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ABSTRACT A novel 3-dimensional (3D) human semantic folding is introduced to provide a robust and
efficient gait recognition method which is invariant to camera view and clothing style. The proposed gait
recognition method comprises three modules: (1) 3D body pose, shape and viewing data estimation network
(3D-BPSVeNet); (2) gait semantic parameter folding model; and (3) gait semantic feature refining network.
First, 3D-BPSVeNet is constructed based on a convolution gated recurrent unit (ConvGRU) to extract 2-
dimensional (2D) to 3D body pose and shape semantic descriptors (2D-3D-BPSDs) from a sequence of gait
parsed RGB images. A 3D gait model with virtual dressing is then constructed by morphing the template
of 3D body model using the estimated 2D-3D-BPSDs and the recognized clothing styles. The more accurate
2D-3D-BPSDs without clothes are then obtained by using the silhouette similarity function when updating
the 3D body model to fit the 2D gait. Second, the intrinsic 2D-3D-BPSDs without interference from clothes
are encoded by sparse distributed representation (SDR) to gain the binary gait semantic image (SD-BGSI)
in a topographical semantic space. By averaging the SD-BGSIs in a gait cycle, a gait semantic folding image
(GSFI) is obtained to give a high-level representation of gait. Third, a gait semantic feature refining network
is trained to refine the semantic feature extracted directly from GSFI using three types of prior knowledge,
i.e., viewing angles, clothing styles and carrying condition. Experimental analyses on CMUMoBo, CASIA
B, KY4D, OU-MVLP and OU-ISIR datasets show a significant performance gain in gait recognition in terms
of accuracy and robustness.

INDEX TERMS Gait recognition, human identification, three-dimensional gait, virtual gait.

I. INTRODUCTION
Gait recognition and understanding (GRU) has a wide range
of applications in the field of anti-terrorism, intelligent
monitoring, access control, criminal investigation, pedes-
trian behaviour analysis, medical studies and reality mining
(e.g., [1]). The advantages of GRU, e.g., without requiring
subjects’ cooperation, difficult to disguise gait, and gait is
easily observed in low-resolution video, make it particu-
larly attractive for subject identification and behaviour anal-
ysis (e.g., [2]). However, to successfully implement a GRU
method for practical applications, several important issues
must be overcome. One of these is the change in cam-
era view when the human subject walks at different data
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capture sessions. It is also challenging for GRU to realize
view-invariant or cross-view gait recognition from different
cameras with changes in both camera azimuth and elevation
angles. In most cases, only changes in azimuth view changes
are considered. If only a few views of gait sequences are
available for training, and a single camera is used in testing
in the presence of changes in both azimuth and elevation
angles, then it is expected that the recognition rate will be
significantly reduced.

There are many other covariate factors that affect the
accuracy of GRU, e.g., occlusion, the integrity of the gait
image segmentation, and variations in clothing styles, car-
rying items, scene illumination, and walking speed [3], [4].
Clothing variation is one of the most significant. Experi-
ment results in [5] show that the gait recognition rate when
wearing a coat is much lower than when carrying a bag due
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to the large area of the subject’s silhouette affected. This
influence affects many appearance-based gait recognition
methods. Thus, some gait recognition methods incorporate
gait data of subjects with various clothing styles, or eliminate
their influence by extracting dynamic joint features or body
parts that are less affected. However, it is difficult to collect
sufficient training data with various clothing styles under
different views for every subject, and thus clothing variation
remains an important issue in gait recognition. Compared
with algorithms for 2-dimensional (2D) gait recognition,
the 3-dimensional (3D) approach provides more flexibility to
deal with clothing variations, i.e., by using virtual dressing
and 3D clothes. But there are only few related studies due to
the complexity of 3D modelling and virtual dressing.

It is still a challenge to explore a GRU system involving
a large population as most publicly available gait databases
are limited to hundreds of subjects. However, it is worth
noting that gait datasets involving large populations under
different walking conditions have been published recently
by Osaka University, i.e., OU-MVLP [6] with 14 views and
10,307 subjects, and OU-LP-Bag [7] with various carrying
conditions and 62,528 subjects of all age ranges. As gait
datasets involve larger populations, an emerging challenge is
that the number of gait frames to be processed is typically
enormous, requiringmuch processing time and storage space.
The much larger gait datasets also mean more subjects are
involved, and it becomes difficult to publish them due to
privacy issues. The datasets are more likely to be published
in the form of binary silhouette or gait energy image (GEI),
limiting the development of gait feature extraction from RGB
images. Without the RGB sequences, it is difficult to detect
the detailed clothing styles and carried items. Thus, how to
convert the high-dimensional gait sequences into high-level
feature representation of structured data while retaining their
semantic meaning has important research significance. Most
gait feature representation methods, e.g., GEI [4], and data
dimensionality reduction methods, e.g., principal component
analysis (PCA), address the above problems, but the effect
of dimensionality reduction often depends on the number
of specific samples. The data after dimensionality reduction
is difficult to describe by semantics, i.e., they are usually
considered a ‘black box’.

Based on the above, a View and Clothing Invariant Gait
Recognition via 3D Human Semantic Folding (VCIGR-
3DHSF) is proposed in this paper. The method converts raw
gait images into high-level semantic description based on 3D
parametric body model. The 3D human body semantic fold-
ing is introduced to represent the feature in high-level pattern
space. By converting image signals into semantic descriptors,
gait visual features are both effectively represented in a new
semantic space as structured data, and the dimensionality of
the gait features reduced under instance and semantic level.

The novelties of VCIGR-3DHSF are as follows.
First, by incorporating convolution gated recurrent units
(ConvGRU), an instance-level body parsing network, a cloth-
ing recognition network and virtual dressing method,

the 2D to 3D body pose and shape semantic descriptors
(2D-3D-BPSDs), and an estimation and optimizing frame-
work are proposed. Second, by making full use of the
extracted 3D gait semantic parameters and semantic folding,
2D gait images are transformed to a description in a new
semantic pattern space. It converts the unstructured raw gait
data into structured data called gait semantic images. Third
a SoftMax classifier with top-down refining mechanism is
proposed to deal with gait recognition under various view and
clothing conditions. The refining mechanism using a priori
knowledge adjusts the gait semantic patterns to achieve even
better performances under various scenarios.

The rest of this paper is organized as follows. Section II
presents the related work. Section III presents the implemen-
tation of VCIGR-3DHSF. Section IV presents the experimen-
tal results and Section V concludes the paper.

II. RELATED WORK
GRU is divided into model-free and model-based methods
according to whether a relevant body model is constructed.
A model-free GRUmethod extracts the statistical data of gait
contours in a gait cycle andmatches known gait contours with
similar shape and motion characteristics. GEI [4], [8], as a
classical gait feature representation, has led to many energy
images of related features, such as frame difference energy
image [9], gait entropy image [10] and pose energy image
(PEI) [11]. Gait energy maps have low computational com-
plexity, and due to contour averaging have better suppression
of image distribution noise.

A model based GRU method has more advantages for
addressing covariate factors such as changes in camera view
and clothing, occlusion and carried item due to its incor-
poration of body model parameters. However, it is neces-
sary to estimate the parameters from the gait contour. The
required image resolution is also higher than that of a model-
free method. Most current gait models are based on 2D
descriptions, ranging from skeleton to shape, e.g., 2D rod
skeleton, hinged skeleton and ellipse shape descriptions [12]–
[14]. Since the gait model is a 3D structure, it is important to
study gait with a 3D modelling method [15], [16]. However,
in most cases multiple cameras or 3D camera are needed
to construct 3D voxel or volume models. These generate
unstructured with redundant point cloud data, and without
embedded skeleton the data cannot be used to morph pose
or deform the body shape.

