
Received April 21, 2020, accepted May 12, 2020, date of publication May 25, 2020, date of current version June 8, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2997287

Evaluation of Static Potential Integrals on
Triangular Domains
DONALD R. WILTON 1, (Life Fellow, IEEE), JAVIER RIVERO 2,
WILLIAM A. JOHNSON3, (Senior Member, IEEE),
AND FRANCESCA VIPIANA 2, (Senior Member, IEEE)
1Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77204-4005, USA
2Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Torino, Italy
3Consultant, Albuquerque, NM 87123, USA

Corresponding author: Francesca Vipiana (francesca.vipiana@polito.it)

ABSTRACT Static potential integrals for constant and linear sources on triangles are derived in a straightfor-
ward way. The new representations, as presented, are robust with respect to machine evaluation in important
limiting cases. The potential integrals comprise up to six functions, each dependent on the relative position
and orientation (with respect to an observation point) of a vertex and edge, respectively, of the source
triangle. Gradients of the potentials are derived by differentiation, thus preserving relations between the
representations. Each such vertex function reveals any anomalous functional behavior near its associated
vertex or edge, which is useful information for devising test integral schemes. Potential plots in the source
plane of an equilateral triangle illustrate such behavior, as do similar plots for each vertex function and
gradient components near their associated edge and vertex.

INDEX TERMS Integral equations, moment methods, numerical analysis, singular integrals, numerical
integration.

I. INTRODUCTION
This paper revises standard representations of static potentials
and their gradients with a focus on their accurate and efficient
evaluation, with special attention to critical limiting cases,
for sources on planar elements with constant or linearly-
varying basis functions. These integrals have historically
found use especially in singularity subtraction approaches
for evaluating matrix elements in the Method of Moments
(MoM) [1], [2]. We specifically illustrate the approach for
triangular elements and RWG bases, but the concepts apply
equally well to other (planar) elements and linearly-varying
bases. They are also easily adapted to deal with curvilinear
elements when approximating tangent elements are used to
handle kernel singularities [3]. Our goal is to evaluate the
following integral operators that appear in the electric and
magnetic field integral equations (EFIE and MFIE), called
L and K operators in [4], respectively, that form or serve as
prototypes for most integral operators and formulations of
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interest [5]:∫
T

e−jkR

4πR
dS ′,

∫
T

e−jkR

4πR
3p(r′) dS ′,

and ∇×
∫
T

e−jkR

4πR
3p(r′) dS ′, (1)

where R is the separation between an observation point r and
source point r′ on a triangular element T ; 3p(r′) is a linear
(RWG) vector basis [6], [7] associatedwith a vertex or edge of
T . The three integrals in (1) are readily identified as the usual
scalar potential, vector potential, and curl of vector potential,
respectively, and we refer to them as such. Note that since
all source designations and material parameters are removed
from (1), they may be interpreted as field potentials due to
currents or charges of either electric or magnetic variety. For r
on T , the integrands of (1) are singular whenR = 0, i.e., when
r′ = r; when r is near T (i.e., R is small, but non-vanishing),
the integrands are said to be near-singular. The two usual
approaches for evaluating such integrals are the singularity
subtraction or singularity cancellation methods. In singular-
ity subtraction, one first identifies a simplified integrand form
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asymptotic to the integrand near its singularities. Subtracting
the term from the integrand yields a difference integrand
less singular than the original (i.e., regularized or smoothed)
and therefore more amenable to numerical integration. The
subtracted term should be analytically integrable—or at least
easily evaluated numerically. Since the analytically evaluated
contribution contains the singularity, it is usually the domi-
nant contribution to the total integral; in that case, reduced
accuracy in the numerically evaluated difference integral is
then often acceptable. Most often, the asymptotic form cho-
sen is simply the static limit (k → 0) of the integrand; this
choice usually suffices to accelerate numerical quadrature
as long as kR = k

∣∣r− r′
∣∣ � π/2. The static asymptotic

forms of (1) generally contain the dominant contributions
to the integrals, and usually closely approximate their real
parts. Thus, assuming the bases 3p(r′) are (linear) RWG
bases defined on a triangle T , the integrals can always be
constructed in terms of the following static integrals with both
constant and linear source densities [1], [2], [6]:∫
T

1
4πR

dS ′,
∫
T

r− r′

4πR
dS ′, and ∇×

∫
T

(r− r′)
4πR

dS ′. (2)

We note there also exist higher-order singularity subtraction
approaches in which the phase factor exp(−jkR) is expanded
in a truncated power series in R and higher order (vector
or scalar) basis functions, if present, are expressed as poly-
nomials on T . The resulting power series approximations,
when extracted from the integrand, further regularize and
reduce the magnitude of the difference integral contribution;
the resulting difference integral must, of course, be corrected
by adding back the integrals of the extracted series terms,
preferably evaluated in closed form as described in [6], [8],
[9]. Regardless of how many leading power series terms in
the phase factor are removed, however, the resulting dif-
ference integrand often remains non-analytic in the sense
that at least some higher order derivative of the integrand
is singular, thus eventually limiting the convergence rate of
(unweighted) Gauss quadrature rules. Usually, the removed
higher order integrals are evaluated using recursion formulae
[8], for which the expressions presented here for the inte-
grals (2) can be used for initialization. Unfortunately, the
expressions often involve indeterminate limits and bounded
or unbounded function or derivative singularities that appear
not only at sources or their boundaries, but also as canceling
or removable singularities far removed from source regions.
Such anomalies often create numerical difficulties that either
spoil the accuracy or interrupt the flow of MoM matrix entry
calculations, with the problem becoming more critical as the
number of quadrature points increases to obtain higher accu-
racy, and observation points more closely approach critical
points or regions.

In contrast to singularity subtraction methods, singularity
cancellation methods [10]–[14] do not require the existence
of closed forms for the integrals approximating integrands
of (1); instead they introduce variable transforms whose

Jacobians cancel any singularities—or at least regularize
the integral by partially canceling rapid variations of the
integrand. Unlike subtraction methods, cancellation meth-
ods often produce analytic integrands (i.e., having deriva-
tives of all orders) that are smooth (i.e., polynomial-like).
In those cases, they then provide asymptotically exponential
convergence using standard (unweighted) Gauss quadrature
rules. Despite the advantages of cancellation methods, they
are generally more complex to implement than subtraction
methods. And recently, for highly singular integrals, a hybrid
approach combining subtraction of a leading singularity with
singularity cancellation applied to the difference integral has
proved useful [15].

