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ABSTRACT This paper studies a complex parallel scheduling problem with non-crossing constraint,
sequence dependent setup times, eligibility restrictions, and precedence relationships motivated by reclaimer
scheduling in dry bulk terminals. In a stockyard of any dry bulk terminal, stockpiles are handled by
reclaimers. Therefore, improving the operational efficiency of reclaimers is critical for the overall perfor-
mance of these terminals which are struggling with increasing workload. We study the variants of this
problem with and without stacking operations. For each variant, we present a lower and an upper bound.
A strong lower bound is obtained by relaxing the non-crossing constraint and solving the resulting problem
to the optimality. While this relaxation still addresses a challenging scheduling problem, proposed arc-time-
indexed formulation copes with the instances of practical size. We develop a novel constraint programming
formulation to provide an upper bound for the problem. Computational experiments show this robust
approach is able to generate near-optimal schedules for different stockyard configurations within a minute.

INDEX TERMS Parallel machines scheduling, mathematical programming, reclaimer scheduling, bulk
terminals.

I. INTRODUCTION
Bulk terminals are seaside facilities in which agricultural
products and natural resources are stored and transshipped
in very large volumes. Most of the cargo handled in these
terminals are major import and export products such as coal,
grains, and iron ore. For this reason, bulk loads consist of 83%
of all sea-freight in volume terms [1]. Despite the critical
role of bulk terminals on global trade, operational problems
of these terminals are rarely studied in the literature until
recently, in contrast to those of container terminals [2].

An ever increasing workload entails bulk terminals to
improve their operational efficiency. Such improvements
would benefit both stakeholders as the throughput of a
terminal increases and the turnaround time of vessels
decreases. Accordingly, in this paper, we address schedul-
ing of reclaimers in dry bulk terminals. In these terminals,
cargo is stored as a stockpile and is handled by automated
or semi-automated reclaimer machines, thus scheduling of
reclaimers is one of the key factors affecting overall perfor-
mance of a dry bulk terminal [3].

A reclaimer is a huge equipment that reclaims (i.e., col-
lects, recovers) stockpiles from the stockyard to be loaded to
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FIGURE 1. Overview of a stockyard of a dry bulk terminal.

mooring vessels. A stockpile is then transferred to a vessel
via a conveyor belt system. In the stockyard of a dry bulk
terminal, there are parallel stocking pads where stockpiles of
different lengths are stacked. In between each two stocking
pads, there is a rail track on which one or more reclaimers
are mounted. Figure 1 depicts a stockyard with three stocking
pads and three reclaimers, where dashed rectangles represent
stockpiles.

Reclaimer scheduling problem (RSP) is to find a schedule
for reclaiming stockpiles which are stacked in a stockyard by
using a set of reclaimers with respect to the various problem
constraints. Reclaimers are identical, and a reclaimer can

96294 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0001-9524-3459
https://orcid.org/0000-0002-8885-6721


Ö. Ünsal: Reclaimer Scheduling in Dry Bulk Terminals

FIGURE 2. Illustration of spatial restriction caused by long travel bench
cuts.

only process one task at a time. Reclaiming of a stockpile
is assumed to be non-preemptive. Therefore, this problem
is a variant of so-called parallel machine scheduling prob-
lem (PMSP) with the following properties:

• After finishing the reclaiming of a stockpile, a reclaimer
travels along the rail track to go to the area where its next
scheduled task is stacked (sequence dependent setup
times [4]).

• A reclaimer can rotate its boom to serve the pads that
are adjacent to the rail track on which it is mounted, but
it cannot reclaim the stockpiles that are located on other
pads (eligibility restriction [5]).

• Advanced reclaimers can also perform the stacking
of stockpiles. For such machines, if stacking opera-
tion is ignored, we might generate infeasible reclaimer
schedules as stockpiles are often stacked and reclaimed
dynamically during the planning horizon. Therefore,
a stockpile must be stacked by a reclaimer before its
reclaiming starts (precedence relationships).

• If there are multiple reclaimers on a rail track, they
cannot cross each other (non-crossing constraint [6]).