Gait recognition methods with variable views or
multiple-views can be classified into two categories,
i.e., model-free or model-based. In model-free approach,
view transformation model (VTM) as cross-view gait recog-
nition is widely used by transforming gait features from one
viewing perspective to another [17], [18]. View-invariant
gait features are extracted for multi-view gait recognition,
i.e., based on uncorrelated multilinear sparse local dis-
criminant canonical correlation analysis [19], deterministic
learning [20], complete canonical correlation analysis [21],
and view-invariant feature selectors [22]. In recent years,
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FIGURE 1. Overview of VCIGR-3DHSF.

the deep learning network-based methods, i.e., convolution
neural networks (CNNs), have been proposed to directly
extract multi-view gait features from GEIs for gait recog-
nition [1], [23], or transform the multi-view gait feature to
one specific view using one uniform deep model [24]. For
model-based methods, the view-invariant gait recognition is
achieved by 3D, 2.5-dimensional (2.5D) or 2D modelling of
the human body, extracting the relevant features of the model,
such as joint angles based on skeleton model [14], walking
posture parameters [25], [26], etc. 3D gait entropy volume
(3D-GEnV) [15] requires multiple views of a subject in order
to construct the 3D volume model.

To address clothing variations, more attentions are given
to certain body parts that are less sensitive to clothing
styles [27], i.e., legs, using adaptive weight control strategy.
In [13], lower limb joint angles are chosen as gait dynamic
feature which is robust to clothing styles, and deterministic
learning is used for recognition. A statistical shape anal-
ysis approach addresses various dressing by parsing GEI
into three shape sections for feature extraction, i.e., horizon-
tal, vertical and grid resolution [3]. The drawback of this
approach is its dependency on the viewing angles. In [28],
the combination of RGB, depth and audio features, are used
to improve the robustness against dressing conditions includ-
ing shoes changes. In [19], a fusion strategy combines the
spatial-temporal and kinematic features for gait recognition,
using deterministic learning to address dressing conditions.
In [29] a time-based long short-term memory (LSTM) graph
model is discussed for gait recognition, and a gait skeleton
graph which is less sensitive to dressing is used for feature
representation.

Most successful GRU methods have good results in fixed
scenarios with limited conditions. Since human walking and
body movement posture are affected by various factors as
already mentioned, the generalization and recognition rate
of a gait behaviour recognition algorithm still need to be

greatly improved [30]. Especially in 3D gait recognition,
little research has exploited 3D parametric body model and
virtual dressing, which resulted in a lack of an effective
way to describe gait using semantic descriptors. In order to
facilitate 3D gait research and overcome the above-mentioned
problems, VCIGR-3DHSF is proposed to extract semantic
parameters of gait using ConvGRU-based 2D to 3D body
parameters estimation network and a clothing recognition
network. The semantic gait features are represented in 3D
semantic pattern space by semantic folding. To improve the
gait recognition accuracy the feature refiningmechanism uses
a priori knowledge of walking conditions to adjust the gait
semantic folding image (GSFI) features before input to a
SoftMax classifier.

III. PROPOSED METHOD: VCIGR-3DHSF
A. OVERVIEW
Fig.1 shows the overview of the proposed VCIGR-3DHSF.
VCIGR-3DHSF is composed of three schemes. The first
scheme extracts 2-dimensional (2D) to 3D body pose and
shape semantic descriptors without clothes (2D-3D-BPSDs)
from 2D gait images. It is based on our end to end 3D
body pose, shape and viewing data estimation network
(3D-BPSVeNet), and an optimizing process based on virtual
dressing. The second is the 3D human semantic foldingwhich
encodes a sequence of scalar 2D-3D-BPSDs into visible
GSFI based on sparse distributed representations (SDRs).
The third is the view and clothing style invariant GSFI feature
refinement based on GSFI refining network (GSFI-RNet) for
better performance using a priori knowledge. This involves
body parsing and clothing recognition network.

B. 3D PARAMETRIC BODY MODEL WITH
VIRTUAL CLOTHING
We refer the parameterized body model as the struc-
tured body mesh described by semantic body parameters.
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TABLE 1. Semantic parameters of human body shape and pose.

The deformation relationships between semantic body
parameters and 3D mesh vertices are based on the statis-
tical learning algorithms provided in the 3D body dataset.
Table 1 shows the semantic body shape and pose parameters
used in the proposed method. The shape descriptors are man-
ually selected from around a hundred body shape parameters
according to their sensitivity in gait recognition. Their values
are normalized to the range [0 1], i.e., 0.5 is the average
value. The pose joints are based on the skeleton of CMU
mocap, and each joint has three degrees of freedom (DOF).
The skeleton is embedded, and the 3D parametric model can
be deformed both in shape and pose according to the given
body parameters as shown in Fig. 1. To effectively extract
the semantic gait features, the proposed method uses the 3D
instances from the makehuman system [31], and the body
parametric modelling method of our previous work [32].

We proposed a 2D-3D-BPSDs estimation method via a
measuring function based on their silhouette difference as
in [32], where binary 2D gait silhouettes are used for 3D body
estimation. However due to the absence of RGB information,
the estimation accuracy still needs to be improved, e.g., in 2D
binary images it is not possible to distinguish a right foot from
a left foot. If the two feet or hands overlap or self-occlusion
occurs, then the precise position of them cannot be located.
Furthermore, the speed of the required iterative computing is
influenced by the initial 3D pose, i.e., the closer it is to the
2D gait, the smaller is the computational cost.

In order to improve the efficiency and the accuracy of the
2D-3D-BPSDs estimation, a sequence of gait silhouettes is
utilized to estimate the semantic parameters of the 3D body
model.We introduce the instance-level body parsing to obtain
colour gait silhouettes for the estimation. The body pars-
ing simultaneously segments the body from 2D images and
parses each instance into finer grained body parts (i.e., hair,
head, neck, left/right-hand, left/right-leg, foot, etc.). With
more detailed 2D body parsed gait images, different body
parts can be located more easily. By introducing a clothing
recognition network, the clothing style is determined and

TABLE 2. List of parametric clothing models for virtual dressing.

used in the 3D body modelling by virtual dressing as shown
in Fig. 1. The network eliminates the clothing influences
and helps to improve the accuracy of the shape parameters
estimation.

3D parametric bodymodel, as a structured and parameters-
controlled model, can morph to various 3D body using differ-
ent body shape and pose parameters. The clothing is separated
from the body model and virtual dressing is used to dress the
body. Unlike modelling 3D parametric body, we introduced
several 3D clothing models and slightly modified by 3D
CAD software according to the key clothing styles in public
gait datasets. Table 2 shows the list of clothing models for
virtual dressing, where S-skirt, M-skirt and L-dress respec-
tively denote short-skirt, medium skirt and long-dress. Fig. 2
illustrates some of them in details, i.e., shirt, coat, pants and
skirt. The clothing models are constructed from the clothing
categories introduced in [27] and DeepFashion [33] except
for cap, bag and shoes.

C. 3D BODY POSE AND SHAPE DATA ESTIMATION
NETWORK AGAINST VARIOUS CLOTHING CONDITIONS
In our proposed method, gait silhouette segmentation is
achieved using a state-of-art joint body parsing and pose
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FIGURE 2. 3D parametric clothing models and virtual dressing: (a) Regular coat; (b) medium coat; (c) long coat;
(d) regular pants; (e) short pants; (f) short skirt; (g) long dress; and (h) cap on kid.

FIGURE 3. The schematic of 3D-BPSVeNet.

estimation network SS-JPPNet [34]. SS-JPPNet is trained
on a dataset comprising over 50,000 annotated images with
19 semantic part labels, captured from a broad range of
viewpoints, occlusions and scenarios. Its outputs are of three
image formats, i.e., RGB body contour, body parsed image
and binary silhouette.

