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ABSTRACT At present, the existing abnormal event detection models based on deep learning mainly
focus on data represented by a vectorial form, which pay little attention to the impact of the internal
structure characteristics of feature vector. In addition, a single classifier is difficult to ensure the accuracy
of classification. In order to address the above issues, we propose an abnormal event detection hybrid
modulation method via feature expectation subgraph calibrating classification in video surveillance scenes
in this paper. Our main contribution is to calibrate the classification of a single classifier by constructing
feature expectation subgraphs. First, we employ convolutional neural network and long short-term memory
models to extract the spatiotemporal features of video frame, and then construct the feature expectation
subgraph for each key frame of every video, which could be used to capture the internal sequential and
topological relational characteristics of structured feature vector. Second, we project expectation subgraphs
on the sparse vector to combine with a support vector classifier to calibrate the results of a linear support
vector classifier. Finally, the experiments on a common dataset named UCSDped]1 and a coal mining video
dataset in comparison with some existing works demonstrate that the performance of the proposed method
is better than several the state-of-the-art approaches.

INDEX TERMS Abnormal event detection, feature expectation subgraph, calibrating classification, sequen-
tial and topological relational characteristics.

I. INTRODUCTION it can generally be considered that abnormal behavior or an

In recent years, abnormal event detection in intelligent video
surveillance has gained more and more attention in academic
and industrial communities [1], [2], which has become an
important task in intelligent video surveillance since it is
related to visual saliency [3], interestingness prediction [4],
dominant behavior detection [5] and other topics in com-
puter vision. Abnormal event detection for video sequences
is a difficult challenge because of the volatility of the def-
initions between normality and abnormality [6] and depen-
dence of the definitions on the context scenario. Nevertheless,
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activity by unexpected events occurs less often than nor-
mal (familiar) events [7]. In order to detect abnormal events
in surveillance videos, various kinds of modeling techniques
are proposed in the literature, such as trajectory-based mod-
els [8], spatiotemporal feature-based models [9], [10] and
sparse reconstruction-based models [11], where the majority
to address the anomaly event detection are to learn and extract
the hand-crafted or deep appearance features of video from
given samples first and then classify and decide whether the
events are abnormal if they deviate from the model of normal
event.

At present, feature extraction is regarded as one key factor
for abnormal event detection in existing models. From the
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feature representation point of view, abnormal event detection
models are mainly classified into hand-crafted features-based
models and deep features-based models.

In the hand-crafted features-based models, trajectory [12],
flow [13] and vision modeling [14] can be used to describe
the dynamic information and spatiotemporal information of
video sequences, besides trajectory modeling, such as color,
texture, optical flow, bag-of-words (BOW) [15] modeling and
so on. The models based on color and texture features can
describe appearance features in a video sequence, but they
ignore motion representations. Optical flow modeling can
describe dynamic information of video, but it is susceptible
to illumination. The bag-of-words approach computes an
unordered histogram of visual words occurrences that encode
only the global distribution of low-level descriptors, but it
ignores the local structural organization of salient points [16].
Although trajectory modeling can represent motion charac-
teristic of foreground objects, it is not robust for complex
scenes of video. In general, hand-crafted features-based mod-
els depend on some priori knowledge, and are not generalized
well for complex video surveillance scenes.

With the development of machine learning studies, various
approaches based on deep learning have achieved remarkable
progress in abnormal event detection. For example, convo-
lutional neural networks (CNNSs) [17], recurrent neural net-
works [11] and other deep learning models can learn better
feature representation than hand-crafted feature modeling.
It is conductive to determinate the occurrence of abnormal
event in video sequence.

Nevertheless, most of abnormal event detection models
based on deep learning mainly focus on data represented in
a vectorial form, which pay little attention to the impact of
the internal structure characteristics of feature vector on clas-
sifying and determining abnormal events in video sequences.
Moreover, a single classifier is difficult to ensure the accuracy
of classification. Especially for the complex video surveil-
lance scenes, the disturbances from the light source, occlu-
sions and other factors in video will obviously affect the data
represented in a vectorial form and accuracy of algorithm.
Hence, deciding how to utilize the structure characteristics
of feature vectors to filter unexpected eigenvalues that corre-
spond to disturbances to improve the accuracy of abnormal
event detection remains a challenging task.