Even though non-crossing constraint is widely investi-
gated in the context of quay crane scheduling problem [7]
(QCSP), there are some notable differences between these
problems. In QCSP, all QCs operate on a single rail track
while reclaimers are distributed across multiple rail tracks.
While handling a container, a QC does not move along the
rail track. On the other hand, a reclaimer travels along the
rail track from one end of the stockpile to the other handmany
times to reclaim a stockpile completely (i.e., long travel bench
cuts). This brings another spatial restriction for reclaimers
located on the same rail track. Consider two such reclaimers
and two stockpiles which are located on opposite sides of
a rail track. If these two stockpiles are overlapping in time
and x-axis, they cannot be reclaimed simultaneously by these
two reclaimers since it will cause reclaimers to cross each
other (Figure 2).

As QCSP and RSP are related problems as both are the
variants of PMSP with non-crossing constraint, the complex-
ity of RSP can be derived by utilizing this relation. That is,
if we assume that there is only one pad, one rail track, two
reclaimers, and all stockpiles has a unit length, we obtain an
instance of QCAP with two QCs. The resulting problem is
strongly NP-hard [8].

In this paper, we study RSP by considering every realistic
feature of the problem; thus, it is more practical for the appli-
cation in real-world terminals. Contributions of this paper are
two fold.

• We develop an arc-time-indexedmixed integer program-
ming formulation as a relaxation of the considered prob-
lem. This formulation provides a strong lower bound by
solving the PMSP with sequence dependent setup times
and eligibility restrictions to the optimality. Therefore,
this formulation not only allows the accurate evaluation
of non-exact solution approaches for RSP, but also pro-
vides an effective solution to a challenging scheduling
problem with a practical relevance.

• To provide an upper bound for the problem,we propose a
novel constraint programming formulation. This robust
formulation generates near optimal schedules for differ-
ent stockyard configurations within a minute.

The rest of the paper is organized as follows. Section II
presents a concise review of the related literature.
In Section III, we first discuss themixed integer programming
formulation of RSP.As it can only solve small sized instances,
we develop a mixed integer programming formulation for the
relaxed problem and a constraint programming formulation
as a lower and an upper bound, respectively. In Section IV,
we perform a set of computational experiments to test the
proposed methods for different stockyard configurations.
Section V concludes the paper with discussion of future
research directions.

II. RELATED WORK
The literature on RSP is relatively new. Consequently, this
problem is only addressed by only a few papers so far.

Hu and Yao [9] propose a mixed integer programming
formulation and a genetic algorithm for RSP in which there
is only one reclaimer in each rail track. They assume that a
reclaimer can only reclaim stockpiles located in pads adja-
cent to its rail track and take travel times of reclaimers
into account. The similar problem setting is also studied by
Wang et al. [10]. They develop an approximation algorithm
with 2 worst case ratio. They also show that this ratio can be
reduced to 3/2 by assuming a task can be executed by two
reclaimers simultaneously.

van Vianen et al. [11] and Xin et al. [12] investigate stock-
yard operations considering in a realistic setting. However,
their focus is on the design of stockyard and allocation of
stockpiles that increases throughput, rather than reclaimer
scheduling operations.

Angelelli et al. [13] introduce an abstract scheduling prob-
lem inspired by the reclaiming operations. They present com-
plexity results and an approximation algorithm for a specific
setting with two reclaimers mounted on a rail track which
is located in-between two pads. This abstract problem has
one critical simplification: a reclaimer must travel from the
one end of a stockpile to the other end once with a constant
speed to reclaim this stockpile completely. However, this is
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inconsistent with the real world terminal operations where
reclaiming is usually performed by long travel bench cuts.
Kalinowski et al. [14] extend this abstract problem by relax-
ing the assumption that requires all stockpiles to be stacked
at the beginning of planning period. That is, they study the
dynamic version of the problem.