Following the gait silhouette segmentation, an estimate
of the initial 2D-3D-BPSDs including 3D joints data, shape
parameter values and viewing data is made. In order to
achieve view-invariant gait recognition, both azimuth and ele-
vation angles must be considered. When a subject is walking
from a far distance to the camera, the view between the body
and camera changes continuously. In most gait recognition
methods, these changes are ignored, especially in model free
algorithms. However, camera views can influence the gait
recognition accuracy especially if the subject walks in a
big curve path. In order to obtain a better 3D initial gait
model, an end to end 3D body pose, shape and viewing data
estimation network (3D-BPSVeNet) is proposed. It is built
upon three sub networks, i.e., the state-of-art DeeplabV3+
model [35] (a feature extractor using encoding), ConvGRU
(a temporal feature encoder) and body parsing. The body
parsing sub-network estimates the 3D joints and viewing

angles in accordance with the extracted 2D features. The
schematic diagram of the proposed network is shown
in Fig. 3.

Fig. 3 shows several frames of body semantic parsing
of RGB silhouettes with clothes ID embedded (SC-RGB)
used as the inputs of 3D-BPSVeNet. SC-RGB, and 2D Gait
RGB silhouettes with clothes ID embedded (GC-RGB) are
directly used for training. Let the input gait sequence frames
be denoted by In, n = 1, 2, 3 . . . ,N . First, deepLabV3+
is applied to the input gait silhouette I , i.e., SC-RGB or
GC-RGB, to extract 2D gait feature F = Nfeature(I ). Then
M consecutive frames of gait features are fed to ConvGRU
to encode their spatial-temporal information, i.e., F̃ =

convGRU (Fk−m, . . . ,Fk−1,Fk) ,m ∈ [1,M ]. ConvGRU
exploits both CNNs and GRU. As a recurrent neural net-
work, there are two important gates in a GRU unit [36],
the updated gate zt and the reset gate rt . Compared with
LSTM the state of the cell is removed, and the hidden state
is used for information exchange which makes it efficient.
The 3D-BPSVeNet outputs the joints and shape data of 3D
body together with viewing data, i.e., the joints are encoded
as delta values to the standard I pose. They are based on
the skeleton structure of CMU mocap [37] and encoded in
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FIGURE 4. Extraction of 3D pose ground truth data.

biovision hierarchical (BVH) format. Each joint has three
DOF with its local coordinate.

In the F-subNet and T-subNet, the data have the same shape
(stride of 16, 256 channels). In the subsequent parsing sub-
network, a 3× 3 convolutional layer and 1× 1 convolutional
layer with stride of 2 are designed to reduce the feature
channels to the size of ` = (3N j+Ns+ 3), where Nj denotes
the number of 3D joints, and each joint has 3 elements,
i.e., = 1(x, y, z). Ns defines the number of 3D body
shape parameters. After an average pooling, the ` size data
is mapped to 3D body pose and shape parameters with the
additional data on viewing data, i.e., azimuth and elevation
angels.

To train the 3D-BPSVeNet, the L2 based loss function is
defined as

L =
∑N

n=1

∥∥vn · (Jgtn − Jn
)∥∥2

2

+

∑N

n=1

∥∥(Sgtn − Sn)
∥∥2
2 +

∑N

n=1

∥∥(γ gtn − γn)∥∥22 , (1)

where N denotes the number of training samples. Jgtn ∈ R3N j

is the normalized vector comprising all the ground truth 3D
body joints data with three DOF, and Jn comprises the esti-
mated joints data. vn ∈ R3N j is the indicator vector denoting
the status for each joint, i.e., visible or not (caused by self-
occlusion). Sgtn ∈ RNs is the normalized vector comprising
ground truth body shape values, and Sn comprises the esti-
mated shape values. γ gtn ∈ R3is the normalized vector com-
prising the ground truth data of viewing, and γn corresponds
to the estimated data vector. To train the 3D-BPSVeNet, suffi-
cient ground truth 2D to 3D estimated data is essential. To the
best of our knowledge, there are no labelled 2D to 3D body
parameters estimation data, especially for gait. To undertake
the training, a semi-automatic method is introduced to con-
struct the virtual ground truth data of 2D-3D-BPSDs.

The semi-automatic method was developed in our previous
work in [16] and [32]. In [32] 3D gait pose data are esti-
mated by observing the silhouette difference between 2D gait
contour and 3D projected body under the same view using a
silhouette similarity degree function for binary images. Using
a binary image to estimate 2D-3D-BPSDs has its disadvan-
tages. For example, the left and right hands (or legs) are often
difficult to distinguish due to the lack of RGB information.

To overcome this problem, the RGB body parsed images are
introduced instead of binary images. The process is illustrated
in Fig. 4. First, a 3D body model similar to the current gait
posture is initialized. Then, the selected 3D body model is
rotated to the view consistent with the 2D gait and projected
onto the 2D space to form a reference template. Finally,
the residual error between the 2D and 3D-2D projected body
parsed silhouettes is determined. If the residual error is large
than the set threshold or the maximum number of iterations
has not been reached, thus the 3D body model will undergo
further pose deformation by updating the pose parameters.
The synthesized 3D body model will fit the 2D gait better,
and the residual error is updated until the residual error is less
than or equal to the set threshold.

In this paper, the residual error measuring function defined
in Eq. (2)-(4) is a real-valued function of a fixed num-
ber of 2D-3D-BPSDs as inputs. However, the function is
a continuous but complex function without an underlying
mathematical definition. To simplify the problem and facil-
itate the realization, Powell’s conjugate direction method is
introduced as the basic optimization method to extract the
2D-3D-BPSDs truth data as illustrated in Fig. 4. By using
the Powell’s method, the function need not be differentiable,
and no derivatives are taken. It is useful to calculate the local
minimum of such a function. In the real application, the val-
ues of shape parameters are first fixed and minimized using
Eq. (2) to obtain the optimal values of pose parameters. When
the pose parameters are refined, they are then fixed to gain
the optimal values for shape. The experimental results show
that the accuracy of the estimated data of 2D-3D-BPSDs are
greatly improved by the clothes recognition, virtual dressing
process and multi-view data.

The silhouette similarity degree function for measuring the
residual error at a given view α is

Lα =
1

2m× n

∑m×n

i=1
wb
∥∥∥(g2D,αi − g3D,αi

)∥∥∥2
2

+
1

2m× n

∑D

d=1

∑m×n

i=1
wd
∥∥∥(c2D,αd,i − c

3D,α
d,i )

∥∥∥2
2
, (2)

where m and n are respectively the height and width of
the normalized gait images, and i is the index of pixels
in gait images. Let g2D,αi be the pixel value in 2D body
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parsed image

P2D,αg = JPPNET (Bα) = {g
2D,α
i

i = 1 . . .m× n}, (3)

obtained from 2D RGB gait Bα using SS-JPPNET. g3D,αi
defines the pixel value corresponding to body parsed image
of 3D projected image. The 3D projected gait image is
denoted by Pα(J, S,Cp). Its corresponding 3D model com-
prises S as the body shape parameters, J as the parameters of
joints and Cp as the clothing parameter of p type. The body
parsed image of Pα(J, S,Cp) is

P3D,αg = JPPNET (Pα(J, S,Cp))

= {g3D,αi i = 1 . . .m× n}. (4)

Let D be the number of parsed body parts of interest,
i.e., head, leg and hand (displayed in different colour
in Fig. 5), c2D,αd,i is the pixel value of body part d in P2D,αg ,
and c3D,αd,i is the pixel value of body part d in P3D,αg . wb is the
weight which determines the global fitness of two different
gait silhouettes, andwd are theweights that overcome the sub-
optimal decisions when significant part of the body is lost.

FIGURE 5. (a) & (c) RGB gait images; (e) 3D projected image after texture
mapping; and (b), (d) and (f): the corresponding body parsed images.