The increasing need for numerically robust, closed-form
static potential integral expressions with properly handled
limiting conditions has been our inspiration for revisiting
and revising classic results such as [1] and [2] with an eye
towards providing a more robust evaluation and better under-
standing of these building blocks for MoM matrix element
evaluation.We report the results of that study here. Section II,
briefly reviews the well-known triangle subdivision strategy
that guarantees dominant (near-) singularities always appear
at a subtriangle vertex, allowing the same analysis to be
applied to each. Potentials for both constant and linear sub-
triangle sources are given in closed form, and considerations
regarding their evaluation and physical interpretation are pre-
sented. The concept of fundamental vertex functions is intro-
duced. The vertex functions are element-independent func-
tions describing the (possibly singular) behavior of potentials
or their gradients near a given vertex or edge for constant
or linear sources on a planar element. In Section III, rather
than following the usual approach of independently evalu-
ating potential integrals involving gradient kernels, the gra-
dient potentials are obtained directly from the potentials of
Section II by differentiation. This approach not only provides
a more direct path to their evaluation, but also more closely
connects their representations. Section IV summarizes the
synthesis of the desired static scalar and vector potential inte-
grals (2) from the subtriangle potentials and gradients of the
earlier Sections. Section V presents and discusses numerical
results beginning with plots of potentials and vector poten-
tial components near an equilateral triangle. Vertex function
plots are then presented to illustrate how these static building
blocks illuminate singularity behavior at triangle vertices and
edges. Conclusions are presented in Section VI.

II. SUBTRIANGLE POTENTIALS FOR CONSTANT AND
LINEAR SOURCE DENSITIES
Figure 1 shows an observation point r near a source triangle
T with unit normal n̂ (the caret denotes a unit vector) and with
vertices and edges ordered with respect to n̂ via the right hand
rule. We assume the edge vector of the qth edge of the parent
triangle is given by `q =

∣∣rq−1− rq+1
∣∣ (with index arithmetic

performed modulo 3), the unit normal to the qth edge in the
plane of the triangle is û , and rq is the position vector of
the qth vertex of T . The normal projection of the observation
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FIGURE 1. An observation point r is projected onto the plane of triangle
T , creating three subtriangles T q, q = 1,2,3. The projection point r0 is
labeled vertex 1′ for each subtriangle. Edge q of T is a shared edge of T q

(which remains as edge 1′ with respect to T q), and vertices q+ 1 and
q− 1 of T become vertices 2′ and 3′ with respect to T q. The vertex
ordering around the boundaries of T and T q induces unit surface normal
directions for both parent triangles and subtriangles via the right hand
rule. Subtriangles share the parent’s normal n̂ if r0 falls inside the parent
triangle as shown in (a); otherwise, as in (b), one or even two of the
subtriangles will lie entirely outside the parent triangle and have
opposite normals (i.e., −n̂).

point onto the plane of the source triangle is r0 = r − d n̂,
where d = n̂ · (r − rq) , q = 1, 2, or 3, is the distance of
the observation point above (d > 0) or below (d < 0) the
source plane. Point r0 is then labeled vertex 1′ for each of
the three subtriangles, each of whose remaining vertices are
endpoints of parent triangle edge q and are ordered as shown
in Fig. 1. This subdivision guarantees that the static kernel’s
peak at r0 always appears at vertex 1′ for each subtriangle,
and hence that the same schememay be repeated for each.We
also observe that, once the potential contributions of all three
subtriangles are combined, the result must be independent
of r0.

For each subtriangle T q, we introduce a local rectangular
coordinate system (u, `, d) with origin at r0, associated unit
vectors û = u

/
|u|, ˆ̀ = `

/
|`|, and height h, as shown in

Figs. 1 and 2. We add the superscript index q to any of these
quantities to refer to a specific subtriangle. In the remainder of
this section, however, we deal with only a single subtriangle at
a time, and hence, for simplicity, we temporarily drop all such
superscripts. Vertices 1′, 2′, and 3′ of T q are labeled such that
the common edge (edge 1′ of T q and edge q of T ) is similarly
oriented for both triangles. The height of the subtriangle’s
vertex 1′ above its opposite edge is h = û· (rp− r1′ ), p = 2′

or 3′, and the (signed) coordinates of the two vertices at the

FIGURE 2. Subtriangle T q with associated geometrical parameters. Note
that T q can be further subdivided about the u-axis into two right
sub-subtriangles.

edge endpoints are (h, `L , 0) and (h, `U , 0), where `L =
ˆ̀·(r2′−r1′ ), `U = ˆ̀·(r3′−r1′ ). Note that points along edges
2′ and 3′ (i.e., the edges opposite vertices 2′ and 3′, resp.)
satisfy ` = u`L,U

/
h = u tanφL,U , φL,U = tan−1(`L,U

/
h),

where the principal branch of the arctangent is assumed. We
note that, in the local subtriangle coordinate system, r− r′ =
−uû−` ˆ̀+d n̂ andR =

√
u2 + `2 + d2, where d is a constant

parameter and u and ` vary linearly over the subtriangle and
parameterize source points on T q; hence the static scalar and
vector potential integrals (2) for general constant or linear
bases may be constructed as superpositions of the following
three subtriangle potentials with constant and linear source
densities:

Iq =
∫
T q

1
R
dS ′, Iqu =

∫
T q

u
R
dS ′, Iq` =

∫
T q

`

R
dS ′ , (3)

for q = 1, 2, 3. Note that, for simplicity, we have excluded the
usual material parameters ε, µ and 1/(4π ) factors in defining
the integrals (3).