Recently, RSP is studied as a part of more compheren-
sive integrated problems of dry bulk terminals and also coal
export supply chains ( [15]–[17]). As they study complex
problems, unfortunately, they have some simplifications on
key characteristics of reclaimer operations such as assuming
each rail track has a single reclaimer. An integrated prob-
lem considering non-crossing of reclaimers are studied by
Unsal and Oguz [18]. They assume that reclaimers are per-
forming long travel bench cuts and take resulting restrictions
on the movements of reclaimers into account. However, they
ignore travel times of reclaimers as well as stacking opera-
tions. Our paper goes beyond RSP literature as it studies the
problem with all features observed in real world terminals;
specifically, a realistic stockyard structure consists of multi-
ple pads, multiple reclaimers on a rail track, eligibility restric-
tions, non-crossing constraint with the further restrictions
addressed in [18], travel times of reclaimers, and stacking
operations.

The most important feature that distinguishes RSP from
classical PMSP literature is the spatial restrictions on the
movements of reclaimers, namely non-crossing constraint.
This constraint is commonly observed in container logistics
in maritime terminals as well as warehousing operations in
automated storage and retrieval systems where cranes are
operating on a same rail track [6]. Numerous studies on
crane scheduling including Bierwirth and Meisel [19] and
Chen et al. [20] show that near optimal (or even optimal
in some cases) solutions can be quickly derived assuming
so-called unidirectional schedules. However, as we explained
in Section I, RSP differs from crane scheduling in terms of
non crossing constraint and unidirectional schedules are not
applicable for RSP.

As a lower bound for RSP, we simply relax non-crossing
constraint and exactly solve the resulting PMSP with
sequence dependent setup times and eligibility restrictions.
While there are myriad of studies that examine these two
extensions individually, to the best of our knowledge, the only
exact method for this specific setting of PMSP is proposed
by Gokhale and Mathirajan [21]. Note that the formulation
we develop strictly outperforms their MIP formulation which
embeds eligibility restrictions into processing time parameter
(see Section III-B1).

III. METHODOLOGY
A. MIXED INTEGER PROGRAMMING FORMULATION
We initially formulate a mixed integer programming (MIP)
formulation based on a network flow variable Xi1i2k , which
takes a value of 1 if stockpile i1 is processed immediately after
stockpile i1 on reclaimer k , 0 otherwise. The performance of

theMIP formulations of parallel machine scheduling problem
with network variables are shown to be ineffective compared
to the performance of time-indexed formulations as long as
the length of planning horizon is not large ([22], [23]). This
can be mainly attributed to its weak linear programming
relaxation, and the resulting RSP formulation is not an excep-
tion. On the other hand, a time-indexed formulation is imprac-
tical for RSP because of sequence dependent setup times and
non-crossing constraint. We do not present the constraints of
this formulation, since it neither can solve problem instances
of reasonable sizes nor will be utilized within the proposed
methods. In the following, we list sets and parameters that
we use throughout the paper.
J set of reclaiming tasks (stockpiles), i = {1, . . . , |J |},
C set of reclaimers, k = {1, . . . , |C|},
T set of time indices, t = {1, . . . , |T |},
A set of pads in stockyard, a = {1, . . . , |A|},
W set of rail tracks, w = {1, . . . , |W |},
U set of stock positions located on a pad, u = {1, . . . , |U |},
qk index of a rail track reclaimer k is mounted, qk ∈ W ,
pi reclaiming time of stockpile i,
ki number of stock positions required to accommodate

stockpile i,
si1i2 travel time between midpoints of stockpiles i1 and i2,
padi index of pad in which stockpile i is stacked, padi ∈ A,
posi index of stock position in which leftmost of stockpile i

is positioned,
wi weight associated with stockpile i.

For the problem with stacking operations, we introduce the
following additional sets and parameters.
J ′ extended set of tasks, i = {1, . . . , |J |, |J | + 1, . . . 2|J |},

where tasks indexed from |J | + 1 to 2|J | stand for the
stacking operations of stockpiles,

δ a constant that defines the estimated ratio of the reclaiming
time to the stacking time of a stockpile,

p′i stacking and reclaiming times of stockpiles, i.e.,

p′i =

{
pi, if i = {1, . . . , |J |}.
dpi/δe, if i = {|J | + 1, . . . 2|J |}.

w′i weight of each task, i.e.,

w′i =

{
wi, if i = {1, . . . , |J |}.
0, if i = {|J | + 1, . . . 2|J |}.