By minimizing the silhouette similarity degree func-
tion of Eq. (2) the 2D-3D-BPSDs are estimated and
denoted by Jopt =

{
1(xi, yi, zi), i ∈ [1...Nj]

}
and Sopt ={

sj, j ∈ [1...Ns]
}
.Nj andNs respectively denote the number of

joint and shape parameters as listed in Table 1. If multi-view
data are considered for more accurate estimation, the total
residual error can be redefined by L =

∑
α∈8 Lα , where

8 is a view set. Before iterating, the initial viewing data γ ,
i.e., elevation angle, is manually assigned according to the
dataset. The gait images from CASIA B dataset with different
views are used to construct the virtual ground truth dataset
of 2D-3D-BPSDs. We manually check the final optional
results and adjust the pose and shape to get the best ground
truth data for each subject. Using the semi-automatic method,
2D-3D-BPSDs are estimated from the input 2D images, and
the additional check with manual modification ensures the
data to be more accurate.

The data from CASIA B is insufficient to train the
3D-BPSVeNet. To enlarge the training data, we morph the
3D body models with virtual random body shape parame-
ters Svir and clothing parameter Cpvir . They are projected
onto 2D space to obtain the 2D virtual gait image with
pose data Ĵ, i.e., Bα

vir,Ĵ
= Pα(Ĵ, Svir ,Cpvir ). Let B

i,α
={

B
i,α
1 , ...Bi,α

m , . . . ,B
i,α
M

}
be a given gait set where Bi,α

m

denotes the mth 2D RGB gait frame of ith sample at view α.
M is the maximum number of frames in a gait cycle. For
Bi,α , the M corresponding 3D pose data are denoted as
Jset =

{
J1, . . . , JM

}
and the shape data set as Sset ={

S1, . . . , SM
}
. Virtual generated samples are based on the

extension of Jset and Sset . The Sset can be enlarged by
uniformly synthesizing N vir

s , new virtual shape data set,
i.e., Svirset =

{
Svir1 , . . . , S

vir
N vir
s

}
and the mixed data set is

Smixedset = Sset ∪ Svirset . The Jset is enlarged by T times linear
interpolation based on joints data in a cycle, and Jvirset ={
Jvir1 , . . . , J

vir
T×M

}
. The corresponding virtual generated gait

set is B
i,α
vir =

{
B
i,α
vir,1, ...B

i,α
vir,m, . . . ,B

i,α
vir,T×M

}
which is

T×N vir
s ×M times larger than the originalBi,α . By using the

estimated 2D-3D-BPSDs fromBi,α , and the virtual generated
data, the sequence training dataset is constructed. Let Ini =(
Inim+1, In

i
m+2, . . . , In

i
m+t

)T be the ith sequence based input
gait comprising t consecutive frames in a gait cycle where
m+ t ≤ M and m ∈ [1 M ]. The output is

Out i =
(
Out i1,Out

i
2, . . . ,Out

i
K , . . . ,Out

i
K+3

)T
=

(
Jiopt , S

i
opt , γ

i
)T
, (5)

where K = 3N j + Ns and γ i ∈ R3. γ i denote the views,
i.e., azimuth and elevation angels. Jiopt are the 3D pose
parameters corresponding to last gait frame Inim+t and S

i
opt

are the average shape values of t input gait frames. The
3D-BPSVeNet can be adequately trained using batches of the
input Ini and output Out i.

D. 3D GAIT SEMANTIC DATA OPTIMIZATION
Using the 3D-BPSVeNet, the 3D pose parameters Jopt,0,
shape parameters Sopt,0 and views are estimated. However,
due to the limited availability of ground truth data for real
2D-3D-BPSDs, the training samples are still less than satis-
factory. Thus, the estimated 3D body data, especially from 2D
gait images under various conditions, need to be optimized.
The optimization of 2D-3D-BPSDs comprises the following
three steps. First, recognize the 2D clothing styles and virtual
dress the 3D body with clothing. Second, adjust the shape
parameters to optimize the pose parameters using semantic
parsed gait image. Finally, adjust the pose and update the
body shape parameters.

FashionNet [33] is introduced to recognize clothes. It is
based on the clothes dataset DeepFashion which consists
of 800K clothing items with comprehensive annotations.
It can predict clothing category, attribute and landmarks, that
help to determine the length of clothes. According to the basic
category of clothing, the prior designed virtual clothes are
selected to dress (using virtual dressing [38]) the 3D body
before shape deformation.

After virtual dressing, the initialized 3D model is refined
using an algorithm similar to that shown in Fig. 4 by min-
imizing Eq. (2). The data corresponding to moving parts,
i.e., hands and legs, are assigned larger weights, i.e., set to
0.6, due to their importance in motion. If there is a significant
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loss of this data, the larger weights ensure that moving parts
do not lose their total energy quickly so as not to be trapped
in local optimum. The other static body parts, i.e., head and
trunk, are assigned smaller weights, thus ensuring the lost
data have less effects on the global optimum. Since body
pose and shape parameters have different physical meanings,
we first fix the values of shape parameters and minimize
Eq. (2) to obtain the optimal pose parameter Ĵopt . This is
followed by determining the optimal shape parameter Ŝopt .
The final optimal body semantic parameters for input sample
i are denoted by Pb =

{
Ĵiopt , Ŝ

i
opt , γ̂

i
}
.

E. GAIT SEMANTIC FOLDING
Gait semantic folding comprises two steps as illustrated
in Fig. 6: gait semantic sparse distributed representation
(GS-SDR); and folding. GS-SDR is the process of encod-
ing an unstructured gait images to a Sparse Distributed
Binary Gait Semantic Image (SD-BGSI) using a topograph-
ical semantic space based on 3D body semantic parameters.
By averaging a sequence of SD-BGSIs, a GSFI is obtained.
The GSFI is used as the basic gait semantic feature for further
gait recognition against various walking conditions.

FIGURE 6. Generation of SD-BGSI and SD-GSFI.

By using 3D-BPSVeNet and the refining process, the body
semantic parameters as listed in Table 1 are estimated as
Pb =

{
Jopt , Sopt , γ

}
. Motivated by the efficiency of GEI and

to exploit sparse distributed representations (SDRs), which
is the fundamental form of pattern representation in our
brain [39], we encode the scalar body semantic data to binary
GS-SDR. SDRs are robust to noise and usually in the form
of a binary sequence. According to the brain-like HTM the-
ory [39], the bits correspond to neurons in the brain, where a
one denotes a relatively active neuron and a zero a relatively
inactive neuron. Our GS-SDR shares the same conceptual
foundation with the HTM theory.

The gait semantic folding is based on the 2D-3D-BPSDs
estimated by 3D-BPSVeNet with a refining process. As in
Section III.C, let Jkopt =

{ k
i = 1(xi, yi, zi)|i ∈

[
1,Nj

]}
,

Skopt =
{
skj |j ∈

[
1,Ns

]}
and γ k ∈ R3 respectively denote the

refined 3D semantic body joints, shape and viewing parame-
ters. Nj and Ns respectively denote the maximum number of
joint and shape parameters.

k
i denotes the ith 3D joint data of

k frames in a gait cycle, and γ k is viewing data. skj denotes the
jth shape parameters of the k frames in a gait cycle. The length
of 2D-3D-BPSDs is ` = (3N j+Ns+ 2). Additional clothing
and carrying conditions with six parameters are added to
2D-3D-BPSDs.