In this paper, we propose an abnormal event detection
hybrid modulation method via feature expectation subgraph
calibrating classification (DF-ESCC) in video surveillance
scenes to address the above issues. Our method consists
of three parts: deep feature extraction, feature expectation
subgraph construction and expectation subgraph-based cal-
ibration classification. First, we employ a convolutional neu-
ral network and long short-term memory (LSTM) model to
extract the features in video surveillance scenes. Second,
we construct the feature expectation subgraph for each key
frame of every video, which could be used to capture the
internal sequential and topological relational characteristics
of structured feature vector. Finally, we project expectation
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subgraph on the sparse vector, which is used to combine
support vector classifiers to calibrate the classification of
linear support vector classifiers to determinate whether there
exist abnormal events in the video surveillance scenes. The
common dataset UCSDped]1 [18] and Coal Mining video
datasets [19] are used to verify the effectiveness of our pro-
posed method. In summary, our contributions are summarized
as follows: (1) we introduce the feature expectation subgraph
to represent the internal sequential and topological relational
characteristics of structured feature vector; (2) we propose a
DF-ESCC method combining feature expectation subgraph
with support vector classifiers to calibrate the classification
of linear support vector classifiers; (3) the proposed method
is validated on challenging UCSD dataset and coal mining
video dataset, where the coal mining video dataset has com-
plex context scenarios.

The rest of paper is organized as follows. In Section 2,
we present a brief review of related abnormal event detection
methods. We propose an abnormal event detection hybrid
modulation method via feature expectation subgraph calibrat-
ing linear support vector classifier classification in Section 3.
The experiments are performed to verify the performance
of the proposed DF-ESCC method in Section 4. Finally,
we conclude this paper.

Il. RELATED WORK

In this section, we briefly review previous abnormal event
detection models from the point of view of appearance feature
for image in video. We first recall some hand-crafted features-
based models, and then review deep features-based models
for abnormal event detection. Finally, we analyze the short-
coming of the above methods.

A. HAND-CRAFTED FEATURES-BASED MODELS

In the past decade, trajectory features are widely used to
abnormal event detection. For example, the study in [20]
presents a complex event processing method based on tra-
jectories. Song et al. [21] propose an approach that firstly
obtains the trajectories of vehicles and pedestrians, and then
detects the abnormal events using the trajectory features.
However, the features of above methods are relatively sin-
gle. Serhan ef al. [22] propose to incorporate object trajec-
tory analysis and pixel-based analysis for abnormal behavior
inference and event detection, but this method is not suit-
able for images with poor quality. In [23], a multi-feature
fusion method is used to obtain characteristic information
of pedestrians, and then motion information is attained by
trajectory analysis. The limitation of this method is that it
is susceptible to feature changes. Moreover, the graph-based
representation and learning of relevant features are combined
and correlated with target behaviors to detect abnormalities
in moving object trajectories, so as to determine whether the
events of interest are normal or abnormal [24]. Fu et al. [25]
utilize reference points as well as the piecewise linear seg-
mentation algorithm to compress the trajectories, and then
propose a time-aware and spatially correlated collaborative
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algorithm to increase the density of the trajectories to improve
the accuracy of abnormal event detection. However, in this
method there exists the issue of large cumulative errors in
trajectory calculation. The work in [26] presents a survey
of trajectory-based surveillance applications with a focus on
abnormal event detection.

In general, the representation of trajectory features is sen-
sitive to noise interference, and there exists the discontinuity
of target trajectory. Thus, the models based on trajectory
features are not completely reliable and not robust for the
crowded scenes and other complex scenes.

To overcome the drawback of trajectory-based models,
spatiotemporal features [27]-[29] are extracted from low-
level appearance and motion cues to address the above prob-
lems. For example, the study in [30] proposes an approach
that relies mainly on spatial abstractions of each object,
mining frequent temporal patterns in a sequence of video
frames to form a regular temporal pattern, which is used to
detect abnormal events. However, this approach is difficult to
describe spatial abstractions of each object accurately when
the image features are transformed. In [31], the spatiotempo-
ral information and slow feature analysis method are com-
bined to represent the discriminative information in videos to
detect abnormal crowd motion, but the high semantic inher-
ent features of this method have limited ability to represent
nonlinear features. The work in [32] proposes distribution of
magnitude and orientation of local interest frame descriptor is
used to learn a support vector machine based a binary classi-
fier to detect violence events. Moreover, a feature descriptor
is proposed by adopting the covariance matrix coding optical
flow in multi-regions of interest to represent motion informa-
tion, and then one-class support vector machine is applied to
detect the abnormal events in [33]. The limitation of these
approaches is that a single classifier is difficult to ensure the
accuracy of classification. Wang et al. [34] propose to learn
the histograms of optical flow orientations of the observed
video frames by a hidden Markov model to detect abnormal
events in a crowded scene. In order to at least alleviate the
impact of label information on supervised or semi-supervised
models, the study in [35] proposes an unsupervised algorithm
that combines the manifold-based feature with a graph den-
sity search mechanism to detect abnormal network events.
However, these algorithms need to know the data distribution
in advance.