Closed form expressions for the above integrals are sum-
marized in the following three subsections. In each case, the
subtriangle potential integral is integrated first with respect
to ` (over the range u tanφL ≤ ` ≤ u tanφU ), and then with
respect to u (on the range 0 ≤ u ≤ h). The result of the first,
inner integral on ` (in square brackets following the second
equality in (9)–(11) below) is given for completeness and
verifiability. The result of the second, outer integration can
be obtained by automatic symbolic integration, but usually
requires manual simplification; all results have been checked
by analytical differentiation to see that they reduce to the
square bracketed integrands in (9)–(11). For compactness, the
following quantities are defined and used in the expressions
to follow (c.f., Fig. 2):

R =
√
u2 + `2 + d2,

R 0 = R|`=0 =
√
u2 + d2,

P = R|d=0 =
√
u2 + `2. (4)
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We alsomake use of the following defined auxiliary functions
with removable singularities at x = 0:

sinhc−1x def
=

sinh−1x
x

≈ 1−
1
6
x2 +

3
40
x4 −

5
112

x6 + 35
1152x

8

−
63
2816

x10 +
231

13312
x12 −

143
10240

x14,

for |x| < 10−2 (5)

where sinhc−1x follows the naming convention of other
well-known cardinal functions, notably sinc x = sin x

x and
sinhc x = sinh x

x . In addition, we also define

g(x) def
=

3
2

√
x2 + 1− sinhc−1x

x2

≈ 1−
3
10
x2 +

9
56
x4 −

5
48
x6 +

105
1408

x8

−
189
3328

x10 +
231
5120

x12 −
1287
34816

x14,

for |x| < 10−2. (6)

Both sinhc−1x and g(x) are even in x, non-negative, and
infinitely differentiable, but to maintain accuracy, their
approximate power series forms should be used to evaluate
them near their removable singularity, i.e. for |x| < 10−2.
For both functions, all eight series terms should be retained
for quadruple precision; for double precision applications,
only the first five terms are needed. We also note that both
functions are bounded for all real x and vanish as follows as
|x| → ∞ :

sinhc−1x ∼
ln |2x|
|x|

|x|→∞
−−−−→ 0, g(x)∼

3
2 |x|

|x|→∞
−−−−→ 0. (7)

For convenience in plotting in the d = 0 constant plane, we
also choose to evaluate the following indeterminate forms as
shown:

sinhc−1
(
P
d

)
d→0
−−−→

{
1, P = 0,
0, P 6= 0,

uk sinh−1
(
`

R0

)
d→0
−−−→ uk sinh−1

(
`

|u|

)
u→0
−−→

{
±∞, k = 0,
0, k > 0.

(8)

A. ELECTROSTATIC POTENTIAL, UNIT SOURCE
The potential for subtriangle T q with a constant (unit) source
density is given by

Iq =

h∫
0

u`U /h∫
u`L /h

1
R
d` du =

h∫
0

[
sinh−1

`

R 0

] u`U /h
`= u`L /h

du

= Iq(u, `, d)
∣∣`=`U
u=h; `=`L

, (9)

where

Iq(u, `, d) = u sinh−1
(
`

R 0

)
−| d | tan−1

(
u`

R20+| d |R

)
d→0
−−−→ u sinh−1

(
`

|u|

)
u→0
−−→ 0.

In arriving at (9), two arctangent terms appearing in
Iq(u, `, d) are combined using the identity arctan z1 ±
arctan z2 = arctan [(z1 ± z2)/(1∓ z1z2)]. Forms equiva-
lent to (9) have previously appeared in the literature [1],
[16], but here the identity sinh−1 x = ln (

√
1+ x2 + x) =

− ln (
√
1+ x2 − x) has been used to replace the logarithmic

forms commonly arising from symbolic or tabular integration
in favor of the more compact and convenient sinh−1 x func-
tion representation. Use of sinh−1 x, now an intrinsic function
in most modern scientific programming languages, avoids
loss in precision that can occur in the logarithmic form for
large or small values of x. (The potential of a line source of
length 2x observed at a distance y away in a plane passing
through its center is sinh−1(x/y); hence this form’s frequent
appearance in potential integral expressions should not be
surprising.) In (9) and the following integrals, important lim-
its as the observation point approaches either the u-` plane
(i.e., d → 0), edge 1′ (d = 0, h = u→ 0), or vertices 2′ or 3′

(d = 0, h = u = 0, ` = `L or `U → 0) of the subtriangle are
also given. Testing for and correctly handling these limiting
cases in (9) and the similar situations that follow below should
be incorporated in any algorithm designed to evaluate them.

B. ELECTROSTATIC POTENTIAL, SOURCE LINEAR IN u
The potential for a subtriangle T q with a linearly varying
source of density u is given by

Iqu =

h∫
0

u`U /h∫
u`L /h

u
R
d` du =

h∫
0

[
u sinh−1

`

R0

] u`U /h

`= u`L /h
du

= Iqu (u, `, d)
∣∣`=`U
u=h; `=`L

, (10)

where

Iqu (u, `, d) =
1
2

[
R20 sinh

−1
(
`

R0

)
− |d | ` sinhc−1

(
P
d

)]
d→0
−−−→

u2

2
sinh−1

(
`

| u|

)
u→0
−−→ 0.

Note use of the sinhc−1x function in (10) to conveniently
handle a removable singularity that occurs at P = 0, i.e.,
along lines normal to and passing through vertices of T q.

C. ELECTROSTATIC POTENTIAL, SOURCE LINEAR IN `

The potential of subtriangle T q for a linearly varying source
of density ` is given by

Iq` =

h∫
0

u`U /h∫
u`L /h

`

R
d`du =

h∫
0

[R ] u`U /h
`= u`L /hdu
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= Iq` (u, `, d)
∣∣`= `U
u= h; `= `L

, (11)

where

Iq` (u, `, d) =
u
2

[
R+ |d | sinhc−1

(
P
d

)]
d→0
−−−→

uP
2
.

Here again, the sinhc−1x function in (11) conveniently treats
the removable singularity at P = 0.

D. STATIC VERTEX POTENTIAL FUNCTIONS
Consider the term I (u, `, d) defined following Eq. (9). We
may also write it as I (u, `, d)|`=`u=u; `=0, in the notation of
(9) since, at the lower limit, I (u, 0, d) = 0; thus I (u, `, d)
also represents the potential at (0, 0, d) of the unit source
density, right sub-subtriangle shown in Fig. 3a with vertices at
(0, 0, 0), (u, 0, 0), (u, `, 0). Under this interpretation, the last
term of Eq. (9) represents a superposition of potentials due to
the two sub-subtriangles formed by splitting T q into two sub-
subtriangles about the u-axis. Similar observations apply to
terms Iu(u, `, d) and I`(u, `, d), except that both have linear
source densities, and, in the latter case, I`(u, 0, d) 6= 0.1 In
any case, all three terms may be associated with potentials
at the fixed observation point (0, 0, d) and having constant
or linear source densities on the sub-subtriangle with vertices
at (0, 0, 0), (u, 0, 0), and (u, `, 0), relative to the observation
point. Alternatively, if we merely translate the coordinate
system origin to the latter vertex (leaving source distributions
unchanged), as in Fig. 3b, the potential Ĩ (x, y, z) in (x, y, z)-
coordinates at the same observation point in the new system
is clearly Ĩ (−u,−`, d). But we also have Ĩ (−u,−`, d) =
I (u, `, d) = I (−u,−`, d) since, for the first equality, the
potential at any observation point is invariant with respect
to coordinate translation, and, for the second, I (u, `, d) is an
even function of both u and `. Similar arguments apply to
Iu(u, `, d) and I`(u, `, d), except the latter are odd functions
of u and `, respectively. In summary,