The generation of SD-BGSI is illustrated in Fig. 6, where
each column represents a single gait semantic parameter. The
numeric value of the semantic parameter is encoded as a
spare binary column vector using the sparse distributed scalar
encoder (SDSE) introduced in [39]. In SDSE encoding, w is
defined as the number of ON-bits that are set to encode a
single value, and n is the number of bits in the output which
must be greater than w. A radius and a resolution are also
defined, i.e., two values separated by greater than the radius
have non-overlap, and two values separated by greater than
the resolution have different representations. According to the
SDSE, resolution = radius/w and n = w∗range/radius. The
input data range is normalized to [0 1] in this paper and the w
is set to 11, which should be an odd number. The resolution is
set to 0.01 and the number of bits in the output n is determined
to be 100. The SDSE maps a scalar value into an array of
bits, i.e., ON-bits are significantly less than the zero-bits. The
similarity of two SDSE vectors is given by the overlap score.
If x and y are two SDSE vectors with length n, the overlap
between them is defined as their dot product, i.e.,

overlap (x, y) ≡ x · y. (6)

It simply computes the number of ON (i.e., 1) bits between the
two SDSE vectors at the same locations. Several columns of
SDSE vectors are constructed to form an SDR matrix, which
is the SD-BGSI after visualization.

A match between two SD-BGSIs is then defined by
match(xy|θ) ≡ overlap (x, y) ≥ θ . The match is inexact as
in fuzzy theory if θ < w, where w is defined to assume that
the two SD-BGSIs have the same cardinality w. If θ = w,
an exact match is determined. The inexact representation is
one of the significant properties of SD-BGSIs, which makes
the processing of SD-BGSIsmore robust to noise and changes
the input. Thus, the match of two SD-BGSIs is determined
by checking if they overlap sufficiently [39], which can be
directly undertaken with the semantic meaning using the
logical ‘‘AND’’ or ‘‘OR’’ operation.

In a gait cycle, there are several SD-BGSIs, i.e., each gait
frame corresponds to a SD-BGSI. To obtain a more efficient
gait feature representation, GSFI is calculated based on the
principle of GEI, i.e., averaging the SD-BGSIs in a gait cycle.
As aforementioned, the 3D body parameters are normalized
to [0 1] range. The average value of each semantic pixel
in GSFI denotes the probability of ON-bit. For the purpose
of visible display, they are re-normalized to [0 255] for
each pixel. Unlike averaging the scalar values, the GSFI is
more similar to the statistical representation of GEI. But it is
essentially not the same as GEI is derived from raw binary
gait images, and GSFI is based on 3D body semantic pattern
space, i.e., pose and shape. It is the structural gait feature
descriptor and is less sensitive to various walking conditions.
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FIGURE 7. Refining structure of GSFI for view and clothing invariant gait recognition.

F. GSFI REFINEMENT FOR VIEW AND CLOTHING
INVARIANT GAIT RECOGNITION
Fig. 7 illustrates the proposed refining method using GSFI
as input and SoftMax as the classifier. The method comprises
two phases, i.e., refining and recognition. The feature refining
is motivated by the fact that the a priori knowledge about
walking conditions can be used to construct a feature adjustor.
In fact, our GSFI is view-invariant gait feature descriptor,
i.e., the shape parameter is less sensitive to views. The 3D
dynamic joint data are also view-invariant, i.e., the motion
information of joints is encoded by values relative to the
data of standard template using BVH (Biovision hierarchical
data) format which makes it also robust to views. However,
the estimation of 2D-3D-BPSDs for the same subject may
sometimes be slightly different under different walking con-
ditions. The refining mechanism uses the statistics of dif-
ferent views, clothing and carrying items to adjust GSFI
features before classification. For example, carrying a ball
influences the dynamic data of two hands, and the refining
mechanism assigns small weight to the hand joint data using
the knowledge learned from normal walking.

Let X =
{
xi = I iGSFI ∈ R`×`, i = 1, . . . , I

}
denotes the

set of GSFIs with I samples. Three types of walking con-
ditions., i.e., viewing, clothing and carrying, are introduced
for refinement as shown in Fig. 7. The refining 3 × 3 × N
convolutional kernels (RC-Kernels) are generated according
to the walking conditions. The refining process is achieved
via the convolution of GSFI and the RC-Kernels.

As shown in Fig. 7, the connection networks FC1 to FC3
are used to directly connect the input data of three walking
conditions that are represented in the form of SDRs vector as
discussed in Section III.E. The input viewing data is denoted
as vi = {(vazimuth, velevation) ∈ R2

}. The clothing style is com-
posed of upper, down and additional dressing, and denoted
by cl i = {(clupper , cl lower , claddition) ∈ R3

}. The carrying
condition is described by three variables, i.e., object carrying
style and the (x, y) location of the corresponding body part.
It is defined as cai = {(castyle, cax , cay) ∈ R3

}. The sigmoid

activate function is introduced to normalize the outputs of
FC1 to FC3 within the range [0 1]. They are then reshaped
to form the RC-Kernels for convolution on GSFI. The
three outputs of the convolution are Out1 = Conv(GFSI ,
RCv Kernals), Out2 = Conv(GFSI , RCCl Kernals) and
Out3 = Conv(GFSI , RCCa Kernals). These have a dimen-
sion of 100×78×N and are concatenated for fusion. A 1×1
convolution operation and followed by a sigmoid activate
function are then applied. The final output, i.e., the refined
GSFI, is ui = GSFI MNet(xi) which has the same size as the
input GSFI.

The refining network and the SoftMax classification net-
work are trained separately. The refining network adjusts
the higher-level features extracted directly from GSFIs and
makes the features more invariant to viewing angles, clothing
styles and carrying items. Its loss function is

Lu
oss =

∑I

i=1

∑
ũp∈U i

pos

∥∥ui − ũp∥∥22, (7)

where U i
pos denotes Npos positive outputs set based on the

anchor sample xi, i.e., the positive output ũp is from the same
subject anchor but under different view, clothing and carry-
ing conditions. After feature refinement for gallery GSFIs,
the gallery feature set are denoted by Ingallery = {u

gal
i , i ∈

[1Ng]} and is used as input data to train the SoftMax classifier
for recognition. The SoftMax classifier has two important
functions, i.e., a score function and the cross-entropy loss
function. The score function, i.e., S (xi;W ;b) = Wxi+b, maps
each input xi = ugali to the scores of each category. The cross-
entropy loss function then converts the classification scores
into its probability distribution by using one-hot encoding
vector as final output. The cross-entropy loss function for all
the samples in the training dataset is defined as

Lce
oss = −

1
Ng

∑
i∈[1Ng]

log

(
eSyi∑
j e
Sj

)
, (8)

where Sj represents the score value of the jth class in the
score function vector S, yi is the correct classification label
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information of the input xi, Syi denotes the target class score
of xi, and Ng denotes the total number of samples used in the
training. After training using the gallery data, the samples in
probe dataset are applied for testing. The kth input of the test
samples is denoted as xprobek and its output is the probability
distribution of all categories, i.e., ID labels. The classification
result is determined by the category with the highest proba-
bility value.

IV. EXPERIMENT
To evaluate our VCIGR-3DHSF, the datasets CMU MoBo,
CASIA B and KY4Dwith clothing variation, object carrying,
occlusion, etc., were selected for experiments. The clothing
related OU-ISIR dataset B, and the multi-view gait dataset
OU-MVLPwith binary gait silhouettes from large population
were also used.

To train our 3D-BPSVeNet and GSFI-RNet, we chose
24 subjects in CASIAB, i.e., ID-001 to ID-024, and estimated
their ground truth 2D-3D-BPSDs using the semi-automatic
approach involving the loss function in Section III.C. Three
walking conditions, i.e., normal, carrying a bag, and wearing
a coat, and 11 views were included. We also used the virtual
sample generation method in Section III.C to increase the
number of samples as follows. The number was first doubled
by morphing to the virtually generated 100 sets of typical
shape parameters. It was further increased by twice using
linear interpolation of poses derived from subjects of ID-001
to ID-024, and doubled by random dressing with 3D virtual
clothes from the clothing dataset. In addition, two elevation
angle changes were added by rotating the 3D gait models,
i.e., ± 8◦. 20% of the total samples were duplicated and
randomly added with horizontal or vertical bar located at
5% to 30% height of a gait image. The total number of
2D-3D-BPSDs gait sequence patterns used was 22,800, suf-
ficient to train the networks.