In summary, the models based on spatiotemporal features
have a better recognition ability for moving objects with
linear or nearly linear features, but they need to know prior
knowledge, and have limited representation ability for non-
linear features.

B. DEEP APPEARANCE FEATURES-BASED MODELS

In order to overcome the drawback of hand-crafted features,
many models based on deep appearance features are pro-
posed to detect abnormal events. The above deep appear-
ance features can be obtained by using convolutional neural
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networks [36], [37], recurrent neural networks [38], [39] and
autoencoder networks [40], [41].

For example, the work in [42] first combines the saliency
information with multi-scale histogram optical flow of video
frames to represent spatiotemporal information, and then
adopts a deep learning network named PCANet to extract
high-level features of video to detect abnormal events. As an
extension of the above model, Damla et al. [43] explore
different convolutional neural networks to model patterns
in a video sequence to detect abnormal behavior. In [44],
the temporal convolutional neural network and optical flow
models are combined to detect local anomalies. The study
in [45] integrates the one-class support vector machine into
convolutional neural network to implement a novel end-to-
end model. The above approaches pay more attention to the
extraction of spatial features, but the spatial-temporal rela-
tionship is not close enough.

In order to address that issue, it is necessary to introduce the
recurrent neural networks to capture the temporal features.
For example, a convolutional autoencoder integrates with a
long short-term memory model to detect abnormal events in
video surveillance in [46]. Kothapalli et al. [47] use mixture
of Gaussians to subtract the background of each frame first,
and then a convolutional neural network is used to extract
spatial features that are fed into long short-term memory
to learn temporal features. Finally, a linear support vector
machine is used to classify to detect abnormal events. In [48],
anovel recurrent neural network is constructed to learn sparse
representation and dictionary to detect anomaly events by
proposing an adaptive iterative hard-thresholding algorithm.
The work in [49] combines the body shape, depth and optical
flow features with long short-term memory network to imple-
ment the fall detection. The limitations of above approaches
based on long-short term memory network are that the feature
of noise interference will continue to spread in the process of
recurrent neural network, which will affect the accuracy of
features representation.

Moreover, autoencoder networks are used to detect the
anomaly event. For example, an unsupervised deep fea-
ture learning algorithm is proposed by using a deep
three-dimensional convolutional network and multi-level
similarity trees after sparse coding to detect abnormal events
in [6]. Wang et al. [50] use hybrid spatiotemporal autoen-
coder to solve the problem that long-short term memory
encoder-decoder framework fails to account for the global
context of the learned representation with a fixed dimension
representation. The work in [51] uses a two-stream recurrent
variational autoencoder to detect abnormal events in video
streams. However, these approaches pay little attention to the
impact of the internal structure characteristics of two feature
vector on classifying and determining abnormal events in
video sequences.

In summary, the models based on deep appearance feature
have a better recognition ability for moving objects with
nonlinear features, but the disturbance features from the light
source, occlusions and other factors in video will spread in the
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FIGURE 1. The framework of DF-ESCC method.

depth neural networks, which will seriously affect the accu-
racy of feature representation. In addition, a single classifier
or activation function is difficult to ensure the accuracy of
classification. Hence, we utilize the structure characteristics
of the deep appearance features to filter unexpected feature
representations, and combine a support vector classifier to
calibrate the results of a single classifier.

lll. THE PROPOSED METHOD

In this section, we describe how to utilize structure char-
acteristics of the feature vector to improve the performance
of abnormal event detection modeling. Recently, there have
been a large number of works focusing on key-points or
feature vectors to classify and detect abnormal events in video
sequences. The key insight of these works is to exploit appear-
ance feature representation and utilize probability statistical
models or clustering approaches to determinate whether the
events as abnormal if they deviate from the model of normal
event in video surveillance scenes. However, feature repre-
sentation of vectorial form is not easy to describe the topolog-
ical, geometric and other complex relational characteristics of
real-world data, and the disturbances from the light source,
occlusions and other factors in video can affect the feature
representations. Moreover, a single classifier is difficult to
ensure the accuracy of classification.