Ĩ (−u,−`, d) = I (u, `, d) = I (−u,−`, d),

Ĩu(−u,−`, d) = Iu(u, `, d) = −Iu(−u,−`, d),

Ĩ`(−u,−`, d) = I`(u, `, d) = −I`(−u,−`, d). (12)

Thus, to within a sign factor and for fixed d , I , Iu, and I`
may be interpreted either as (1) potentials at the observation
point with u and ` locating the position of the source sub-
subtriangle vertex common to T and T q (Fig. 3a), or as (2)
the potentials at the observation point whose projection is at
−u and−`with respect to the common vertex (Fig. 3b). In the
first case, u and ` play the roles of locating source points with
respect to the observation point; in the second, −u and −`
locate the observation point with respect to the source point.
This simple consequence of the translational invariance of
coordinate systems, that to within a sign factor, changes in u
or ` for fixed d may be interpreted either as changes in source

1If we simply replace the term I`(u, `, d) everywhere by I`(u, `, d)−
I`(u, 0, d), we regain its interpretation as the potential of a right sub-
subtriangle; this added term then conveniently cancels when the last term
of (11) is evaluated at both upper and lower limits.

FIGURE 3. (a) The potential at (0,0,d ) for the unit source density
sub-subtriangle with vertices at (0,0,0), (u,0,0), and (u, `,0) is
Iq(u, `,d ) in (u, `,d ) coordinates. (b) In (x, y, z) coordinates, the
potential at (x, y, z) = (−u,−`,d ) for the unit source density
sub-subtriangle with vertices at (−u,−`,0), (0,−`,0), and (0,0,0) is also
Ĩq(−u,−`,d ) = Iq(u, `,d ) = Iq(−u,−`,d ). Thus, for fixed d , coordinates
u and ` locate the position of the (source point) vertex common to the
sub-subtriangle, Tq, and T with respect to the observation point, whereas
−u and −` locate the observation point with respect to that vertex.

or observation point locations, will be useful in determining
potential gradients in Section 3.

We note that, in general, a linear combination of six terms
of the form (9), (10), or (11) are needed altogether to define
the (static) potential of a parent triangle for linear source
distributions, and each is essentially independent of the parent
triangle’s shape. In general, each depends only on (a) the
orientation of its associated parent triangle edge and (b) the
position of its associated vertex along that edge, both located
relative to the observation point.

We consider next an important property of singularities of
the vertex potential functions defined following (9), (10), and
(11). As partial static scalar potentials for sources defined
on right triangles, vertex functions are analytic everywhere
except in the source plane d = 0; there they must at least be
continuous. Furtheremore, any low-order singularities along
a parent triangle edge can arise solely from the pair of vertex
potentials associated with that edge. And for observation
points not directly on a parent edge, but rather on its extension
beyond the parent’s vertices, singularities from the vertex
function pair must exactly cancel to maintain the analyticity
of potentials along the source-free extended region. Since the
vertex function pair are also independent, and the cancellation
must also occur independent of the separation between an
edge’s vertices, the coefficient of any singularity must be
constant along the extended edge. Thus an individual vertex’s
contribution is doubled between edges where they are addi-
tive, while it is cancelled along extended edge regions beyond
the vertices. We note also that any singular behavior near
a vertex arises solely from the two vertex functions defined
there, each associated with a different local edge orientation.

A primary use of vertex functions is to reveal potential
behavior near edges or vertices, independent of the shape
of the source triangle T . We remark in passing that merely
replacing the 1

/
R kernel in the vertex function integral defi-

nitions with the corresponding dynamic form, exp(−jkR)
/
R

extends the concept to time-harmonic potentials, with the
the static case under current discussion corresponding to the
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special case k = 0, and providing the dominant contribution
to the time-harmonic result. The potential of vertex functions
for analyzing singular behavior for test integral quadrature
design is briefly explored in the Appendix.

III. GRADIENTS OF SUBTRIANGLE POTENTIALS FOR
CONSTANT AND LINEAR SOURCE DENSITIES
In this section, we evaluate the corresponding (vector-valued)
integrals for gradient kernels in a somewhat unconventional
way. We first note that if ψ is a potential quantity at an obser-
vation point due to a given source distribution on a parent
triangle T (or sub-subtriangle), its value remains unchanged
as long as the relative displacements between the observation
point and vertices of the source (sub-)triangle are unchanged
(i.e., the potential and source sub-subtriangle together are
translationally invariant). Indeed, by the gradient property,
a small relative displacement δr of the observation point
with respect to the right source sub-subtriangle with vertices
at (0, 0, 0), (u, 0, 0), (u, `, 0) results in the potential change
δψ ∼= δr ·∇ψ(u, `, d). In particular, since d is the relative
distance along n̂ between the source triangle and observation
point, a small displacement δd results in the potential change
δψ ∼= δd n̂ ·∇ψ or, for infinitesimal changes, ∂dψ =

n̂ ·∇ψ , where ∂d represents partial derivative with respect
to d . On the other hand, the same change δψ results if,
instead, we displace the vertices (i.e., the source points) of
a sub-subtriangle by a small displacement δr′ = −δr in the
opposite direction, i.e., δψ ∼= −δr′ ·∇ψ . Thus, since u and
` fix the vertex locations of a right sub-subtriangle, changes
in its potential contribution with respect to changes in u or `
are given by δψ ∼= −δu û ·∇ψ or δψ ∼= −δ` ˆ̀ ·∇ψ , or for
infinitesimal changes, by û·∇ψ or ˆ̀·∇ψ, respectively. Strictly
speaking, we should also displace the sub-subtriangle’s ver-
tex at the projection point r0, but as already noted, the final
potential (and hence also its gradient) must be independent of
the projection point. Having determined components of the
gradient along three orthogonal directions, we can now write
the gradient operator for a given subtriangle potential as

∇ = −û∂u − ˆ̀∂` + n̂∂d (13)

with gradient potential contribution

∇Iq =
[
−û∂uIq(u, `, d)− ˆ̀∂`Iq(u, `, d)

+n̂∂d Iq(u, `, d)
]`=`U
u=h; `=`L

. (14)

The gradient operator (13) applies, of course, also to the
potentials Iqu , and I

q
l . We note in passing that (13) may also

be derived by converting potentials to the alternate forms on
the right hand side of (12), recognizing that in the converted
forms, coordinates u, `, and d all now represent observation
points, and hence that the gradient form∇= û∂u+ˆ̀∂`+n̂∂d ,
applies [17]. After then using (12) to convert back to the
original potential forms we again arrive at (13) and (14).
Applying the gradient operator (13) and (14) in turn to each of

the subtriangle potential quantities (9)–(11), results in ∇Iq,
∇Iqu , and ∇Iq` as defined and discussed below.