γ set of precedence relationships between stacking and
reclaiming tasks, γ = {(i1, i2)|i1 ∈ {|J | +
1, . . . , 2|J |}, i2 ∈ {1, . . . , |J |} : i1 = i2 + |J |}.

Given these sets and parameters the problem we study
can be formally defined as follows. Suppose there are |J |
tasks (i ∈ {1, . . . , |J |}) to be scheduled on |C| identical
parallel machines (k ∈ {1, . . . , |C|}). Each task must be
non-preemptively performed by a single machine. Then, RSP
is tominimize total weighted completion time of tasks subject
to following constraints:
• Machine k is eligible to perform task i if and only if
padi = qk or padi = qk + 1.
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• If machine k performs tasks i2 immediately after com-
pleting task i1, then a sequence dependent setup time
si1i2 incurs.

• If tasks i1 and i2 are performed by respective machines
k1 and k2 where qk1 = qk2 , k1 < k2, and posi1 +
leni1 > posi2 , then these two tasks cannot be performed
simultaneously because of the spatial restrictions.

For the variant of the problem with stacking operations,
there are |J | additional tasks indexed from |J |+1 to 2, which
are also subject to the above constraints. In addition, we have
the following constraint.

• Task i cannot be performed before the completion of
task |J | + i.

B. LOWER BOUND FOR RSP: MIP FORMULATION
We develop an arc-time-indexed MIP formulation that pro-
vides a strong lower bound for RSP to evaluate the per-
formance of non-exact solution methods accurately. This
type of formulation is first presented for single machine by
Sourd [24] and is extended to parallel machines by
Pessoa et al. [25]. Arc-time-indexed formulations integrate
respective advantages of network and time-indexed formula-
tions: the former keeps a sequence of tasks for each machine
while the latter provides a strong LP relaxation as it does
not need ‘‘big M’’ to model disjunctions. In the proposed
arc-time-indexed formulations that we study the lower bound
for RSP with and without stacking operations separately,
we simply relax non-crossing constraint but keep all other
features of the problem.

1) LOWER BOUND FOR RSP WITHOUT STACKING
OPERATIONS
Differently from [25], we add sequence dependent setup
times to arc-time-indexed formulation, introduce machine
index to model eligibility restrictions, and also eliminate
the variables that address the idleness of machines with the
following observation.
Definition 1: A feasible schedule is called non-delay,

if no machine is kept idle, while there is at least one task
waiting for further processing.
Proposition 1: Assuming a regular objective, there exist

an optimal solution in which each machine has a non-delay
schedule.

Proof: In any optimal solution, tasks are assigned
to machines with respect to eligibility restrictions. Given
such an assignment, the problem can be decomposed into
|C| independent single machines as we relax the non-crossing
constraint. For a single machine scheduling problem with
sequence dependent setup times, there exist an optimal sched-
ule which is non-delay [26]. �
Accordingly, we introduce a binary variable Yi1i2kt that

takes a value of 1 if machine k starts processing task i2 at
time t , immediately after processing task i1, 0 otherwise.
In this formulation, for each machine, we determine a route
over nodes where a node represents a task-time tuple (i, t),

rather than a task as in pure network flow formulation.
We also define a dummy task, indexed by 0, with null pro-
cessing time and introduce a new set J0, set of tasks extended
with dummy task 0 (J0 = J ∪0). This MIP model for relaxed
RSP is presented below.