In this paper, we try to construct a feature expectation sub-
graph to filter unexpected feature representations that from
various disturbances in video and combine feature expecta-
tion subgraphs and support vector classifiers to improve the
identify result of single classifier. The advantage of using
feature expectation subgraphs is to obtain principal compo-
nent of feature vector while retaining the sequential and topo-
logical relational characteristics inside feature vector. It is
conducive to classification and recognition of abnormal event
detection. Therefore, we employ the convolutional neural
network and long short-term memory models to extract the
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features in video surveillance scenes first, and then construct
expectation subgraphs by measuring the distance between
eigenvalues in a feature vector. In the following, we com-
bine expectation subgraphs with support vector classifiers
to calibrate the classification of linear support vector classi-
fiers to determinate whether there exist abnormal events in
a video surveillance scene. Fig. 1 illustrates the overview of
our method, which contains three parts: CNN-LSTM feature
extraction, feature expectation subgraph construction and cal-
ibration classification based on feature expectation subgraph.
In the following, we will describe these parts separately.

A. CNN-LSTM FEATURE EXTRACTION

Deep neural network models have more powerful learn-
ing capacity and excellent representational capacity than
hand-crafted features models. Convolutional neural networks
are a kind of common deep neural network, which are suitable
for spatial relationships learning on raw input data. Among
the various convolutional neural network models, a convolu-
tional neural network named VGG-16 can be employed to
extract spatial features as well as for high accuracy image
recognition because of the depth of network [47], and there-
fore it can be applied to feature extraction for complex
video surveillance scenes. However, the VGG-16 network is
difficult to represent the temporal relationship of the input
video sequences accurately. In order to overcome such a
limitation, we employ a long short-term memory network to
extract dynamic temporal behavior feature in video stream.
In consideration of spatiotemporal features of video, we first
select several video clips as the training samples to input
VGG-16 network to extract the spatial features, and then the
obtained feature maps are fed into LSTM to further extract
the temporal features of input video clips. Suppose that the
above-mentioned video clips are with a size of w x h X ¢ X [,
where w x h denotes the size of video frame, ¢ denotes
the number of channels for each frame, and / denotes the
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FIGURE 2. The visual feature map for different convolution layers.

frame number of the video clips. We set w and & as 224, and
c 3 before training the VGG-16 network. Moreover,
we first fix 3 x 3 convolutional kernel with stride 1 in convolu-
tion layer, and then fix 2 x 2 pooling window with stride 2 in
pooling layer to implement the convolutional operation and
max-pooling process. During the process of convolutional
operation, feature matrix Yjj can be obtained by the following
formulation:

Yij =fX;j ® W+ b) (D

where f(-) denotes the activation function, Xj; is the window
matrix around the pixel of i row and j” column in video
frame, i € [0, h— 1] andj € [0, w— 1]. Moreover, W denotes
the weight matrix, and b is the bias. In the VGG-16 network,
we select a rectified linear unit function to represent f(-) and
set a variable z to denote the maximum value of all elements
in a variable z to denote the maximum value of all elements
in feature matrix Yjj, and then f(-) is described as follows:

f(2) = max(0, z) @

Through five groups of convolution and max-pooling layer,
we use three fully connected layers to extract spatial feature
vectors of size [4096,1]. In addition, the function of cross
entropy loss is used to optimize a convolutional neural net-
work. Taking a video frame of coal mine video as an exam-
ple, we visualized the feature maps of different convolution
layers, as shown in Fig. 2. It can be seen from Fig. 2 that the
edge features of video frame are salient in the first convolu-
tion layer. However, with the increase of convolution layer,
the feature maps are more and more abstract, and finally the
high-level features of video frames are obtained.
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Subsequently, the extracted feature vectors are fed into a
long short-term memory network to further extract temporal
feature. Here we employ a two-layer long short-term memory
network, and the long short-term memory network in each
layer has the same architecture, which consists of input gate,
forget gate and output gate. In the process of training a long
short-term memory network, we set the learning rate to 0.01,
the number of input nodes to 64, and the number of nodes in
hidden layer to 256. Moreover, we utilize the cross-entropy
function as the loss function to train, i.e.,

n
LGy ==Y ¥ x log(y)

i=1

3

where y; is the i eigenvalue in feature vector from out-
put gate, y; denotes the label corresponding to y;, and
i €[1,1024].