A. GRADIENT OF ELECTROSTATIC POTENTIAL, UNIT
SOURCE
The potential gradient contribution for a constant (unit)
source density on subtriangle T q is found as follows:

∇Iq =∇
h∫

0

u`L /h∫
u`L /h

1
R
d`du =∇ Iq(u, `, d)

∣∣ `=`U
u=h; `=`L

, (15)

where

∂uIq(u, `, d) = sinh−1
(
`

R0

)
−

`

R+ | d |
d→0
−−−→ sinh−1

(
`

| u|

)
−
`

P
u→0
−−→ ±∞

R orP=0
:= 0,

∂`Iq(u, `, d) =
u

R+ | d |
d→0
−−−→

u
P

P=0
:= 0,

∂d Iq(u, `, d) = − sgn(d) tan−1
(
u`(R − | d |)
`2 | d | + u2R

)
d→0
−−−→ − sgn (d) tan−1

(
`

u

)
u=0
:= 0.

In a software implementation of (15), the component quanti-
ties û ·∇Iq, ˆ̀ ·∇Iq, and n̂ ·∇Iq may be computed directly
from (15) above, and these quantities conveniently absorb
the negative signs appearing in the transverse components of
the gradient operator. Also note that for d = 0, as r (hence
also r0) approaches an edge of the parent triangle, the u-
component of the subtriangle’s gradient becomes unbounded,
whereas its `-component remains bounded; more generally,
in the plane of the parent triangle, derivatives of potential
transverse to edges (i.e.,) are bounded, whereas derivatives
normal to edges are logarithmically singular. Of particular
note is that the contribution to the derivative along n̂ has a
jump discontinuity at d = 0 arising from the sgn(d) factor.
Furthermore, the normal derivative contribution of each sub-
triangle is proportional to the interior vertex angle at r(= r0),
tan−1 `U/h − tan−1 `L/h. When r is strictly interior to the
parent triangle T , this angle sum over the three subtriangles is
2π , which, when the factors sgn(d) and 1/(4π ) are included,
has the value ∓1/2 as d → 0±, a well-known factor (times
the source density there, which here is unity) that usually
appears outside the integral in integrals equations involving
gradient kernels. As r approaches a triangle edge, however,
one of the three subtriangles disappears completely, the angle
sum becomes π , and after dividing by 4π , yields a coefficient
of ∓1/4 on the source term instead. For r at a vertex of the
parent triangle, only a single subtriangle contributes, how-
ever, and its (4π -normalized) contribution is just ∓αq/(4π ),
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where the parent (and subtriangle’s) interior vertex angle is
αq. Finally, the sgn(d) terms vanish since the angle sum is
zero if r(= r0) is strictly outside T . These properties of
the potential gradient near a planar source are in agreement
with the classical observations of [4], [18], [19] and others.
Note that since the normal gradient potential is discontinuous
across a source, merely specifying d = 0 in a procedure call
is insufficient: Well-designed software should also provide a
flag allowing one to specify which side of the surface source
one wishes to observe, d = 0+ (top) or d = 0− (bottom);
merely specifying d = 0 should either result in an error
message to the user and program termination or a warning
message informing the user what default assumption has been
made. Also note that as an observation point approaches
a vertex of the parent triangle from an arbitrary direction,
some gradient components approach limits that depend on
the approach angles, θ and φ (c.f. Fig. 2). For example, in the
plane d = 0, ∂`Iq(u, `, d) in (15) approaches u/P = cosφ,
so that the limit at u = ` = 0 depends on the direction from
which one approaches the point; lacking this information, the
value of u/P there is indeterminate. We adopt the pragmatic
view that well-designed quadrature schemes should avoid
sampling the potential at such points, and hence we assign
a value there, mostly for plotting purposes only; a logical
choice for limP→0 u/P, for example, would be its angular
average over points in the infinitesimal disk in the plane d =

0 and centered at P = 0. Thus the line reading ‘‘ u/P
P=0
:= 0 ’’

in (15) implies that, although limP→0 u/P is indeterminate at,
P = 0 we assign it the value zero there. Finally, we observe
in passing that removing the static part from a dynamic kernel
can be especially important in computing potential gradients,
as it essentially isolates all anomalous behavior to terms in
(15), leaving the potential gradient integral with a difference
kernel more suitable for numerical integration [15].

B. GRADIENT OF ELECTROSTATIC POTENTIAL, SOURCE
LINEAR IN u
The potential gradients for sources linear in either u or `
are also computed by applying the gradient operator ∇ =
− û∂u − ˆ̀∂` + n̂∂d . For a source linear in u, we have the
following result:

∇Iqu =∇
h∫

0

u `U /h∫
u `L /h

u
R
d` du=∇Iqu (u, `, d)

∣∣ `= `U
u=h; `=`L

, (16)

where

∂uIqu (u, `, d) = −
u`
3 |d |

g
(
P
d

)
+ u sinh−1

(
`

R0

)
d→0
−−−→ −

u`
2P
+ u sinh−1

(
`

|u|

)
u→0
−−→ 0,

∂`I
q
u (u, `, d) =

u2

3 |d |
g
(
P
d

)
d→0
−−−→

u2

2P
u→0
−−→ 0,

∂d Iqu (u, `, d) = d sinh−1
(
`

R0

)
− ` sgn(d) sinhc−1

(
P
d

)
d→0
−−−→ 0.

Note the use of the functions sinhc−1(P/d) and g(P/d) to
automatically handle removable singularities that would oth-
erwise appear for P = 0 (for any d), i.e., for observation
points on any of the three lines normal to the source plane
and passing through vertices of the parent triangle T .