A. EXPERIMENTS ON CMU MOTION OF BODY DATASET
The CMU MoBo [40] consists of six image sequences for
each of the twenty-five subjects walking on a treadmill cap-
tured by a number of cameras. Each subject undertook four
different walking conditions: slow, fast walking, inclined
walking and walking with a ball. In order to demonstrate the
robustness of our method against incomplete gait silhouettes,
missing data was simulated by adding horizontal or vertical
bar to the gallery silhouettes. Using the settings in [9], a hor-
izontal or vertical bar was introduced as interference to gait
silhouettes with the probability varying from 10% to 100%.
The width of a vertical bar varies from 20 to 50 pixels with
10 pixels as step size, and the horizontal bar varies from
40 to 100 pixels. Unlike the situation in [9], RGB images with
equally distributed bars that simulate potential occlusions
were used in our experiments.

For the CMU MoBo dataset, the gait data of fast walk
were used as gallery while the slow walk data as probe. The
comparison with other data-driven or model-based methods
of the lateral-view gait recognition results is shown in Table 3.

TABLE 3. Rank-1 recognition rates (%) with horizontal and vertical bar
occlusions.

TABLE 4. Twelve experiments on CMU MoBo gait dataset (in lateral view).

The results for our VCIGR-3DHSF-V (denoted by
V-3DHSF-V, i.e., where virtual samples with added bars were
used to train the 3D-BPSVeNet), show good performance.
By using the virtual sample generation process, 2D-3D-
BPSDs were estimated to mitigate the effect of imperfect
silhouettes. The results for VCIGR-3DHSF (denoted by
V-3DHSF, i.e., gait recognition without using virtual noise
samples) shows the recognition rate is slightly reduced.
Nevertheless, they both represent performances significantly
better than the other methods. This is because instead of using
a static binary image, sequences of 2D RGB gait images
were used in our framework to estimate 2D-3D-BPSDs.
The influence of incomplete gait semantic data caused by
occlusion or missing data are mitigated by neighbouring
frames. In order to illustrate the performance of VCIGR-
3DHSF under other walking variations, further experiments
as shown in Table 4 were conducted. Unlike some methods,
e.g., FSVB [44] STM-SPP [45], WBP [46], SGRVDL [47]
and PEI [11], in our experiments the SC-RGB gait images
were used instead of binary gait images to give more infor-
mation of gait.

Table 5 shows VCIGR-3DHSF outperforms the other
methods especially for ball-carrying condition (Exp. B, E
and I) and inclined walk (Exp. C, F and L). Other experimen-
tal results that are not presented in the original papers have
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TABLE 5. Recognition results (%) on Mobo data set.

been left blank. The table shows that when the gait data are
under normal conditions (e.g., Exp. A and D), the existing
methods show high recognition results as well. However,
most methods are not robust to abnormal changes (e.g., car-
rying a ball and inclined walk). This is because the 2D binary
gait silhouettes are more easily degraded by various walk-
ing conditions especially by heavy coat and carrying items.
In contrast, the VCIGR-3DHSF shows satisfactory recogni-
tion results across all types of conditions. When faced with
the carrying conditions, the body parsing network removes
the ball, and the carrying refining matrix for GSFI assigns
small weight to the joints of hands. In most cases, the carrying
condition makes the hand joints unchanged. When training
the GSFI-RNet, virtual samples with the hand joints data
unchanged are generated to make GSFI-RNet robust against
carrying conditions.

FIGURE 8. Refining 2D-3D-BPSDs by virtual dressing: (a) walk with a ball;
(b) body parsing image of (a); (c) estimated 3D gait model; (d) 3D clothes;
(e) dressing on model; (f) after refining; and (f) silhouette difference
between (b) and (f).

In our framework, the body parsing SS-JPPNET [34] is
introduced to parse the human body, and the clothing recog-
nition network FashionNet [33] helps the recognition of
clothing styles. The gait semantically parsed images without
background, e.g., Fig. 8(b), are used to estimate the initial
2D-3D-BPSDs by our 3D-BPSVeNet. The 2D-3D-BPSDs is
then optimized by virtual dressing, e.g., Fig8(d)-(f), for better
performance.

B. GAIT RECOGNITION UNDER NORMAL CONDITION
ON CASIA B DATASET
CASIA Database B is a multi-view gait dataset with two
variations, i.e., clothing changes and object carrying. The
dataset contains video sequences of 124 subjects captured
from 11 views in the range [0◦ 180◦ ] with an interval
of 18◦. Each view of a subject comprises 10 video sequences:
6 sequences for normal walking, and 4 sequences under two
variations, e.g., wearing a coat, and carrying a bag, a knap-
sack, or a handbag [6].

The view-invariant performance of VCIGR-3DHSF was
evaluated using the CASIA Dataset B. We excluded 24 sub-
jects for 3D-BPSVeNet training, and the rest of the hundred
normal walking subjects, i.e., ID025-ID124, were chosen for
evaluation. Similar to the settings in [24], they were assigned
to two groups. Two normal sequences, i.e., nm05 and nm06,
out of six were selected on each view for probe data and
the rest for gallery. At each time, only one probe view
was used for testing, and the gallery views ranged from
18◦ to 162◦ except for the probe view. Fig. 9 compares
the rank-1 recognition rate of different methods, i.e., GEI-
SVD [48], GFI-CCA [49], Gabor-CMMF [50], C3A [21],
ViFS-LDA [22], SPAE-NN [24], and ours with gallery views
from 18◦ to 162◦. Gabor-CMMF extracts Gabor features from
GEIs and uses coupled multi-linear marginal fisher criterion
for feature encoding. For GaborSD-CMMF, only the cross-
view recognition result under the 54◦ probe is reported and
for C3A [21], 108◦ probe is not reported.

The results show that VCIGR-3DHSF performs well espe-
cially when large view change occurs. There are several
reasons for this. The first is due to our GSFI which is derived
from two types of view invariant body semantic data, i.e.,
body shape data and dynamic joint data. The second is
that the GSFI refining network helps to overcome the value
deviation issue in 2D to 3D semantic parameter estimation.
In our framework, a single view gait data supplemented with
a few of other views in the refining process are used to
extract 2D-3D-BPSDs. Due to the occurrences of different
self-occlusions, the 2D-3D-BPSDs from two different views
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FIGURE 9. Rank-1 recognition rates of different methods.

might differ even for the same pose of the same subject. Thus,
semantic feature refining is introduced to address this.

By using the data of gait views and the knowledge learned
by GSFI refining network, both the azimuth and elevation
angle refining matrices help to improve the GSFI for better
performance. In fact, the elevation angle refining matrices
greatly help in cross elevation view gait recognition.

C. GAIT RECOGNITION UNDER VARIOUS CONDITIONS
ON CASIA B DATASET
To further evaluate the performance of our VCIGR-3DHSF
against various walking conditions, CASIA Dataset B was
used. First, normal sequences of 100 subjects were selected
on each view for gallery data. The coat wearing and bag
carrying data were for probe. At each time, one gallery view
was used for training and testing the probe data under the
same view. The rank-1 recognition results of our VCIGR-
3DHSF outperforms GEI-GaitSet [2], GFI-CCA [49], GPSM
[16] as shown in Fig. 10 under views from 18◦ to 162◦. The
GFI-CCA method which takes GFI as a gait feature only
reported results under 36◦ to 144◦ views.
In the second experiment, we set the probe views to 54◦,

90◦ and 126◦ with two walking conditions. The gallery data
were chosen from normal walking sequences under views
of 36◦, 72◦, 108◦, 126◦ and 144◦. Tables 6 to 8 show the
performances of our method, GEI-NN [6], MGANs [52],
SPAE-NN [24], GFI-CCA [49], RLTDA [53], and Deep-
CNNs [1]. Theses tables show our VCIGR-3DHSF performs

best, especially with bag and clothing conditions with large
view changes. It is robust and less sensitive to various dress-
ing conditions and object carrying.