After we complete the VGG-LSTM networks training,
we can obtain the feature vectors of size [1024,1] from the
output layer of long short-term memory network to represent
the video clips. The concrete architecture of VGG-LSTM
networks is described in Fig. 3.

B. FEATURE EXPECTATION SUBGRAPH CONSTRUCTION

The disturbances from the light source, occlusions and other
factors will affect feature extraction whether in normal or
complex video surveillance scenes, which are also reflected
in feature representations. Although the principal component
analysis algorithms can reserve the main features of video
frames while reducing the impact of disturbances, the struc-
ture characteristics of feature vector will change. At present,
most studies mainly focus on data represented in a vectorial

VOLUME 8, 2020



O. Ye et al.: Abnormal Event Detection via Feature Expectation Subgraph Calibrating Classification in Video Surveillance Scenes

IEEE Access

CNN-LSTM Feature Extraction

LSTM Cell Architecture

Video Clips VGG-16 Architecture

on o0 on o0 o0 é é % o §
Conv3-64 £ Conv3-128 £ Conv3-256 £ Conv3-512 £ Conv3-512 =l g 8 £ §
S g Conv3-256 g Conv3-512 g Conv3-512 € B8 B B 51
Conv3-64 2 Conv3-128 2 (3956 & Conv3-512 & Com3sl2 & £ & £ -
Relu % Relu g onvs-. % onvs-. é onvs- § 8 8 8 G G tah © Cell output g
£ g Relu g Relu g Relu =} 5| 5 5 1 I 1 j‘ g
2| B B B

] LSTM cell

FIGURE 3. VGG-LSTM networks architecture.

form, which pay little attention to the impact of the inter-
nal structure characteristics of feature vector for abnormal
event detection in video surveillance scenes. In this section,
we briefly describe how to construct a feature expectation
subgraph to represent sequential and topological relational
characteristics between eigenvalues in a structured feature
vector.

Suppose that we obtain a set of feature vectors S = {V;}I_,
by using the VGG-LSTM networks, where the i feature vec-
tor V; € R1924x1 Since the distribution of feature points has
the sequential and topological relationships in video frame,
the dlstance between two eigenvalues yﬁ, and ym in any one

[y1 ,yz), . ,y§024] is probably closer to each other
1f the two feature points corresponding to the y ) and ym are
adjacent in video frame, where m and n respectively denote
the index positions of y,(,? and y&,i) in a feature vector, m <
n, and m,n € [1, 1024]. In order to represent the internal
sequential and topological relationships of a feature vector,
we first transform the feature vector to a two-dimensional
matrix by using the following formulation:

()

A0 Z e E=D ) @)
0, @t #£1D,
where ¢t denotes the t’h row, [ denotes the [™ column in

matrix A? corresponds to the i
((OINO) (i) S d
,y1024] econd, we use

matrix A®, and the i
feature vector V; = ) ,y2 , .-
a mapping ¢ : yf’)l — P(yt ;» 1) to obtain an eigenvalue
point in two-dimensional space if the value of an element is
not 0in A®). Therefore, each eigenvalue y”) corresponds to an
eigenvalue point yg ; in two-dimensional space. Suppose that
we have two eigenvalue points P(yll’“, l1) and P(ytz’lz, ).
We can measure the distance between two eigenvalue points
by using

dis(POY) 1. 1), PGS 1y 1))

ol Y16 13 o) + a2 Y2, )
al +a2

where the parameters #1, 12, [1, [» € [1, 1024], o1 and o, are
constraint factors, and yﬁl) “,ytz) n € AD . According to [16],

the position of eigenvalue points in two-dimensional space is
also the main factor to measure the internal sequential and
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topological relationships of a feature vector, besides eigen-
value. Therefore, the first term lﬁi(ygll)’ I yglz) ) in Eq. (5)
measures the similarity of eigenvalues between two eigen-
value points, and the second term ¥2(l>, ;) measures the
similarity of the position between two eigenvalue points.
Moreover, we calculate k using Eq. (6) to roughly measure
the contribution relationship between two terms for distance

measurement.