C. GRADIENT OF ELECTROSTATIC POTENTIAL, SOURCE
LINEAR IN `

The potential gradient for a source density linear in ` is as
follows:

∇Iq` =∇
h∫

0

u`U /h∫
u `L /h

`

R
d`du=∇Iq` (u, `, d)

∣∣ `= `U
u=h; `=`L

, (17)

where

∂uI
q
` (u, `, d) = R−

`2

3 |d |
g
(
P
d

)
d→0
−−−→

(P2 + u2)
2P

u→0
−−→

| ` |

2
,

∂`I
q
` (u, `, d) =

u`
3 |d |

g
(
P
d

)
d→0
−−−→

u`
2P

P→0
−−−→ 0,

∂d I
q
` (u, `, d) = u sgn(d) sinhc−1

(
P
d

)
d→0
−−−→ 0.

Again, the cardinal functions sinhc−1(P/d) and g(P/d) auto-
matically handle removable singularities at P= 0. We also
observe that since the source densities u and ` both vanish at
r0, the vertex gradient potentials∇Iqu of the previous subsec-
tion and∇Iq` of this subsection are neither discontinuous nor
unbounded for any r, including at edges or vertices.

IV. SYNTHESIS OF PARENT TRIANGLE POTENTIALS AND
GRADIENTS FROM SUBTRIANGLE CONTRIBUTIONS
The total static potential of a parent triangle T with a unit
source density is a superposition of its subtriangle potentials,

I =
∫
T

1
4πR

dS ′ =
1
4π

3∑
q=1

∫
T q

1
4πR

dS ′ =
1
4π

3∑
q=1

Iq (18)

and the potential gradient is

∇I = ∇
∫
T

1
4πR

dS ′ =
1
4π

3∑
q=1

∇
∫
T q

1
4πR

dS ′

=
1
4π

3∑
q=1

∇Iq, (19)

where Iq and ∇Iq are defined in (9) and (15), respectively.
Combining (15) and (19), it is easily verified that the normal
component of the gradient potential (19) as T is approached
from above or below has the well-known classical limit [4],
[18], [19]:

lim
d→0±

n̂ ·∇I =
1
4π

lim
d→0±

3∑
q=1

n̂·∇Iq =
∓1
4π

3∑
q=1

αq

=
∓α(r)
4π

, (20)
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where α(r) is the angular extent interior to T of a small disk
centered about r = r0, i.e.,

α(r) =


2π, r (= r0) interior to T ,
π, r (= r0) on an edge of T ,
αq, r (= r0) at vertex q of T ,
0, r (= r0) exterior to T .

(21)

Note that the normal gradient component is discontinuous at
d=0, and hence in a software implementation, as previously
noted, the intended limit for d= 0 can only be reliably guar-
anteed via a flag passed by the user. Similar superpositions
of subtriangle potentials apply to potentials for linear source
densities as well, i.e., (18) and (19) remain valid if we merely
add subscripts u or ` to I , Iq and their gradients. Begin-
ning in this section and for the remainder of the paper, we
restore the subtriangle index q as a superscript to subtriangle
quantities that should be distinguished by their association
with specific subtriangles. We observe, for instance, that a
given subtriangle’s potential contributions Iq, Iqu , or I

q
` to the

parent triangle potential may generally be neglected if |hq| <
ε|`

q
U −`

q
L | where ε is a small (user-defined) positive number,

say on the order of ε = 10−14 for double precision results.
This observation does not apply to the gradient potentials,
however, since a vanishing potential does not imply the same
of its gradient.

Turning next to the (static) vector potential integral, we
note that for r′ in subtriangle T q, the pth RWG basis function
(i.e., that associated with edge or vertex p of T ) can be
expressed as

3p(r′) =
r′ − rp
hp

=
(r′ − r0)− (rp − r0)

hp

=
uqûq + `q ˆ̀

q
− (rp − r0)

hp
(22)

for r′ in T ; it vanishes otherwise. Hence for the corresponding
vector potential, we have

Ip =
∫
T

3p(r′)
4πR

dS ′

=
1

4πhp

3∑
q=1

(
Iqu û

q
+ Iq` ˆ̀

q
− (rp − r0)Iq

)
(23)

and for its curl, via the identity∇×(Aψ) =∇ψ×A+ψ∇×
A,

∇×Ip

= ∇×
∫
T

3p(r′)
4πR

dS ′

=
1

4πhp

3∑
q=1

(
∇Iqu × ûq +∇Iq` × ˆ̀

q
−∇Iq×(rp− r0)

)
.

(24)

FIGURE 4. (a) Plot of the potential I , Eq. (1), in the z = 0 plane for a unit
source on an equilateral triangle T . (b) Plot of I with a logarithmic vertical
scale, highlighting its infinite tangential derivatives normal to source
domain edges. See also Figs. 5 and 6.

This expression satisfies the following classical limit as r
approaches T :

lim
d→0±

n̂×
(
∇×Ip

)
=
±3p(r)

4π

3∑
q=1

αq=±3p(r)
α(r)
4π

, (25)

or equivalently,

lim
d→0±

(
∇×Ip

)
tan = ∓ n̂×3p(r)

α(r)
4π , (26)

whereα(r) is defined in (21) and the subscript ‘‘tan’’ indicates
the transverse component.

V. NUMERICAL RESULTS
In this section numerical results are presented in the form
of plots in the z = 0 plane of the static scalar potential
and its gradient components for a unit density source on
an equilateral triangle also lying in the z = 0 plane. For
the same equilateral triangle and observation plane, plots of
components of the static curl of vector potential for an RWG
basis function source density are presented next. The section
concludes with a series of plots illustrating the characteristic
behaviors of the various vertex potentials and their gradi-
ents. As fundamental building blocks for all static potentials
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FIGURE 5. (a) Plot of x̂·∇I in the plane z = 0 for a unit source equilateral
triangle. (b) A plot of x̂·∇I along the cut y = −0.375, z = 0 through the
equilateral triangle emphasizes the logarithmically singular slope of the
potential that occurs as edges are crossed.

and their gradients for constant and linear source densities
on planar elements, their discontinuities and singularities
are important for understanding the behavior of the various
potential quantities.

