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ABSTRACT A subdivision scheme defines a smooth curve or surface as the limit of a sequence of successive
refinements of given polygon or mesh. These schemes take polygons or meshes as inputs and produce
smooth curves or surfaces as outputs. In this paper, a class of combine refinement schemes with two shape
control parameters is presented. These even and odd rules of these schemes have complexity three and four
respectively. The even rule is designed to modify the vertices of the given polygon, whereas the odd rule is
designed to insert a new point between every edge of the given polygon. These schemes can produce high
order of continuous shapes than existing combine binary and ternary family of schemes. It has been observed
that the schemes have interpolating and approximating behaviors depending on the values of parameters.
These schemes have an interproximate behavior in the case of non-uniform setting of the parameters. These
schemes can be considered as the generalized version of some of the interpolating and B-spline schemes.
The theoretical as well as the numerical and graphical analysis of the shapes produced by these schemes are
also presented.

INDEX TERMS Combined refinement schemes, continuous curves, interpolation, approximation, shape
parameters, non-uniform parameters.

I. INTRODUCTION
The refinement schemes also known as subdivision schemes
are widely used in the design of curves and surfaces. Ini-
tially, schemes were introduced without parameters. Later on,
to improve the flexibility of designing the curves, some of the
schemes were introduced with parameters. Here we present a
brief survey of the schemes with parameters. The first scheme
with parameter was introduced by Dyn et al. [21] in 1987.
Then in 1990, Dyn et al. [1] noticed that the smoothness of the
curves can be increased by using parameters in the scheme.
Later on, a class of 4-point subdivision schemes with two
parameters was presented in 2004 by [2]. In 2007, Siddiqi
and Ahmad [3] presented a 3-point approximatingC2 scheme
with single parameter. Shen and Huang [4] introduced a class
of curve schemes with several parameters in 2007. Siddiqi
and Rehan [5] also presented a 4-point approximating scheme
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with one parameter in 2010. Mustafa et al. [6] presented a
3-point scheme with three parameters in 2011. In 2012, Ghaf-
far et al. [7] presented a class of 3-point a-ary scheme with
one parameter. In 2013, Cao and Tan [8] presented a binary
5-point relaxation scheme with one parameter. Tan et al. [9]
presented a 4-point C3 scheme with two parameters in 2014.
In 2014, Tan et al. [10] also presented a 5-point scheme with
one parameter. Zheng et al. [11] introduced a scheme with
multi-parameters in 2014. Mustafa et al. [12] introduced the
families of interpolating schemes with parameters in 2014.
In 2017, Feng et al. [13] presented a family of non-uniform
schemes with variable parameters. Tan et al. [14] presented a
new 5-point binary approximating scheme with two param-
eters in 2017. In 2018, Asghar and Mustafa [15] presented
a family of a-ary univariate subdivision schemes with single
parameter.

Another trend to introduce the combined schemes was
evoked. These schemes have interpolating and approximat-
ing behaviors. Beccaria et al. [16] introduced a unified

98316 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-0441-8485
https://orcid.org/0000-0002-0286-7244
https://orcid.org/0000-0001-8725-6719


G. Mustafa et al.: Class of Refinement Schemes With Two Shape Control Parameters

FIGURE 1. Comparison of the curves fitted by the binary refinement schemes after five subdivision levels. (a) is the initial
sketch with initial control points.

FIGURE 2. Procedure of refinement scheme. Solid lines show initial
sketch while doted lines show the refined sketch.

framework for interpolating and approximating schemes with
a parameter in 2010. Rehan and Siddiqi [17] presented a
combined binary 6-point scheme with a parameter in 2015.
Hameed and Mustafa [18] presented a class of schemes
with non-uniform setting of the parameter in 2016. In 2012,
Pan et al. [19] presented a C2 continuous combined ternary
approximating and interpolating schemes. The new family of
ternary 6-point combined schemes with C3-continuity was
derived by Shi et al. [20] in 2018.