[RSP− LB] :

minimize
∑
i1∈J0

∑
i2∈J

∑
k

∑
t

(t + pi2 )wi2Yi1i2kt

subject to:∑
i1∈J0

∑
k

∑
t

Yi1i2kt = 1 ∀i2 ∈ J (1)

∑
i1∈J0

∑
t

Yi1i2kt = 0

∀i2 ∈ J , ∀k : (padi < qk )||(padi > qk + 1)

(2)∑
i2∈J

∑
t

Y0i2kt = 1 ∀k (3)

∑
i1∈J

∑
t

Yi10kt = 1 ∀k (4)

∑
i2∈J0

Yi2i1kt −
∑
i2∈J0

Yi1,i2,k,(t+pi+si1i2 ) = 0

∀i1 ∈ J ,∀k,∀t (5)

Yi1i2kt ∈ {0, 1}

i1, i2 ∈ J0,∀k ∈ C,∀t ∈ T : i1 6= i2 (6)

The objective is to minimize total weighted completion
time of reclaiming stockpiles. The processing order of tasks
on a reclaimer can be viewed as a route of a vehicle from
the perspective of vehicle routing problem. By constraint (1),
we ensure that each node is visited once. In other words, each
task must be processed on one reclaimer by starting at one
time point. Constraint (2) prevents the ineligible stockpile
to reclaimer assignments. Constraints (3) and (4) state that
the route for each vehicle starts and ends its route at dummy
task. Flow balance constraint (5) ensures that if a vehicle
visits a node, then it must leave that node as well, excluding
the dummy task. Lastly, constraint (6) defines the domain of
Yi1i2kt variables. In this formulation, sub-tours are prevented
by flow balance constraint (5) which also keeps account of
start times, differently from the network flow formulation
of scheduling problems which require additional sub-tour
elimination constraints [27].
Proposition 2: The proposed formulation prevents

sub-tours.
Proof: Assume that there is a sub-tour of i1 − i2 − i1

for a vehicle (i.e., reclaimer) in a feasible solution to the
formulation, where i1 and i2 are not dummy tasks, and their
processing times are non-zero. In that case, if i1 starts at
time t1, then t2 starts at t + si1 + si1i2 by flow balance
constraint (5). In that sub-tour, i1 is immediately visited
after i2. Then, i1 starts at time t1 + si1 + si1i2 + pi2 + si2i1 .
However, pi2 + si2i1 > 0. It contradicts the initial assumption
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since a task can only start at one and only one time point by
constraint (1). �

2) LOWER BOUND FOR RSP WITH STACKING OPERATION
[RSP−LB] is modified such that the set of tasks (J ) with J ′ as
well as parameters pi and wi with p′i and w

′
i, respectively. Fur-

thermore, we introduce parameter δ and set of precedences γ .
In this variant of the problem, a stockpile must be stacked in
the stockyard before its reclaiming starts. Therefore, we add
the following precedence constraint into the formulation.∑
i3

∑
k

∑
t

tYi3i1kt −
∑
i3

∑
k

∑
t

tYi3i2kt ≥ pi1

∀(i1, i2) ∈ γ (7)

Note that Preposition 1 does not hold for this case because
of the precedence relationships among tasks assigned to dif-
ferent machines. Therefore, we extend the variable space
with Yi1i1kt to represent the idleness of machine k at time
t after processing task i1. For modeling purposes, we set
si1i1 = 1−pi, thus flow balance constraint (5) is still satisfied
when a machine is idle. In addition, we add the following
valid inequality that simply removes the variables in which
reclaiming task of a stockpile is an immediate predecessor of
its stacking task.∑

k

∑
t

Yi2i1kt = 0 ∀(i1, i2) ∈ γ (8)

C. UPPER BOUND FOR RSP: CONSTRAINT
PROGRAMMING FORMULATION
Constraint programming (CP) is shown to be a proper tool
for dealing with scheduling problems with non-crossing con-
straint [7]. That is why we develop a CP formulation to
generate good feasible solutions for RSP.

CP provides a framework for solving solve combina-
torial satisfaction and optimization problems. In general,
the method can be viewed as a combination of defining
constraints over problem variables, finding a set of values
from the domains of variables that satisfy constraints, and
searching for good solutions via backtracking algorithms.
In CP, constraints are actively used to infer new constraints
and to reduce the domains of variables. This is performed
by a technique called constraint filtering: when domain of a
variable is modified, constraints interacting with this variable
are investigated to modify domains of other variables to
remove inconsistencies.