A. POTENTIALS AND GRADIENT POTENTIALS FOR A UNIT
SOURCE EQUILATERAL TRIANGLE
Figure 4 (a) shows the scalar potential I (r) of (18) in the
plane z = 0 of an equilateral triangle T with vertex locations
(1, 0, 0) and (−1/2,±

√
3/2, 0) and a unit density source. The

vertex locations are easily identified in the figure, but edge
locations, where slopes normal to an edge are infinite, are
more difficult to visually resolve. They are better resolved
in Fig. 4 (b), in which the vertical dimension of the plot is
logarithmically compressed, but are best seen by plotting the
tangential gradient components x̂·∇I and ŷ·∇I as in Figs. 5
and 6, respectively, where they are singular at edges. Figure
5(a) plots x̂·∇I while Fig. 5(b) shows a cut along the line
y = −0.375, z = 0 and clearly displays the (logarithmically)
singular nature of the gradient component normal to an edge
as the edge is approached both from the interior and the
exterior of T . By contrast, as Fig. 6 illustrates for ŷ ·∇I ,

FIGURE 6. Plot of ŷ·∇I in the plane (z = 0) of the unit source equilateral
triangle. Note the derivative parallel to the edge at x = −0.5 is bounded;
the derivative at all other edges contains a component normal to the
edge and is hence unbounded there.

FIGURE 7. Plot of normal component of scalar potential gradient, ẑ ·∇I
for a unit source equilateral triangle T in the plane z = 0−. The value of
the integral is ẑ ·∇I|z=0− = α(r)/(4π). Note the normal derivative is
discontinuous at z = 0; values for z = 0+ are negatives of those for
z = 0−.

FIGURE 8. Plot of the x-component, x̂·(∇×I1)|z=0−
= −ŷ·31(r)α(r)/(4π) = −yα(r)/(4πh) in the plane z = 0−, where h =

√
3/2

is the height of the equilateral triangle T . Note that x̂ · (∇× I1) is
discontinuous at z = 0; values for z = 0+ are negatives of those
for z = 0−.

gradient components parallel to an edge are bounded. As can
be seen from the figures, if both highly accurate and efficient
testing procedures for integral equations are to be employed,
one must properly deal with both weak and logarithmically
singular potentials and their gradients near edges.
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FIGURE 9. Plot of the y-component ŷ·(∇×I1) = x̂·31(r)α(r)/(4π)
= (x − h)α(r)/(4πh) in the plane z = 0−, where h =

√
3/2 is the height of

the equilateral triangle T . Note that ŷ· (∇× I1) is discontinuous at z = 0.

FIGURE 10. Plot of normal component ẑ·∇× I1 on the equilateral
triangle T in the plane z = 0−. Note ẑ·∇× I1 is unbounded at edges of T .

One possibilty is to use Duffy transforms to map test trian-
gle domains to a rectangular domain, after which appropriate
dyadic products of Gauss-Legendre and MRWlog integration
rules can be used [20].

Figures 7-9 show potential integrals for which the inte-
grands effectively involve the normal component of∇(1/R).
As is well-known and suggested by (20) and (21), such inte-
grals are discontinuous as the observation point crosses the
plane of the surface source, with discontinuity proportional
to both the source density and the fractional portion of an
infinitesimal disk at the observation point that lies in the
interior of the source domain there. Figure 7 illustrates this
for the normal component of the potential gradient, just on
the underside (z = 0−) of same (unit) source triangular
domain as in Figs. 4-6. On the topside (z = 0+), the normal
gradient potential is merely the negative of that shown in
Fig. 7. Figures 8 and 9 show tangential components of∇×Ip
of (24) for p = 1, representing contributions to tangential
magnetostatic field components just below the surface (z =
0−) of an RWG basis function,31(r), associated with vertex
1 (or equivalently, edge 1 opposite) on the x-axis of the equi-
lateral triangle. The x- and y-components of the integral’s curl
are−∂zI1y and ∂zI1x , respectively, and in the plane d=0− the
associated z-derivatives simply result in sampling the source
function there, according to (21) and (22), and as reported in

FIGURE 11. I(u, `,d ) in the plane d = 0. Note that I(u, `,d ) vanishes for
either u = 0 or ` = 0, but has an infinite derivative with respect to u along
the line u = 0 (corresponding to crossing an edge), whereas variations
with respect to ` are nearly linear about ` = 0.

FIGURE 12. û·∇I(u, `,d ) = − sinh−1(sinφ/| cosφ|)+ sinφ in the plane
d = 0. Note the logarithmic singularity at u = 0 and the indeterminate
value at u = ` = 0. For plotting purposes, it is convenient to assign the
local function-averaged value of zero at (u, `,d ) = (0,0,0), i.e.
∂uI(0,0,0) def

= 0.

FIGURE 13. ˆ̀ ·∇I(u, `,d ) = − cosφ in the plane d = 0. Note the
indeterminate value at u = ` = 0. For plotting purposes, it is usually
convenient to assign the local function-averaged value of zero at
(u, `,d ) = (0,0,0), i.e. ∂`I(0,0,0) def

= 0.

Figs. 8 and 9. As Fig. 10 illustrates, the normal component of
∇× I1 is singular at domain boundaries.

B. VERTEX POTENTIAL FUNCTIONS AND THEIR
GRADIENTS
In this section we explore plots of the vertex potentials and
their gradients. Figure 11 shows a plot of I (u, `, d) in the

VOLUME 8, 2020 99815



D. R. Wilton et al.: Evaluation of Static Potential Integrals on Triangular Domains

FIGURE 14. n̂·∇I(u, `,d ) = tan−1φ in plane d = 0−. Note the jump
discontinuity at u = 0 has opposite signs for positive and negative `. Also,
the gap in the function that appears at u = ` = 0 is due to sampling on
either side of the discontinuity. For plotting purposes, it is usually
convenient to assign the local function-averaged value of zero at
u = d = 0, i.e. ∂nI(0,0,0) def

= 0.

FIGURE 15. Iu(u, `,d ) the plane d = 0. Note that Iu(u, `,d ) vanishes
along both lines u = 0 and ` = 0; all its transverse first derivatives exist,
as seen in the next two figures.

FIGURE 16. û·∇Iu(u, `,d ) in the plane d = 0. Though bounded, the
function varies rapidly near and has an infinite derivative normal to the
u = 0 axis.

plane d = 0.We note the function is bounded everywhere, but
has an infinite slope along the line u = 0, d = 0, representing
the (extended) edge of its associated source domain. As can
be seen, the vertex potential I (u, `, d) is odd in both variables
u and `; it is also even in d . Furthermore, adding a subscript
u or ` to I (u, `, d), (i.e., I (u, `, d) → Iα(u, `, d), α = u

FIGURE 17. ˆ̀ ·∇Iu(u, `,d ) = −(P cos2 φ)/2 in the plane d = 0.