A. OUR CONTRIBUTION
The main purpose of this work is to increase the number of
choices, for end user, of the scheme for curve modeling with
less complexity and maximum smoothness in the shapes. Our
scheme has less complexity and generates curve of maxi-
mum degree of smoothness than its counterpart (i.e., 4-point)
schemes. It is proved in the last section of this paper. It is
evidenced that there are situations or data when our scheme is
more appropriate to use than the well-known schemes. This
type of data is represented by Figure 1(a). It is also called
initial sketch. Figure 1(b) and Figure 1(c) are generated by
[22] and B-spline of degree 5 respectively, while the fitted
curve by presented refinement scheme for α = −0.2e-1
and β = 0.088542 is shown in Figure 1(d). The curve
generated by [22] is not compatible with the initial sketch
due to its oscillating behaviour, while the gentle behaviour of
the B-spline of degree 5 pushes the limit curve away from its
initial sketch. The presented refinement scheme gives good
result in this case.

This paper is divided into following sections. In Section 2,
we present a class of schemes with two parameters. We also
discuss the theoretical analysis of the shapes produced by
these schemes in this section. In Section 3, we present the
numerical and graphical analysis of the shapes produced by

the schemes. Section 4, is devoted for the comparison and
conclusion.

II. A CLASS OF REFINEMENT SCHEMES
If we have an initial sketch of any shape obtained by joining
the 2D points f 0i , i ∈ Z then to refine the sketch, we suggest
the following refinement scheme

f k+12i = αf ki−1 + (1− 2α)f ki + αf
k
i+1,

f k+12i+1 = β(1− α)f
k
i−1 +

(
1
2
− β(1− α)

)
f ki

+

(
1
2 − β(1− α)

)
f ki+1 + β(1− α)f

k
i+2,

(1)

where k represents the refinement level while α and β are
the shape parameters. The refinement scheme consists of two
refinement rules. One of the rules (called even rule) is used
to update the vertices of the initial sketch and it uses three
points of the initial sketch to insert a new one, hence its
complexity is three. While the other rule (called odd rule) is
used to subdivide the edges and it uses four points of the initial
sketch to insert a new one, hence its complexity is four. Since
there are two rules in this scheme, therefore it is called binary
scheme. Graphical representation is shown in Figure 2. We
can get a class of refinement schemes from (1) by assigning
different values to the parameters. If we arrange the points
involved in odd and even rules of (1) as{

. . . , f ki−1, f
k
i−1, f

k
i , f

k
i , f

k
i+1, f

k
i+1, f

k
i+2, f

k
i+2, . . .

}
then the sequence of coefficients of these points in odd and
even rules is{
. . . , 0, 0, 0, β(1− α), α,

(
1
2
− β(1− α)

)
, (1− 2α),(

1
2
− β(1− α)

)
, α, β(1− α), 0, 0, 0, 0, . . .

}
.

This sequence can be represented in terms of the following
Laurent polynomial

a(z) = z−3
[
β(1− α)z0 + αz1 +

(
1
2
− β(1− α)

)
z2

+(1− 2α)z3 +
(
1
2
− β(1− α)

)
z4 + αz5

+ β(1− α)z6
]
.
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Generally, Laurent polynomial is expressed in the form . . .+
a−nz−n+ a−(n−1)z−(n−1)+ . . .+ a−1z−1 + a0+ a1z+ . . .+
an−1zn−1+anzn+. . ., where ai are constants and only finitely
many ai are nonzero. The detailed information about Laurent
polynomial can be find in [25], [26]. Laurent polynomial or
z-transform is a main tool to analyze the schemes.