Furthermore, CP offers rich modeling concepts for com-
pact representation and effective solutions of combinatorial
problems. In the proposed formulation, we utilize some of
these concepts; namely, interval variables, sequence vari-
ables, and global constraints.
Definition 2: Interval variable specifies an interval of

time during which a task is executed. Each interval variable is
characterized by a start time, an end time, a processing time,
and a presence status.

Definition 3: Sequence variable is defined to represent
ordering of a specific set interval variables.
Definition 4: Global constraint can represent com-

plex relationships between the problem variables as
a single constraint. Global constraints deal with many
problem variables at the same time and provide an
effective domain reduction by using specialized filtering
algorithms.

For more information on constraint programming tech-
nique, we kindly refer readers to [28] and [29]. In the fol-
lowing, we introduce a novel CP formulation for RSP and
associated decision variables.
2i An interval variable that represents the reclaiming

of stockpile i. Its domain is [1, |T |]
�ik An optional interval variable that represents the

reclaiming of stockpile i by reclaimer k . This
variable is present in the model if and only if
reclaimer k is assigned to stockpile i. Otherwise,
its domain will be ∅.

9i1i2k1k2 A sequence variable that is used for
non-crossing constraint, and it determines
relative order of interval variables �i1k1 and
�i2k2 . Its domain consists of the permutation
of the order of these interval variables.

1) UPPER BOUND FOR RSP WITHOUT STACKING
OPERATIONS

[RSP− UB] :

minimize
∑
i1∈J

wiEnd(2i)

subject to:

Alternative(2i,

(�ik |∀k : (padi = qk )||(padi = qk + 1))) ∀i

(9)

Disjunctive((�ik |∀i), si1i2 ) ∀k (10)

Disjunctive(9i1i2k1k2 )

∀i1, i2,∀k1, k2 : qk1 = qk2 , ki1 < ki2 ,

padi1 − padi2 ∈ {−1, 0, 1}, posi1 + ki1 > posi2

(11)

Global constraint Alternative (8) assigns each stockpile
to one of the eligible reclaimers and links the domains of
related 2i with �ik variables. By this constraint, the domain
of �ik variable is updated as an empty set if reclaimer k is
not assigned to stockpile i. Global constraint Disjunctive (9)
ensures non-overlapping of stockpiles that are assigned to
same machine while considering travel times. We imply
non-crossing constraint by (10). This constraint also respects
the spatial restriction caused by reclaimers performing long
travel bench cuts.
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FIGURE 3. Illustration of different stockyard configurations.

2) UPPER BOUND FOR RSP WITH STACKING OPERATIONS
We modify sets and parameters as in Section III-B2 and add
the following precedence constraint to [RSP− UB].

EndBeforeStart(�i1k1 , �i2k2 ) ∀(i1, i2) ∈ γ, ∀k1, k2 (12)

IV. COMPUTATIONAL EXPERIMENTS
We design a set of computational experiments for assess-
ing the performance of the proposed methods by generating
following stockyard configurations with varying numbers of
stocking pads (|A|), rail tracks (|W |), and reclaimers (|C|).
These configurations are depicted in Figure 3.

• Configuration 1: |A| = 3, |W | = 2, |C| = 3. Two
reclaimers on rail track 1 and a single reclaimer on rail
track 2.

• Configuration 2: |A| = 3, |W | = 2, |C| = 4. Two
reclaimers on each rail track.

• Configuration 3: |A| = 4, |W | = 3, |C| = 4. Two
reclaimers on rail track 2 and a single reclaimer on rail
tracks 1 and 3.

• Configuration 4: |A| = 4, |W | = 3, |C| = 6. Two
reclaimers on each rail track.