FIGURE 18. I`(u, `,d ) in the plane d = 0. Note that Iu(u, `,d ) vanishes on
the line u = 0 but not on the line ` = 0; all its transverse first derivatives
exist, as seen in the next two figures.

FIGURE 19. û·∇I`(u, `,d ) = −P(1+ cos2 φ)/2 in the plane d = 0.

or `) or differentiating I (u, `, d), Iu(u, `, d), or I`(u, `, d)
with respect u, `, or d reverses the parity of the functions,
as the plots following Fig. 11 verify. Taken together, these
properties imply that it is sufficient to know a vertex poten-
tial or gradient potential function in a single octant, say
u, `, d > 0, in order to reconstruct it everywhere.
Figures 12 and 13 show the transverse derivatives of

∇I (u, `, d) in the plane d = 0. Notable is the singularity
along the line u = 0, d = 0 of Fig. 12 and the indeterminacy
at (u, `, d) = (0, 0, 0) in Fig. 13. The normal derivative of
∇I (u, `, d) is discontinuous in the plane d = 0; in Fig. 14 it
is shown evaluated in the plane d = 0−, where it exhibits a
jump of ±π along the `-axis at u = 0.
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FIGURE 20. For d = 0, ˆ̀·∇I`(u, `,d ) = −P(cosφ sinφ)/2, which has a
derivative singularity at (u, `) = (0,0).

Figures 15, 16, and 17 plot the quantity Iu(u, `, d) and its
transverse derivatives, û ·∇Iu(u, `, d) and ˆ̀ ·∇Iu(u, `, d),
respectively, in the plane d = 0. Because the source density
also vanishes at u = 0, in contrast to I (u, `, d), no slope
singularity exists in Iu(u, `, d) or its derivatives along the line
u = 0, d = 0. Similar observations apply to I`(u, `, d) and
its transverse derivatives, û·∇I`(u, `, d) and ˆ̀ ·∇I`(u, `, d),
appearing in Figs. 18, 19, and 20, respectively.

The normal derivatives of Iu(u, `, d) and I`(u, `, d) in the
z = 0 plane are not plotted; since normal derivatives of
vertex potentials simply sample their source densities, u and
`, respectively, at u = ` = 0, both vanish at d = 0.

VI. CONCLUSION
Straightforward derivations of the classical potential func-
tions and their gradients for constant and linear source dis-
tributions on triangles are presented. The various represen-
tations involve indeterminant and discontinuous forms as
well as removable, bounded, and unbounded singularities.
Hence, special consideration is given to representing results
in computationally convenient form and to the proper evalu-
ation or assignment of meaningful values to various limiting
cases. Both Fortran and C++ coded versions of the resulting
algorithms are available from the authors upon request.

The concept of vertex potential functions and their gradi-
ents is introduced. Each function may be associated with a
vertex and an (extended) edge of a planar, polygonal source
domain. With the exception of possible jump discontinuities
normal to the source plane, all anomalous behavior of a
vertex function is confined to its associated vertex or extended
edge. The potential for constant or linear source distributions
on a triangle, for example, is a superposition of six vertex
potentials. The domain-independence and singularity isola-
tion properties of vertex potential functions are expected to
prove useful in developing integration schemes for potentials
and their gradients near triangle source boundaries occurring
in the solution of integral equations by boundary element
methods. This potential is briefly explored in the Appendix.

Numerical results are presented in graphical form illustrat-
ing the properties of potentials and potential gradients near

FIGURE 21. Spherical coordinate system for observation points on test
triangle T sharing a common edge with source triangle T ′ .

triangular source planes as well as of their component vertex
potentials and gradients.

APPENDIX
To briefly illustrate the potential use of vertex functions in
designing appropriate testing schemes for moment meth-
ods, consider the scalar potential reaction integral between
a source and test triangle pair sharing a common edge. We
assume the planes containing the source and test triangles
make an angle β between their intersection along the `-axis
with origin at one of the common vertices, as shown in
Fig. 21. Our focus is on modeling the potential behavior over
the test triangle in the neighborhood of that vertex. We select
the `-axis as the polar axis of an (R, α, β) spherical coordinate
system centered at the vertex, where R is the radial distance
from the common vertex to the observation point and α is
its angle with respect to the `-axis. In terms of spherical
coordinates, the (u, `, d) coordinates of the observation point
with respect to the source triangle vertex are thus given by

u = R sinα cosβ = R0 cosβ,

` = R cosα,

d = −R sinα sinβ,

where R0 =
√
u2 + d2 =

√
R2 − `2 = R sinα and tanα =

R0/`. Thus, near the vertex, the dominant potential vertex
function contribution to the scalar potential (9), in spherical
coordinates, becomes

Iq(u, `, d) = R sinα
[
cosβ sinh−1(cotα)

− |sinβ| tan−1
(

cosα cosβ
sinα + |sinβ|

)]
.

We see immediately that, for fixed β, the R and α dependen-
cies are conveniently separated, and the test triangle integral
may therefore be written as∫ αU

0

∫ R(α)

0
Iq(u, `, d)RdRdα

=
1
3

∫ αU

0
R3(α) sinα

[
cosβ sinh−1(cotα)

− |sinβ| tan−1
(

cosα cosβ
sinα + |sinβ|

)]
dα,

VOLUME 8, 2020 99817



D. R. Wilton et al.: Evaluation of Static Potential Integrals on Triangular Domains

where αU is the vertex angle of the test triangle at its com-
mon vertex with the source triangle, and R(α) expresses the
angular dependence of the upper limit for radial integration.
A more detailed definition for R(α) depends either on the
test triangle shape or (more likely) how one decides to split
the test triangle into subtriangles to confine test integrals
to neighborhoods about each common vertex. In any case,
for the remaining angular integral, we see that the term
sinh−1(cotα) is logarithmically singular along the polar axis
where α = 0 or π. The factor sinα also vanishes at α = 0 and
π and hence reduces the order of the integrand singularity;
nevertheless, special handling will still be required to achieve
high accuracy in the testing integral. Similar considerations
apply to the other potential integrals or their gradients.
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