Since there are two parameters in the scheme therefore we
may express the one in terms of the other to explore the prop-
erties of the scheme. Classically, the schemes are analyzed by
checking their degree of continuity and degrees of polynomial
generation and reproduction under some conditions. These
conditions can be used to express the parameters in terms
of the others. The parameters α and β can be expressed as
α = 1

8

(
16β+1
2β+1

)
and β = − 1

16

(
8α−1
α−1

)
which can be obtained

from the solution of differential equation d2

dz2
a(z) = 0 at

z = −1.
We get subclasses of (1) by substituting values of α and

β in (1). Hence the refinement rules corresponding to β =
−

1
16

(
8α−1
α−1

)
are

f k+12i = αf ki−1 + (1− 2α)f ki + αf
k
i+1,

f k+12i+1 =
1
16

(8α − 1)f ki−1 +
1
16

(9− 8α)f ki

+
1
16

(9− 8α)f ki+1 +
1
16

(8α − 1)f ki+2,

(2)

and its Laurent polynomial is

u(z) =
(1+ z)4

16z3
[(8α − 1)+ (4− 16α)z+ (8α − 1)z2]. (3)

While the refinement rules corresponding to α = 1
8

(
16β+1
2β+1

)
are 

f k+12i =

(
16β + 1
16β + 8

)
f ki−1 +

(
−8β + 3
8β + 4

)
f ki

+

(
16β + 1
16β + 8

)
f ki+1,

f k+12i+1 =

(
7β

16β + 8

)
f ki−1 +

(
β + 4
16β + 8

)
f ki

+

(
β + 4
16β + 8

)
f ki+1 +

(
7β

16β + 8

)
f ki+2,

(4)

and its Laurent polynomial is

v(z) =
(1+ z)4

(16β + 8)z3

[
7β − (12β − 1)z+ (7β)z2

]
. (5)

The following special cases show that the scheme (1) is the
generalized version of B-spline of degree 1, 3 and 5. It is also
the generalized version of the interpolatory schemes of [21]
and [22].
• For α = 0 and β = −ω, we get 4-point interpolatory
scheme of [21].

• For α = 0 and β = − 1
16 , it changes into 4-point

interpolatory scheme of [22].
• For α = 0 and β = 0, it shrinks to 2-point interpolatory
scheme of [22] which is also called B-spline scheme of
degree 1.

• For α = 1
8 and β = 0, it becomes B-spline scheme of

degree-3.
• For α = 3

16 and β = 1
26 , we get B-spline scheme of

degree-5.
Through out the paper, Su, Sv Scr , ScLr and Sbr are the schemes
corresponding to the polynomials u(z), v(z), cr (z), cLr (z) and
br (z) for r ≥ 0, L ≥ 2 respectively. Some of these polynomi-
als are defined in coming section.

A. THEORETICAL ANALYSIS OF THE SHAPES
In the similar way to the arguments in [25], we can identify
the ranges of parameters to get the shapes of different degree
of smoothness (i.e. order of continuity) produced by the
scheme.
Lemma 1: Let {f 0i }i∈Z be the initial sketch of the shape

then the refinement scheme Su defined by (2) produces
the C0-continuous shape for the parametric interval 7

16 −
1
16

√
137 < α < 5

24 +
1
12

√
91.

Proof: To find out the C0-continuity of the refinement
scheme (2), we rewrite equation (3) as

u(z) =
(
1+ z
2

)0

b0(z),

where

b0(z)=
1

16z3
(1+ z)4

[
(8α − 1)+(4− 16α)z+(8α − 1)z2

]
.

Since

b0(z) = (1+ z)c0(z),

where

c0(z) =
(
1
2
α −

1
16

)
z−3 +

(
1
2
α +

1
16

)
z−2 + (−α

+
1
2

)
z−1 +

(
−α +

1
2

)
z0 +

(
1
2
α +

1
16

)
z1

+

(
1
2
α −

1
16

)
z2. (6)

This implies that

c0(z) =
2∑

i=−3

r i0z
i,

where r−30 = r20 =
1
2α −

1
16 , r

−2
0 = r10 =

1
2α +

1
16 and

r−10 = r00 = −α+
1
2 . The infinity norm of c0 is calculated as

||c0||∞ = max


0∑

j=−2

|r2j+10 |,

1∑
j=−1

|r2j0 |

 .
This implies

||c0||∞ = max
{∣∣∣∣12α − 1

16

∣∣∣∣+ ∣∣∣∣−α + 1
2

∣∣∣∣+ ∣∣∣∣12α + 1
16

∣∣∣∣ ,∣∣∣∣12α + 1
16

∣∣∣∣+ ∣∣∣∣−α + 1
2

∣∣∣∣+ ∣∣∣∣12α − 1
16

∣∣∣∣} .
98318 VOLUME 8, 2020
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It is clear that ||c0||∞ < 1 for − 1
4 < α < 3