We assume a discretized stocking pad consisting of
|U | = 60 33.33 meters-long stocking positions. That is,
the total length of a pad is 2000 meters. This discretization
does not change the complexity of proposed formulations
but eases the instance generation process. Then, we gen-
erate stockpiles such that their lengths (ki) are uniformly
distributed between 2 and 10 units of stocking positions,
and reclaiming times (pi) are proportional to their length,
i.e. pi = 6ki. To generate a feasible allocation of stock-
piles, we generate stockpiles one by one by starting from the
leftmost of the first pad until stockyard is full. We generate
10 instances for each configuration, and the average number
of tasks per instance is 28.8 for configurations 1 and 2, and
is 40 for configurations 3 and 4.

In reality, travel times are small compared to reclaiming
times. For this reason, we calculate the travel time between
stockpiles i1 and i2 as their distance on x-axis frommidpoints
divided by 10 (in unit times). As a result, travel times are
bounded within 1 and 6 unit times.
We generate 10 instances for each configuration and com-

pare results of relaxed MIP formulation [RSP − LB] with
those of CP formulation [RSP − UB]. As CP method has
random components on its search phase, we perform with
five different trials for each instance. Recall that we obtain
a relaxed MIP formulation for deriving a lower bound by
relaxing non-crossing constraint of RSP. Accordingly, we get
an equivalent CP formulation to [RSP − LB] by removing
non-crossing constraint from [RSP−UB]. By this way, we can
also compare the performance of CP method without includ-
ing the deviation caused by non-crossing constraint. We set
a time limit of a minute and an hour for each CP trial and
LB formulation, respectively. All experiments are performed
with IBM CPLEX 12.8. Note that all data files are available
at IEEE DataPort for reproduction of experiments.

A. RESULTS FOR RSP WITHOUT STACKING OPERATIONS
Table 1 presents average results of computational experi-
ments for RSP without stacking operations. In this table (and
throughout the paper), solution times are given in seconds.
The individual results for each instance can be found in
Appendix.
Lower bound formulation solves all instances to the opti-

mality within time limit of an hour. Average solution times
for configurations 3-4 are distinctly higher than those of con-
figurations 1-2. This is not unexpected because our instance
generation scheme suggests the number of stockpiles in an
instance mainly depends on number of stocking pads, as in
reality. For the instances with same number of stocking pads,
solution times increase with number of reclaimers. The solu-
tion times reported Table 1 are yet considerably short given
the complexity of the scheduling problem.
The good performance of the lower bound formulation

is due to the very strong linear programming (LP) relax-
ation of the proposed arc-time-indexed formulation: the
average deviation of LP relaxations from the optimal are
approximately 0.04%, and LP relaxation yields optimal solu-
tion in more than 80% of all instances.
We present results for the computational experiments of

CP method for RSP in [RSP − UB] column, in terms of the
percentage deviation from the corresponding lower bound
values. Average deviation from the lower bound is observed
as 0.78%, and it increases for the configurations with larger
number of reclaimers per track as there are more interfer-
ence. In all 40 instances, the worst deviation value is less
than just 1.7%. Moreover, it is robust: the maximum relative
standard deviation between trials is observed as 0.45%.
In column [RSP − UB′], we also present the results for

CP formulation without non-crossing constraint, which
is equivalent to lower bound formulation [RSP − LB].
We observe 0.43% deviation from the lower bound on
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TABLE 1. Results for RSP without stacking operations.

TABLE 2. Comparison of different formulations.

TABLE 3. Results for RSP with stacking operations.

average, by excluding the effect of non-crossing constraint
on the performance measure. This indicates that proposed
CP formulation for RSP is able to cope with the challenging
non-crossing constraint effectively.

Furthermore, we compare [RSP − LB] and the formula-
tion with the variables that address idleness of reclaimers
[RSP − LB′] to measure the impact of Proposition 1 on the
solution performance. Table 2 presents the results for these
formulations as well as for the MIP formulation presented in
Gokhale and Mathirajan [21] -[GM2012]- by using the set of
instances with Configuration 2.

Results show that we are able to speed up the solution
process by 38.1% with Proposition 1. In addition to that,
[RSP − LB] strongly outperform the only exact approach
appears in the literature for this scheduling problem. That is,
[RSP−LB] is able to solve all instances while [GM2012] fails
to solve any of the instanceswithin a time limit. As [GM2012]

cannot obtain optimal result, we only report lower and upper
bound values at the termination of solution process. While
this formulation is able to find incumbent values as near
as 1.59% to optimal values on average, we observe large
optimality gaps due to its weak LP relaxation.