max(y(ll),y(zl), e »y(il())zzt vy
dim(V;)

where dim(V;) denotes the dimension of feature vector V;.
On this basis, we use the Euclidean distance function to
represent Y l(yt1 I yt2 1) and ¥ (o, I1); thus we can further
describe Eq. (5) as below:

dist(P(yEll)’”, h), P(yglz),lz» h))

_ (i
= {“1 ) (ytl 1

[0, -
b k 9
[O9r X k]”

(6)

2
)’ +a2~(zz—ll)2} ,

if K>1
if K >1,

s.t. o t+ay =1

(N

where r denotes the range of neighborhood. We employ the
idea of K-NearesNeighbor algorithm to calculate the distance
only in r scope (we set ¥ = 100 in our experiment), which can
not only reduce the computational cost but also decrease the
influence of the far position of eigenvalue point in feature vec-
tor on distance calculation. If, dzs(P(yt1 i 1, P(yglz), ) <
,uTP(yt1 I ,11) where ur is a given threshold, we consider
two points P(yf’l)’ 1»11) and P(yglz)’lz, I) as similar eigenvalue
points, and utilize an edge to represent incidence relation
between each other. In this way, there are several eigenvalue
points that will be related to each other by using edges, and
several edge sets are generated to represent incidence relation
of all eigenvalue points in feature vector. Through the above
eigenvalue points and edge sets, we can construct a graph
G = (v, e(v)), where v denotes the set of eigenvalue points,
and e(v) denotes the corresponding edge set. In order to utilize
the structure characteristics of deep feature vectors to filter
unexpected eigenvalues that correspond to disturbances to
improve the accuracy of abnormal event detection, we present
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to construct a feature expectation subgraph for each key frame
of the video. First, we calculate the expected value of edge
sets in graph G in below:

Ecy~r(eoh = p_ PEW)f () ®)
le)

where f(¢(v)) denotes discrete function on &(v). Since the
probability of occurrence of any &(v) is random, we can
further describe it as below:

N
> (eMI)

i=1
Eepmpleoi) = = )

After that, we can obtain feature expectation subgraph
G = (V, & (v) if the condition |e(V)| > Egw)~p(eq))) iS
met, as shown in Fig. 4. Fig. 4(a) shows the eigenvalue points
in feature vector generated from VGG-LSTM networks, and
Fig. 4(b) shows a feature expectation subgraph G’. From
Fig. 4(b), we can see that some eigenvalue points are filtered
when some eigenvalue points do not satisfy the condition
dis(P(yfll)’ 100, P(yﬁ'z)’ > 1)) < wr, and others are retained.
Moreover, the graph that is composed of these eigenvalue
points can reserve the main part of internal sequential and
topological relational characteristics of structured feature
vector. When there are less feature expectation subgraphs,
we will use all feature subgraphs as feature expectation
subgraphs. When a feature subgraph contains all eigenvalue
points, we can regard it as the maximum feature expectation
subgraph.

C. CALIBRATION CLASSIFICATION BASED ON FEATURE
EXPECTATION SUBGRAPH
Once the frames of video are represented using feature expec-
tation subgraphs, we can use them to classify and recognize
anomaly. In this section, we will combine with support vector
classifiers and feature expectation subgraphs to calibrate the
classification of a single linear support vector classifier.
First let {G', y;}!_, be the corresponding labeled feature
expectation subgraphs for n frames from N training videos
{Vi}f.V: |» Where the label y; is —1 for feature expectation
subgraphs of abnormal event and +1 for feature expectation
subgraphs of normal event. Second, we utilize the support
vector classifier to classify G’ and detect the abnormal events.
In this paper, we solve the classification problem of support
vector classifier for feature expectation subgraphs, which is
based on the improved support vector machine model in [16],
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as formulated below:

. 1 n n n
minJ(G,, G} vl =53 3 eiepp(K (G, G)—Y e,
i=1 j=1 i=1

n
s.t. Zaiyg =0 and0<q; <C (10)
i=1
where «; and «; are Lagrange multipliers, y; e {—1,+1},
K(G,, G;) is the graph kernel function, and C is the box
constraint parameter. Since we can use an inverse mapping
¢ P(yifl, H — yﬁ')l to obtain a sparse vector V(S’ that
corresponds to a feature expectation subgraph G}, we can
establish a conversion relationship: G; — V(Si). On this basis,
we adopt the linear kernel function K (G, G]’-) = V(Si> X V(S’)
to measure the similarity between any two G; and G;. The
decision function for a test G’ will be:

m
f(G. G} = sign(>_ aiy/K(G}.G') + b) (11)
i=1
where b is the bias, and f(-) = f(—1,+1) is the predic-
tion function. Although feature expectation subgraphs can be
used to obtain principal component of feature vector while
reserving the main sequential and topological relational char-
acteristics inside feature vector, a single classifier is difficult
to ensure the accuracy of classification. In addition, sparse
vectors obtained by feature expectation subgraphs cannot
completely represent the feature of video frame. Hence,
we combine with the linear support vector classifier to detect
the abnormal events in video scenes as follows:

(G, G,V V)=V, V)V (G, G) 12)

where V is the feature vector that is extracted from VGG-
LSTM networks for test samples. By the logical OR oper-
ation, we can utilize the result of f(G’, G}) to calibrate the
classification of f(V, V;).

IV. EXPERIMENTAL EVALUATION

We conduct extensive experiments on a widely used abnor-
mal event detection dataset and a coal mining video
dataset to evaluate the performance of the proposed
DF-ESCC and compare them with several state-of-the-art
methods such as SURF+BoW, SIFT+BoW [16], HMM
with optical flow [34], CNN-2D+LSTM [43] and CNN-
2D+4+LSTM+SVM [47]. All the experiments are conducted
on a machine having a Inter Core (TM) i7-7700HQ pro-
cessor with 8G memory and a Huawei server having
4-Inter Xeon processors with 8G memory, respectively. The
programs are written in Python with version 3.5. In what
follows, we describe the details of experiments and results.

A. DATASET AND EVALUATION CRITERIA

In real life, there are video quality issues in the collected
video data and more repetitive information in each video
frame, which are not conducive to the detection of abnormal
events in the video surveillance scenes. In order to verify
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FIGURE 6. The visualization of loss and weight variation during coal mining video dataset training.

the effectiveness and performance of the proposed method
in common scenarios, we choose the UCSDpedl dataset
[18] to evaluate the proposed method since it is the most
commonly used benchmarks for abnormal event detection in
videos. Moreover, we also mainly focus on the coal mine
video dataset [19] as it has complex scenes, which is more
challenging than UCSDpedl dataset. The abnormal event
of coal accumulation is also common in production of the
coal mine. By using coal mine video dataset, the validity
and performance of our proposed method can be verified
in complex scenarios. The UCSDped1 dataset can provide
34 training clips and 36 testing clips, and each clip has around
200 frames with a 238 x 158 pixels resolution. In our exper-
iments, we utilize total 1393 video frames from 4 videos to
detect “biker”’, “cart”, “wheelchair’ and ‘‘skater’” abnormal
events. In the coal mining video dataset, there are 73 videos
that can be used for training and testing, and each frame is
the 3-channel image of 224 x 224 pixels resolution. In our
experiments, we select total 6879 frames from 6 videos in 3
scenes to detect an abnormal event of coal accumulation.

In order to evaluate the performance of the proposed
approach, the following metrics [43]: accuracy, precision
and recall metrics are used for evaluation of abnormal event
detection, which are expressed by:

Precision = TP/(TP + FP) (13)

Recall = TP/(TP + FN) (14)
(TP+1TN)

Accuracy = (15)

(TP + TN + FP + FN)

VOLUME 8, 2020

where TP is the number of true positive samples, FN is that
of false negative samples, F'P is that of false positive samples
and TN is that of true negative samples.

B. RESUTLS ON DIFFERENT DATASETS

For the UCSDped1dataset and coal mining video dataset, the
initialization of weights and biases variables are random val-
ues in the process of training VGG-LSTM networks. More-
over, we utilize the dropout function, parameter sharing [52]
and data enhancement [53] methods to address the overfitting
problem, and adopt the Adam algorithm to optimize the loss
function. The change of weight variables and loss in the
process of training for the UCSDped1 dataset and coal mining
video dataset are shown in Figs. 5 and 6. From Fig. 5, we can
see that the loss function is convergent, the different weights
in CNN-LSTM networks change in the range of —0.2 to 0.2,
and the different biases change in the range of —1 to 1. More-
over, according to Fig. 6, we can see that the loss function also
is convergent, the different weights in CNN-LSTM networks
change in the range of —0.2 to 0.2, and the different biases
change in the range of —0.7 to 1.3. Therefore, there is no
overfitting problem in the process of training and validation
in our experiment.