4 . So, the scheme
Sc0 is contractive. We may improve the range of parameter
by taking cL0 (z) = c0(z)c0(z2) . . . c0(z2

L−1
), where L > 0. For

simplicity, we may take L = 2

c20(z) = c0(z)c0(z2),

where c0(z) is defined in (6) and c0(z2) is obtained by replac-
ing z2 in the place of z in (6). Hence we get

c20(z) =
(
1
4
α2 −

1
16
α +

1
256

)
z−9 +

(
1
4
α2 −

1
256

)
×z−8 +

(
−
1
4
α2 +

5
16
α −

9
256

)
z−7 +

(
−
1
4

×α2 +
3
8
α −

7
256

)
z−6 +

(
−
3
4
α2 +

1
2
α

−
1
256

)
z−5 +

(
−
3
4
α2 +

5
16
α +

17
256

)
z−4

+

(
3
4
α2 −

5
8
α +

57
256

)
z−3 +

(
3
4
α2 −

13
16
α+

71
256

)
z−2 +

(
3
4
α2 −

13
16
α +

71
256

)
z−1

+

(
3
4
α2 −

5
8
α +

57
256

)
z0 +

(
−
3
4
α2 +

5
16
α

+
17
256

)
z1 +

(
−
3
4
α2 +

1
2
α −

1
256

)
z2

+

(
−
1
4
α2 +

3
8
α −

7
256

)
z3 +

(
−
1
4
α2 +

5
16
α

−
9

256

)
z4 +

(
1
4
α2 −

1
256

)
z5 +

(
1
4
α2 −

1
16

×α +
1
256

)
z6. (7)

This implies that

c20(z) =
6∑

i=−9

Ri0z
i,

where Ri0 are the coefficients of zi for i = −9,−8, . . . , 6
in (7) respectively. The infinity norm of c20 is

||c20||∞ = max


0∑

j=−3

|R4j+30 |,

1∑
j=−2

|R4j0 |,
1∑

j=−2

|R4j+10 | ,

1∑
j=−2

|R4j+20 |

 ,
This implies that

||c20||∞ = max
{∣∣∣∣14α2 − 1

16
α +

1
256

∣∣∣∣+ ∣∣∣∣−3
4
α2 +

1
2
α

−
1

256

∣∣∣∣+ ∣∣∣∣34α2 − 13
16
α +

71
256

∣∣∣∣+ ∣∣∣∣−1
4
α2

+
3
8
α −

7
256

∣∣∣∣ , ∣∣∣∣14α2 − 1
256

∣∣∣∣+ ∣∣∣∣−3
4
α2 +

5
16
α

+
17
256

∣∣∣∣+ ∣∣∣∣34α2 − 5
8
α +

57
256

∣∣∣∣+ ∣∣∣∣−1
4
α2+

5
16
α −

9
256

∣∣∣∣ , ∣∣∣∣−1
4
α2 +

5
16
α −

9
256

∣∣∣∣+ ∣∣∣∣34
×α2 −

5
8
α +

57
256

∣∣∣∣+ ∣∣∣∣−3
4
α2 +

5
16
α +

17
256

∣∣∣∣
+

∣∣∣∣14α2 − 1
256

∣∣∣∣ , ∣∣∣∣−1
4
α2 +

3
8
α −

7
256

∣∣∣∣+ ∣∣∣∣34
×α2 −

13
16
α +

71
256

∣∣∣∣+ ∣∣∣∣−3
4
α2 +

1
2
α −

1
256

∣∣∣∣
+

∣∣∣∣14α2 − 1
16
α +

1
256

∣∣∣∣} .
Since ||c20||∞ < 1 for

7
16
−

1
16

√
137 < α <

1
3
+

1
24

√
349

and

5
16
−

1
16

√
129 < α <

5
24
+

1
12

√
91.