B. RESULTS FOR RSP WITH STACKING OPERATIONS
The set of instances generated in previous section can be
straightforwardly modified for this case. However, resulting
instances will be significantly larger because (i) there is also a
stacking task for each stockpile and (ii) the length of schedule
|T | increases. In addition, precedence constraint adds large
numbers of constraints and non-zero coefficients to the for-
mulation. For this reason, we perform experiments with a set
of smaller instances. Specifically, we assume that the total
length of each pad to be 1000meters instead of 2000 to reduce
the number of stockpiles by half.
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TABLE 4. Detailed results for RSP without stacking operation.

TABLE 5. Detailed results for RSP with stacking operation.

We present the results in Table 3. It shows that the CP for-
mulation can effectively solve this extension of the problem
with a similar performance to the results presented in Table 1.

The only distinct difference is observed in the deviation of
average objective values of [RSP−UB] from the lower bound.
The elevation in these values can be attributed having the

VOLUME 8, 2020 96301



Ö. Ünsal: Reclaimer Scheduling in Dry Bulk Terminals

same number of tasks (stacking + reclaiming) in a shorter
pad. Thus, there are more interference among reclaimers
mounted on a same rail track. On the other hand, the
CP formulation without non-crossing constraint still finds
near optimal values as in the case of RSP without stacking
operations. This suggests that optimality gaps for [RSP−UB]
are possibly much lower than the reported deviation from the
lower bound.

Furthermore, we also perform experiments with the fol-
lowing disaggregated precedence constraint presented by
Christofides et al. [30], instead of (7).∑
i3

∑
k

∑
s∈{1,...,t−pi1 }

Yi3i1ks −
∑
i3

∑
k

∑
s∈{1,...,t}

Yi3i2ks ≥ 0

∀(i1, i2) ∈ γ, ∀t (13)

Artigues [31] notes that time-indexed formulations with
constraint (12) has a stronger LP relaxation than those with
constraint (7). At the same time, however, this constraint is
computationally expensive as it checks the precedence rela-
tionships among tasks for each discrete time period. Besides,
arc-time indexed formulations are even larger in size than
pure time-indexed formulations. In our experiments with con-
straint (12), all instances are either terminated with memory
limitations or its LP relaxation could not be calculated within
time limit. By this way, we show the impracticality of using
disaggregated precedence constraints with arc-time indexed
formulations.

V. CONCLUSION
This paper presents an effective lower and upper bound
for reclaimer scheduling problem which is a variant
of PMSP with non-crossing constraint, sequence depen-
dent setup times, eligibility restrictions, and precedence
relationships.

As a lower bound, we develop an MIP formulation for
exact solution of PMSP with sequence dependent setup times
and eligibility restrictions after observing a dominance prop-
erty that reduces the size search space by eliminating solu-
tions with unforced idleness of machines. The performance
of this formulation also demonstrates the appropriateness
of arc-time-indexed formulation for modeling and solving
complex scheduling problems involving sequence dependent
setup times. It should be noted that this formulation goes
beyond providing a lower bound to RSP, as it effectively
solves a scheduling problem with a practical relevance.

The performance of LB formulation for RSP with stacking
operations are limited compared to the formulation without
stacking operations because of the vast increase in prob-
lem size. Therefore, future research should be performed to
solve this formulation more effectively. One natural approach
would be to decompose the problem such that precedence
constraints are handled separately.

As an upper bound, we present a robust constraint pro-
gramming formulation that provides near optimal results in a
minute. Thus, in addition to generating reclaimer schedules,

it can be further utilized by terminal management as a deci-
sion support tool for evaluating the impact of different stock-
yard designs empirically. In some terminals, stacking and
reclaiming operations are performed by designated equip-
ment. Accordingly, the applicability of methods presented in
this paper should be investigated for such a setting.
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