In our experiments, there are different feature expectation
subgraphs that are constructed through different thresholds
ur, as shown in Figs. 7 and 8. Through these figures, we can
find that the number of eigenvalue points in the feature
expectation subgraph increases with the increase of ur,
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the
until wur
graphs in Fig. 8 also changes until ur

topological structure of subgraphs in Fig. 7 changes
1.6, and the topological structure of sub-
2.0. In addi-

graphs may contain some eigenvalue points that correspond to
disturbance factors, which will affect the accuracy of abnor-
mal event detection.

tion, Figs. 9 and 10 show the situation that exists the less
eigenvalue points, the higher accuracy. The accuracy is the
highest when ur 1.3 in Fig.7 and ur = 2.0 in Fig. 8.
Less eigenvalue points in a feature expectation subgraph
are not enough to represent features of video frame com-
pletely, and some feature expectation subgraphs or feature

97572

To further study the performance of the proposed
approach, we compare DF-ESCC with several state-of-the-art
approaches. The results, as shown in Tables 1 and 2, demon-
strate that the performance of hand-crafted features-based
models is weaker than deep appearance features-based mod-
els, and our approach improves the performance effectively.
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TABLE 2. abnormal event detection on the coal mining video dataset.

Precisi Recall Accuracy

Methods on (%) %) (%)
SURF+BoW 65.43 72.69 73.13
SIFT+BoW 64.38 73.45 74.38
HMM with optical flow 77.6 90.6 83.1
CNN-2D+LSTM 98.76 99.64 92.30
CNN-2D+LSTM+SVM 98.34 99.19 98.03
DF-ESCC 98.93 99.79 98.97
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FIGURE 9. The performance of our method for different 1.7's on
UCSD-ped1 dataset.
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FIGURE 10. The performance of our method for different x’s on coal
mining video dataset.

TABLE 1. Abnormal event detection on the ucsdped1 dataset.

Precision Recall Accuracy
Methods %) %) %)

SURF+BoW 75.47 74.44 77.56
SIFT+BoW 74.25 79.63 76.23
HMM with optical flow  90.4 92.2 88.6

CNN-2D+LSTM 94.17 79.63 91.43
CNN-2D+LSTM+SVM  99.59 99.28 99.01
DF-ESCC 99.59 99.89 99.55

Some eigenvalue points correspond to the disturbances of
light source in the coal mining video dataset and the dense
crowd in UCSDped| are filtered, which can reduce the influ-
ence of some disturbances on abnormal event detection. How-
ever, if the disturbances have a great influence on image
features, the effect of maximum feature expectation graph
will be better, such as in the case of ur = 2.0 in Fig. 10.
Finally, the results of abnormal event detection are shown
in Fig. 11, where Fig. 11(a) shows the abnormal event that
the car is on the pedestrian way, and Fig. 11(b) shows the

VOLUME 8, 2020

(b) abnormal event on coal mining video dataset

FIGURE 11. The results of abnormal event detection on two datasets.

abnormal event that coal accumulates on belt conveyor in the
process of coal mining.

V. CONCLUSION

In this paper, we present an abnormal event detection hybrid
modulation method via feature expectation subgraph calibrat-
ing classification (DF-ESCC) in video surveillance scenes.
The proposed method based on feature extraction of VGG-
16 and long short-term memory networks can extract the
salient features accurately from surveillance videos. More-
over, some unexpected eigenvalues can be filtered by utilizing
the constructed feature expectation subgraphs and mapping
sparse vectors. Finally, the accuracy of abnormal event detec-
tion can be improved by using the classification of feature
expectation subgraphs to calibrate the results of a single clas-
sifier. The experimental results on two challenging datasets
indicate the effectiveness of DF-ESCC and show competi-
tive performance with the existing approaches. In summary,
the accuracy of abnormal event detection can be improved by
utilizing internal sequential and topological relational char-
acteristics of structured deep appearance features.
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Although our approach can learn the effective discrimi-
native features from CNN-LSTM networks, its performance
still needs to improve in complex video surveillance scenes,
and the graph kernel model also needs to improve. In the
future, we plan to use inception networks and other graph
kernel methods to further improve the performance of our
method.
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