Therefore, ||c20||∞ < 1 for common range of the parameter

7
16
−

1
16

√
137 < α <

5
24
+

1
12

√
91.

So Sc20
is contractive and the scheme Sb0 is convergent and the

scheme Su is C0-continuous. �
Lemma 2: Let {f 0i }i∈Z be the initial sketch of the shape

then the refinement scheme Su defined by (2) produces
the C1-continuous shape for the parametric interval 5

16 −
1
16

√
33 < α < 5

16 +
1
16

√
33.

Proof: To find out the C1-continuity of the refinement
scheme (2), we rewrite equation (3) as

u(z) =
(
1+ z
2

)1

b1(z),

where

b1(z) =
1
8z3

(1+ z)3
[
(8α − 1)+ (4− 16α)z+ (8α − 1)z2

]
.

Since

b1(z) = (1+ z)c1(z),

where

c1(z) =
(
α −

1
8

)
z−3 +

(
1
4

)
z−2 +

(
3
4
− 2α

)
z−1

+

(
1
4

)
z0 +

(
α −

1
8

)
z1.

This implies that

c1(z) =
1∑

i=−3

r i1z
i,
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where r−31 = r11 = α−
1
8 , r
−2
1 = r01 =

1
4 and r−11 =

3
4 − 2α.

The infinity norm of c1 is calculated as

||c1||∞ = max


0∑

j=−2

|r2j+11 |,

0∑
j=−1

|r2j1 |

 .
So we get

||c1||∞ = max
{∣∣∣∣α − 1

8

∣∣∣∣+ ∣∣∣∣34 − 2α

∣∣∣∣+ ∣∣∣∣α − 1
8

∣∣∣∣ , ∣∣∣∣14
∣∣∣∣
+

∣∣∣∣14
∣∣∣∣} .

Hence ||c1||∞ < 1 for 0 < α < 1
2 . So, the scheme Sc1 is

contractive. Now we use c21(z) = c1(z)c1(z2) to improve the
range of parameter. This implies

c21(z)

=

(
α2 −

1
4
α +

1
64

)
z−9 +

(
1
4
α −

1
32

)
z−8

+

(
−2α2 +

5
4
α −

1
8

)
z−7 +

(
1
4
α +

1
32

)
z−6 +

(
−α2

+
1
4
α +

7
64

)
z−5 +

(
−
1
2
α +

1
4

)
z−4 +

(
4α2 −

5
2
α

+
1
2

)
z−3 +

(
−
1
2
α +

1
4

)
z−2 +

(
−α2 +

1
4
α +

7
64

)
×z−1 +

(
1
4
α +

1
32

)
z0 +

(
−2α2 +

5
4
α −

1
8

)
z1

+

(
1
4
α −

1
32

)
z2 +

(
α2 −

1
4
α +

1
64

)
z3. (8)

This implies that

c21(z) =
3∑

i=−9

Ri1z
i,

where Ri1 are the coefficients of zi for i = −9,−8, . . . , 3
in (8) respectively.
The infinity norm of c21 is

