of the three main states of the system are
initialized as (x_c = 0.01, y_c = 0.01, and z_c = 0.01).
Then, the second and the third iterations are implemented as
in Eqn.11.

Figure 8 shows the implementation of the proposed
algorithm where three LUTs are employed. LUT1 is used
to store the difference of (ã(α)n − ã(α)n−1), while LUT2 is
used to store the difference of (a(α)n−j − a(α)n−j−1) as
stated by Eqn. 16. LUT3 is used to store the values
from Txian_diff0 + dataxi to Txian_diffn−1 + dataxn−1.
Also, three registers are used to save Txi−1,Txi−2,
and Tx1.

After preparing the required LUTs (LUT1, LUT2, and
LUT3) and registers (Txi, Txi−1, and Txi−2), the combina-
tional circuit is ready to calculate the main states of the FOCS
using the trapezoidal method.

The implementation of PI trapezoidal algorithm depends
on the computed Txi, where i represents the real-time, which
makes PI-TRAP unrealizable on FPGA after the window size.
Therefore, Eqn.17 is a curve fitted equation used after the
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TABLE 3. The impact of parameters variation on the chaotic behavior using PI-TRAP Algorithm.

TABLE 4. The impact of parameters variation on the chaotic behavior using PI-RECT-TRAP Algorithm.
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TABLE 5. Bifurcation diagrams of the three algorithms (window size is the bifurcation parameter).

window size to make the PI-TRAP algorithm applicable on
FPGA.

D. RECTANGULAR-TRAPEZOIDAL ALGORITHM
The Predict Evaluate Correct Evaluate (PECE) method
is the combination between the two previous algorithms,
PI-Rectangular and PI-Trapezoidal. For implementing the
proposed algorithm, three LUTs are needed to store the coef-
ficients of both rectangular and trapezoidal methods. 26-bit
registers are used, divided into 2-bit and 24-bit for the integer
and the fractional parts, respectively.

The first values of the three main states of the system are
initialized as (x_c = 0.1, y_c = 0.1, and z_c = 0.2). The sec-
ond iteration of this algorithm is calculated as in Eqn. 12.
After that the algorithm is as follows: Txi is computed then
transferred to the PI-RECT section. Then, it is added to the
previously calculated value from the PI-TRAP algorithm.
The calculated value then passes by the f (y) block to compute
the Txi+1. Last, Txi+1 passes by PI-TRAP and is added to the
value of the previously calculated value from the PI-TRAP
algorithm (xi−1).
For the PI-RECT-TRAP algorithm, g(w) is implemented

as a function in the same module not as a separate module
as in PI-RECT and PI-TRAP algorithms. Also, in Fig. 5,
the PI-RECT/PI-TRAP part, and in Fig. 9, the PI-RECT and
the PI-TRAP parts, are sections from the system module not
separated ones.

E. RESULTS AND DISCUSSION
The proposed algorithms (PI-RECT, PI-TRAP, and PI-RECT-
TRAP) are realized using Verilog hardware description lan-
guage, Xilinx ISE 14.7, Pmod DAC2, digital Oscilloscope
DPO 4104, and Xilinx FPGA Artix-7 XC7A100T. Each
algorithm is verified using a testbench, by importing the
data from RTL simulation and plotting it using MATLAB.
An Oscilloscope is used to plot the fractional-order multi-
scroll chaotic attractor, where a digital to analog converter
must be used to be connected to the JTAG interface of FPGA.
This interface produces two serial data outputs, and each is
12-bit sent serially to the Pmod DAC2 that is connected to
the oscilloscope for showing the chaotic attractor.

Figure 10 shows the hardware setup of one of the proposed
algorithms while Fig. 11 presents the x − y plane of the
chaotic attractor generated using the proposed algorithms
(PI-RECT, PI-TRAP, and PI-RECT-TRAP) for window size
equal to 20. Hardware resources comparison between the
three methods is presented in Table 1. Regarding the LUTs,
the utilization percentages out of 63400 LUTs are 3.4%, 30%,
and 33.06% for PI-RECT, PI-TRAP, and PI-RECT-TRAP,
respectively. For the slice registers, the utilization percentages
out of 126800 are 1.029%, 1.78%, and 1.99% for PI-RECT,
PI-TRAP, and PI-RECT-TRAP, respectively. As Expected,
the PI-RECT-TRAP implementation uses the most resources
due to its complexity as it can be seen as a modified com-
bination of the PI-RECT and PI-TRAP implementations.
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The performance can also be measured using the throughput
parameter, which represents the output data per second. It is
calculated by multiplying the clock speed with the number of
output bits (32-bit). Consequently, the achieved throughput
are 1280 Mbits/sec for PI rectangular, 128.8 Mbits/sec for PI
trapezoidal, and 129.12 Mbits/sec for fractional-order PECE.

Tables 2, 3 and 4 present the chaotic system behavior at
different values of the system parameters and window sizes.
The color of each graph changes from dark blue to cyan as
time progresses. All simulations in these tables are made at
h = 0.0625 and simulation duration equals to
tf = 10000 seconds. It can be seen that the newly introduced
window size parameter can have a significant effect on
the number and the size of scrolls generated during fixed
simulation time and the stability of the system. The system
response can change from chaotic to stable or from chaotic to
unstable by only changing the window size.

Bifurcation diagrams in Table 5 are used to validate the
effect of window size on the chaotic system behavior. From
the window size perspective, three different cases are cho-
sen to be discussed. For (α = 1, β = 0.8 γ = 1,
a = 1.1 and b = 0.7), the system is chaotic for all window
sizes (TR, TR_P, or TR_C) from 1 to 200, which is also seen
from the bifurcation diagram in the first column of Table 5.
Regarding the horizontal spaces in the bifurcation diagrams,
in Table 5, they represent the equilibrium points of the system
that are mentioned in Eqn.25. For (α = 0.9, β = 0.8
γ = 1, a = 1.5 and b = 0.7), the system is chaotic when
it is solved by PI-RECT method. However, in the case of
PI-TRAP and PI-RECT-TRAP, the system is only chaotic
for a limited range of TR_C and TR. Bifurcation diagrams,
in Table 5, make it more obvious that after 20, when window
size equals 23, the system starts to be unstable. Finally, For
(α = 0.9, β = 0.8 γ = 1, a = 2.5 and b = 1.7), the system
becomes stable as the window size increases.

When comparing the proposed design in this work with its
recent counterpart introduced in [62], two important distinc-
tions are found. The first one is the usage of memory. The
authors in [62] used a memory of length 256 to represent
the window size of the fractional operator while the proposed
FPGA design in the current manuscript doesn’t use memory
at all. The second difference the latency. The total latency
in [62] is 272 clock cycles which is very big compared to the
latency of only 1 clock cycle observed in the proposed FPGA
design.

IV. CONCLUSION
This work presented an FPGA realization of the fractional-
order operator based on the product integration rules, with
a modification in the PI rules to make it suitable for hard-
ware realization. A multi-scroll chaotic attractor was real-
ized on FPGA using the proposed methods (PI rectangular,
PI trapezoidal, and predict-evaluate-correct-evaluate). The
results of the systems based on the three algorithms were
presented on a digital Oscilloscope. A comparison between
the three algorithms from the hardware resources perspective

was presented. The proposed algorithms are generic meth-
ods that can be used to realize any FOS on FPGA.
Future directions might include using the proposed FPGA-
ready techniques in other applications like encryption. Also,
the proposed modifications can be applied to the multi-
corrector numerical techniques.
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