There are several reasons why VCIGR-3DHSF performs
well. Using the clothing recognition network, a priori knowl-
edge of dressing and object carrying conditions are deter-
mined first. Different clothing styles are chosen and the initial
3D human model is virtually dressed before the 2D-3D-
BPSDs refining process. The virtual dressing ensures the
predicted parameters of body shape with clothing are more
accurate for heavy garments and skirt, or with bag carrying.
For carrying conditions, to make the estimation more tolerant
and robust, virtual data on different object carrying are used
or manually synthesized when training the 3D-BPSVeNet as
illustrated in Fig 11.

Fig. 10(a) shows that most methods achieve good per-
formance when the views are close to 18◦ or 162◦, and
achieve poor performance near 90◦. The latter is due to the
large bag contours that influence the gait silhouettes seg-
mentation at this view. The bag silhouettes merge with the
gait contours when the gait silhouettes are extracted using
traditional segmentation methods. We introduced JPPNET to
accurately parse the body with output S-RGB, thus aiding to
locate the hand position in carrying condition. This is not
possible with 2D binary images due to the overlap of the
carried item with other body parts or objects. By using the
robust 2D-3D-BPSDs extraction method, the influence of
the carrying condition is greatly reduced.

100376 VOLUME 8, 2020



J. Luo, T. Tjahjadi: View and Clothing Invariant Gait Recognition via 3D Human Semantic Folding

TABLE 6. Rank-1 cross-view gait recognition (%) with probe under 54◦.

TABLE 7. Rank-1 cross-view gait recognition (%) with probe under 90◦.

TABLE 8. Rank-1 cross-view gait recognition (%) with probe under 126◦.

D. EXPERIMENTS ON KY4D DATABASES WITH
CURVED TRAJECTORIES
Kyushu University 4-dimensional (4D) Gait Database
(KY4D) [54] is characterized by its 4D gait data comprising
a set of 3D visual hull models with 2D image sequences.
The forty-two subjects involved in the dataset walked along
four straight paths {t1, t2, t3, t4} and two curved trajectories
{t5, t6}. The 2D gait images were captured by 16 high-
definition cameras, suitable for identifying subjects walk-
ing along curved trajectories. Since KY4D is a multi-view
gait database, we exploited it in 2D-3D-BPSDs optimization
using Eq. (2). The silhouette similarity measuring function
based on multi-view is defined as

L

=
1

2m× n

∑
θ∈8

∑m×n

i=1
wb
∥∥∥(g2D,αi − g3D,αi )

∥∥∥2
2

+
1

2m× n

∑
θ∈8

∑D

d=1

∑m×n

i=1
wd
∥∥∥(c2D,αd,i −c

3D,α
d,i )

∥∥∥2
2
,

(9)

where 8 is a multi-view set determined by the number of
cameras. The redefined cost function illustrates the union
of the residual error from all gait views. By minimizing the
multi-view silhouette similarity measuring function, accurate
3D human body pose and shape parameters are estimated.

In our experiment, only the straight path walking
sequences were used as gallery for training and the curved
trajectories for testing. Fig. 12 shows that our method out-
performs the approaches by López-Fernández et al. [26],
Iwashita et al. [54], Castro et al. [55] and Seely et al. [56]
for curved gait trajectories. The VCIGR-3DHSF works best
in curved walking condition due to two reasons. First, our
3D-BPSVeNet estimates camera views by a sequence of 2D
gait images, i.e., four frames in our experiment. The dif-
ference in walking directions correspond to camera view
changes. Since the walking direction within four frames are
similar to straight walk, it makes our body feature extraction
of 2D-3D-BPSDs less influenced by the curved trajecto-
ries. Second, the information on changing walking views is
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FIGURE 10. Recognition results of VCIGR-3DHSF, AVGR-BPRS, VI-MGR and
GFI-CCA under various variations.

FIGURE 11. Generation of virtual bag carrying models: (a) 2D gait image
with a bag; (b) semantic gait image of (a); (c) synthesized 3D mesh model
with similar carrying condition of (a); (d) 3D body mesh of (c) without a
bag; (e) silhouette difference between (b) and (c); (f) silhouette difference
between (b) and (d); and (g) 3D virtual body mesh with a backpack.

embedded in our GSFI when averaging the different viewing
data in SD-BGSIs. It takes into account the GSFI refining
process, thus making our 2D-3D-BPSDs more robust to view
changes regardless of self-occlusions.

E. EXPERIMENTS ON OU-MVLP DATASET
OU-MVLP [6] is multi-view gait dataset incorporating a
large population (i.e., 10307 subjects), captured with 14 view
angles ranging from 0◦ −90◦, 180◦ −270◦ with 15◦ interval.
Each view of a subject contains two video sequences with a
resolution of 1280 × 980 pixels. It is helpful for evaluating
algorithms for cross-view gait recognition under large popu-
lation condition. We used the same criteria settings in [6] to

FIGURE 12. Gait recognition rates comparison on KY4D gait dataset.

evaluate our method under four typical view angles ranging
from 0◦ −90◦. In the baseline of 1in-GEINet, 10,307 subjects
were divided into two disjoint groups, i.e., 5153 for training
and 5154 for testing. The methods compared in our experi-
ment are 1in-GEINet baseline [6], VTM [57], CNNs-LB [1]
and CNNs-Siamese [58].

Since only binary gait images are published due to privacy
reasons, body parsed S-RGB images cannot be used. Instead,
we transformed all the S-RGB images to binary format when
training the 3D-BPSVeNet. It makes our method less accurate
in extracting the 2D-3D-BPSDs, and the clothing recognition
network based on RGB images cannot be used. To address
this problem, a clothing combination classification based
on GEIs, as illustrated in Fig. 13, is introduced for coarse
clothing recognition.

FIGURE 13. GEIs in OU-MVLP under different clothing conditions: (a)
short skirt; (b) medium skirt; (c) long dress; (d) medium coat; (e) hat and
blazer; (f) raincoat; (g) hoodie; and (h) robe.

Twelve clothing combinations were used in the exper-
iment as listed in Table 9. The ResNet-50 convolutional
network [59] with SoftMax classifier was used for recogni-
tion and about 10,00 subjects in OU-MVLP were manually
selected for training. The keys for different types of clothing
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TABLE 9. Different clothing combinations used in the OU-ISIR B dataset.

in Table 9 are: FS - Full shirt; Hd - Hoodie; Br - Blazer;
RC - Regular coat; MC - Medium coat; LC - Long coat;
RC - Rain coat; Lg - Leggings; RP - regular pants; Ht - hat;
SS - Short skirt; MS - Medium skirt; LD - Long dress; and
Rb - Robe.

Besides clothing recognition, the multi-view gait data were
also used. According to Eq. (9), large multi-view gait data,
i.e., 5153 subjects, help to obtain more accurate 2D-3D-
BPSDs in the optimization as illustrated in Fig. 14. These data
were added to train our 3D-BPSVeNet, which made it adapt
to the new data in OU-MVLP.

The large population data when training our GSFI-RNet
also greatly helped to overcome the value deviation problem
in 2D to 3D semantic parameter estimation for adjusting the
intrinsic semantic features for recognition. The comparisons
results are shown in Fig. 15.