||c21||∞ = max


0∑

j=−3

|R4j+31 |,

0∑
j=−2

|R4j1 |,
0∑

j=−2

|R4j+11 |,

0∑
j=−2

|R4j+21 |

 ,
Hence we get

||c21||∞

= max
{∣∣∣∣α2 − 1

4
α +

1
64

∣∣∣∣+ ∣∣∣∣−α2 + 1
4
α +

7
64

∣∣∣∣
+

∣∣∣∣−α2 + 1
4
α +

7
64

∣∣∣∣+ ∣∣∣∣α2 − 1
4
α+

1
64

∣∣∣∣ , ∣∣∣∣14α − 1
32

∣∣∣∣
+

∣∣∣∣−1
2
α +

1
4

∣∣∣∣+∣∣∣∣14α+ 1
32

∣∣∣∣ ,+∣∣∣∣−2α2 + 5
4
α −

1
8

∣∣∣∣+ ∣∣∣4α2

−
5
2
α +

1
2

∣∣∣∣+ ∣∣∣∣−2α2 + 5
4
α −

1
8

∣∣∣∣ , ∣∣∣∣14α − 1
32

∣∣∣∣+ ∣∣∣∣−1
2
α

+
1
4

∣∣∣∣+ ∣∣∣∣14α + 1
32

∣∣∣∣} .
Hence ||c21||∞ < 1 for

1
8
−

1
4

√
5 < α <

1
8
+

1
4

√
5, −

3
4
< α <

5
4

and
5
16
−

1
16

√
33 < α <

5
16
+

1
16

√
33.

Hence the common range for C1-continuity of the scheme Su
is

5
16
−

1
16

√
33 < α <

5
16
+

1
16

√
33.

This completes the proof. �
Lemma 3: Let {f 0i }i∈Z be the initial sketch of the shape

then the refinement scheme Su produces the C2-continuous
shape for the parametric interval 0 < α < 1

2 .
Proof: To find out the C2-continuity of the refinement

scheme (2), we rewrite equation (3) as

u(z) =
(
1+ z
2

)2

b2(z),

where

b2(z) =
1
4z3

(1+ z)2
[
(8α − 1)+ (4− 16α)z+ (8α − 1)z2

]
.

Moreover

b2(z) = (1+ z)c2(z),

where

c2(z) =
(
2α −

1
4

)
z−3 +

(
−2α +

3
4

)
z−2 + (−2α

+
3
4

)
z−1 +

(
2α −

1
4

)
z0.

We take infinity norm of c2

||c2||∞ = max
{∣∣∣∣2α − 1

4

∣∣∣∣+ ∣∣∣∣−2α + 3
4

∣∣∣∣ , ∣∣∣∣−2α + 3
4

∣∣∣∣
+

∣∣∣∣2α − 1
4

∣∣∣∣} .
It is to be noted that ||c2||∞ < 1 for 0 < α < 1

2 . Therefore,
the scheme Sc2 is contractive and for further improvement
take c22(z) = c2(z)c2(z2). This implies

c22(z) =
(
4α2 − α+

1
16

)
z−9+

(
−4α2+2α −

3
16

)
×z−8+

(
−8α2+4α −

3
8

)
z−7+

(
8α2 − 4α −

5
8

)
×z−6+

(
−α+

3
8

)
z−5+

(
−α+

3
8

)
z−4+

(
8α2
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− 4α −
5
8

)
z−3+

(
−8α2+4α −

3
8

)
z−2+

(
−4α2

+2α −
3
16

)
z−1+

(
4α2 − α+

1
16

)
z0.

Now by taking infinity norm of c22, we get

||c22||∞

= max
{∣∣∣∣4α2 − α + 1

16

∣∣∣∣+ ∣∣∣∣−α + 3
8

∣∣∣∣+ ∣∣∣−4α2
+2α −

3
16

∣∣∣∣ , ∣∣∣∣−4α2 + 2α −
3
16

∣∣∣∣+ ∣∣∣∣−α + 3
8

∣∣∣∣+ ∣∣∣4α2
− α +

1
16

∣∣∣∣ , ∣∣∣∣−8α2 + 4α −
3
8

∣∣∣∣+ ∣∣∣∣8α2 − 4α +
5
8

∣∣∣∣ , ∣∣∣8α2
−4α +

5
8

∣∣∣∣+ ∣∣∣∣−8α2 + 4α −
3
8

∣∣∣∣} .
Which is less than 1 for

1
4
−

1
8

√
7 < α <

1
8
+

1
8

√
10 and 0 < α <

1
2

The common range is

0 < α <
1
2
.

In this case, further improvement in the range has not been
seen. This completes the proof. �

Similarly, wet get the following result
Lemma 4: Let {f 0i }i∈Z be the initial sketch of the shape

then the refinement scheme Su produces the C3-continuous
shape for the interval 1

8 < α < 3
16 +

1
16

√
5.

From Lemmas 2 - 4, we get the following
Theorem 5: Let {f 0i }i∈Z be the initial sketch of the shape

then the refinement scheme Su produces the C0-continuous
shape for the parametric interval 7

16 −
1
16

√
137 < α < 5

24 +
1
12

√
91. Moreover, it produces C1 and C2-continuous shapes

for the parametric interval 5
16 −

1
16

√
33 < α < 5

16 +
1
16

√
33

and 0 < α < 1
2 respectively. Furthermore, it produces

C3-continuous shape for the interval 1
8 < α < 3

16 +
1
16

√
5.

Similarly, we have
Theorem 6: Let {f 0i }i∈Z be the initial sketch of the shape

then the refinement scheme Su produces the C4-continuous
shape for α = 3

16 .

Theorem 7: The refinement scheme Sv defined by (4)
produces C0-continuous shape for the parametric interval
−

143
62 −

7
62

√
349 < β < − 81

8 +
7
8

√
129. Moreover, it produces

C1 and C2-continuous shapes over the parametric intervals
3
8 −

7
88

√
33 < β < 3

8 +
7
88

√
33 and − 1

16 < β < 3
8

respectively. Furthermore, it produces C3-continuous shape
for the interval 0 < β < 9

164+
7

164

√
5. In addition, it produces

C4-continuous shape for β = 1
26 .

Proof: The Laurent polynomial (5) can further be writ-
ten as

v(z) =
(
1+ z
2

)i
bi(z), i = 0, 1, 2, 3, 4, (9)

where bi(z) = (1 + z)ci(z): i = 0, 1, 2, 3, 4. We further
calculate

c2i (z) = ci(z)ci(z
2), i = 0, 1, 2, 3, 4. (10)

This implies that

c20(z)

=

(
1

16β + 8

)2

[(49β2)z−9 + (63β2 + 7β)z−8

+(7β2 + 28β)z−7 + (25β2 + 39β + 1)z−6 + (−65β2

+47β + 3)z−5 + (−95β2 + 38β + 6)z−4 + (89β2

−9β + 10)z−3 + (55β2 − 22β + 12)z−2 + (55β2 − 22

×β + 12)z−1 + (89β2 − 9β + 10)z0 + (−95β2 + 38

×β + 6)z1 + (−65β2 + 47β + 3)z2 + (25β2 + 39β

+1)z3 + (7β2 + 28β)z4 + (63β2 + 7β)z5 + (49β2)z6]

=

6∑
i=−9

C i
0z
i,

c21(z)

=

(
1

8β + 4

)2

[
(
49β2

)
z−9 +

(
14β2 + 7β

)
z−8 +(

−56β2 + 21β
)
z−7+

(
18β2+11β + 1

)
z−6+

(
−41β2

+8β+2) z−5 +
(
−16β2 − 2β + 3

)
z−4 +

(
128β2 − 26

×β + 4) z−3+
(
−16β2 − 2β + 3

)
z−2 +

(
−41β2 + 8β

+2) z−1 +
(
18β2 + 11β + 1

)
z0 +

(
−56β2 + 21β

)
z1

+

(
14β2 + 7β

)
z2 +

(
49β2

)
z3] =

3∑
i=−9

C i
1z
i,

c22(z)

=

(
1

4β + 2

)2

[
(
49β2

)
z−9 +

(
−35β2 + 7β

)
z−8

+

(
−70β2 + 14β

)
z−7+

(
74β2 − 10β + 1

)
z−6+(−10

×β2 − 3β + 1
)
z−5 +

(
−10β2 − 3β + 1

)
z−4 +

(
74β2

−10β+1) z−3+
(
−70β2 + 14β

)
z−2 +

(
−35β2 + 7β

)
×z−1 +

(
49β2

)
z0] =

0∑
i=−9

C i
2z
i,

c23(z)

=

(
1

2β + 1

)2

[
(
49β2

)
z−9 +

(
−84β2 + 7β

)
z−8

+

(
−35β2 + 7β

)
z−7+

(
144β2 − 24β + 1

)
z−6+(−35

×β2 + 7β
)
z−5 +

(
−84β2 + 7β

)
z−4 +

(
49β2

)
z−3]

=

−3∑
i=−9

C i
3z
i,
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and if we put i = 4 and β = 1
26 in (10), we get

c4(z) =
1
4
z−9 +

1
4
z−8 +

1
4
z−7 +

1
4
z−6

=

−6∑
i=−9

C i
4z
i.