Fig. 15 shows that our VCIGR-3DHSF has advantages
in cross-view recognition even when the population of the
subjects is larger. Unlike VTM-based methods and most deep
learning approaches that transform the feature of probe gait
data to gallery viewing angle, or extract the view-invariant
features that are unexplained and less semantic relevance,
our method extracts the view-invariant body features directly
by an end to end 3D-BPSVeNet with full semantic mean-
ing. Also, the mismatched feature that often occurs in view
transformation or extraction is avoided, especially with large
view changes. The framework of VTM-based or data-driven
based method, e.g., deep learning [60], requires large training
samples to gain amore genericmodel, and better performance
is achieved by learning from more gait samples. However,
RGB gait images under various walking conditions from a
large population are not easy to obtain. Also, the camera
settings fixed in one scenario might be different to real-world
application scenarios due to the change of their elevation
angle. Our parametric 3D body model with virtual dressing is
greatly helped by virtual sample generation process. The 3D
body knowledge with viewing angles are fully utilized which
make our method performs well under large view changes.

F. EXPERIMENTS ON OU-ISIR DATASET B
The OU-ISIR dataset B [27] is focused on different clothing
combinations and is useful for evaluating the robustness of
gait recognition algorithm against clothing variations. It is
composed of 68 subjects from side view with up to 32 com-
binations of different types of clothing. Since the OU-ISIR

TABLE 10. Different clothing combinations used in the OU-ISIR B dataset.

dataset only provides binary gait silhouettes we cannot use
our clothing recognition network. However, all the clothing
combinations are given in [27] and used as our a priori
knowledge in our experiments. Table 10 shows the different
clothing combinations used in the OU-ISIR B dataset, i.e.,
RP - Regular pants (Regular jeans); BP - Baggy pants
(Chinos); SP - Short pants; Sk - Skirt (Medium skirt); CP -
Casual pants (Chinos); HS - Half shirt; FS - Full shirt; LC -
Long coat; Pk - Parker (Hoodie); DJ - Down jacket (Parka);
CW - Casual wear (Full shirt); RC - Rain coat; Cs - Casquette
cap (Hat); and Mf - Muffler.

We used the experiment settings in [51] to evaluate our
VCIGR-3DHSF. The dataset was divided into three groups:
(1) a training set comprising 446 sequences of 20 subjects
with all types of clothing, used to train the GSFI-RNet; (2) a
gallery set comprising sequences of the remaining 48 sub-
jects with standard clothing; and (3) a probe set compris-
ing 856 sequences for these 48 subjects with other types
of clothing excluding the standard clothing. Fig. 16 shows
the performances of our method and GEI, CI-SSA [3] and
VI-MGR [51]. N.B. CI-SSA only reported recognition results
in several clothing combination, i.e., Exp. 3, 5, 6, 7, 8, B, C,
E and R.

Fig. 16 shows that our method significantly outperforms
GEI, VI-MGR and CI-SSA, especially when the subjects
wore heavy coat or skirt, i.e., clothing conditions C, J, M,
U and V. Our VCIGR-3DHSF exploited 3D virtual dressing
as illustrated in Fig. 17 and feature refining network, i.e.,
GSFI-RNet, using a priori knowledge of clothing for feature
refinement.
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FIGURE 14. Refining 3D gait model using multi-view data: (a) 15◦ gait of ID-10 subject from OU-MVLP; (b)-(c) respectively 45◦ and 90◦ gait data for
refining; (d) refined 3D model using (b) & (c); (e)-(f): the corresponding 3D gait of (b) & (c); and (g)-(i) silhouette difference between 2D gait silhouettes
and their corresponding 3D gait.

FIGURE 15. Recognition rates of different methods with probe view from 0◦ to 90◦: (a) gallery view is 0◦; (b) gallery view
is 30◦; (a) gallery view is 60◦ ; and (a) gallery view is 90◦.

FIGURE 16. Recognition accuracy of various methods on OU-ISIR
dataset B with different clothing combinations.

G. COMPUTATIONAL COMPLEXITY
In our proposed VCIGR-3DHSF method, the extraction
of 2D-3D-BPSDs from 2D gait images is the time-consuming

part of the gait recognition. Thus, we discuss the compu-
tational complexity of the 2D-3D-BPSDs extraction, and
the minimum silhouette residual error search involved
in optimizing the 2D-3D-BPSDs using Eq. (2). In the
Powell’s conjugate directionmethod, the number of iterations
in Eq. (2) is greatly influenced by the initial data. To speed
up the process, an end to end 3D-BPSVeNet is proposed to
gain a better 3D initial gait model. A good set of global
data values of 2D-3D-BPSDs greatly reduces the time in
using Eq. (2). Another strategy is also introduced to speed
up the computation. An extra penalty item is added to Eq. (2)
to make the pose estimation results more reasonable by using
body shape and motion knowledge, i.e.,

Lnew = Lα +
∑

m∈[1 M ]
rulem (J)+

∑
n∈[1 N ]

r̂ulen (S), (10)

where
{
rulem |j ∈ [1 M ]

}
denotes a set of rules on joints with

M items, and
{
r̂ulen |n ∈ [1 N ]

}
denotes a set of rules on body
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FIGURE 17. Refining 3D gait model using virtual dressing: (a) J
combination of ID-3 subject from OU-ISIR; (b) refined 3D gait model with
long coat; (c) difference between (a) and (b); (d) normal dressing of (b);
(e) difference between (a) and (d); (f) R combination of ID-3 subject;
(g) refined 3D gait model with raincoat; (h) difference between (f) and (g);
(i) normal dressing of (g); and (j) difference between (f) and (i).

TABLE 11. Typical running time in optimizing 2D-3D-BPSDs.

shape with N items. The rule item function rule(·) inputs the
current joints data J or shape data S to check for any violation
of the rules. It returns a large positive value when it violates
the rule and zero otherwise. Since the physical variables of
body shape are related to each other, i.e., the weight is highly
related to height and can be estimated using Body Mass
Index. As for pose data, the constraints for the maximum
ranges of joints and the conditions for normal walking move-
ment also aid to speed up the process. Table 11 shows the typi-
cal running time in optimizing 2D-3D-BPSDs using Powell’s
estimation method on a PC with an Intel Core i7(3.6GHz)
CPU and 8GB RAM. The optimized strategy method has
been discussed earlier and the original method is initialized
with template I-pose without using the 3D-BPSVeNet, and
no extra penalty item is added to Eq. (2). The computa-
tional complexity can be improved further by using Graphical
Processing Units.

V. CONCLUSION
In this paper, a view and clothing invariant gait recognition
system based on semantic folding is presented. A novel
gait feature descriptor, i.e., GSFI, and a semantic feature
refining network are introduced. VCIGR-3DHSF converts
unstructured gait image data to structured gait semantic

image via 2D-3D body parameter estimation and semantic
folding. By using the a priori knowledge of viewing angles,
clothing styles and carried items, the proposed system is
robust to various walking conditions that commonly occur in
real application scenarios.

The method is based on the accurate extraction of the
2D-3D-BPSDs for semantic folding representation. In order
to speed up the process, an end to end 3D-BPSVeNet is
trained usingmixed training samples, i.e., real data and virtual
generated data. The process for accurate body parameters
estimation is then conducted based on virtual dressing which
greatly helps to overcome the effects of clothing variations.
To make the semantic folding descriptor GSFI more effec-
tive for recognition, a semantic feature refining network is
proposed. In addition, the method also exploits deep learning
network, i.e., CNN, RCNN and GRU. Since a large dataset is
normally required for adequate training, and this is a problem
for 3D gait recognition, we exploited full use of the a priori
knowledge to generate virtual samples, i.e., utilizing para-
metric body model and 3D clothing models. By introducing
the clothing recognition network and body parsing network
trained on a large dataset, we achieved accurate gait recogni-
tion against changing viewing angles and clothing. The other
most important improvement is that RGB images are used for
gait recognition. Compared with the traditional gait recogni-
tion methods based on binary gait images, more information
is exploited in ourmethod. The experimental results show that
VCIGR-3DHSF is effective in view-invariant gait recognition
against most walking conditions.
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