Thus we have

||c20||∞ = max


0∑

j=−3

|C4j+3
0 |,

1∑
j=−2

|C4j
0 |,

1∑
j=−2

|C4j+1
0 |,

1∑
j=−2

|C4j+2
0 |

 ,
||c21||∞ = max


0∑

j=−3

|C4j+3
1 |,

0∑
j=−2

|C4j
1 |,

0∑
j=−2

|C4j+1
1 |,

0∑
j=−2

|C4j+2
1 |

 ,
||c22||∞ = max


−1∑
j=−3

|C4j+3
2 |,

0∑
j=−2

|C4j
2 |,

−1∑
j=−2

|C4j+1
2 |,

−1∑
j=−2

|C4j+2
2 |

 ,
||c23||∞ = max


−2∑
j=−3

|C4j+3
3 |,

−1∑
j=−2

|C4j
3 |,

−1∑
j=−2

|C4j+1
3 |,

−2∑
j=−2

|C4j+2
3 |

 ,
and

||c24||∞ = max


−3∑
j=−3

|C4j+3
4 |,

−2∑
j=−2

|C4j
4 |,

−2∑
j=−2

|C4j+1
4 |,

−2∑
j=−2

|C4j+2
4 |

 .
This further implies that ||c20||∞ < 1 for − 143

62 −
7
62

√
349 <

β < − 81
8 +

7
8

√
129, ||c21||∞ < 1 for 3

8 −
7
88

√
33 < β <

3
8 +

7
88

√
33, ||c22||∞ < 1 for − 1

16 < β < 3
8 , ||c

2
3||∞ < 1 for

0 < β < 9
164 +

7
164

√
5 and ||c4||∞ < 1. This completes the

proof. �
For the special value of α = 0 in (1), we get the following

interpolating schemef
k+1
2i = f ki ,

f k+12i+1 = βf
k
i−1 + ( 12 − β)f

k
i + (

1
2
− β)f ki+1 + βf

k
i+2.

(11)

The Laurent polynomial of (11) is

w(z) =
(1+ z)2

2z3
[2βz4−4βz3+(1+4β)z2−4βz+2β]. (12)

Theorem 8: The interpolating scheme defined by (11) pro-
duces C0 and C1 -continuous shapes for 1

8−
1
8

√
13 < β < 3

8
and 1

8 −
1
8

√
5 < β < 0 respectively.

Proof: Since (12) can be written as

w(z) =
(
1+ z
2

)i
mi(z), i = 0, 1.

where mi(z) = (1+ z)ni(z): i = 1, 2. We further calculate the
expression

n2i (z) = ni(z)ni(z2), i = 0, 1.

The infinity norm ||n20||∞ and ||n21||∞ are less than one for
1
8 −

1
8

√
13 < β < 3

8 and 1
8 −

1
8

√
5 < β < 0 respectively.

Hence the required result is proved. �
For β = 0 in (1), we have the following scheme.{

f k+12i = αf ki−1 + (1− 2α)f ki + αf
k
i+1,

f k+12i+1 = 0f ki−1 +
1
2 f

k
i +

1
2 f

k
i+1 + 0f ki+2.

(13)

The Laurent polynomial corresponding to (13) is

y(z) =
(1+ z)2

2z2
[2z2α + (1− 4α)z+ 2α]. (14)

Theorem 9: The approximating scheme defined by (13)
produces C0 and C1-continuous shapes for the parametric
interval − 1

4 < α < 3
4 and 0 < α < 1

8 +
1
8

√
5 respectively.

The proof of this theorem is similar as of the Theorem 8.

B. POLYNOMIAL GENERATION AND REPRODUCTION
In this section, we discuss another feature of the scheme.
If the initial data is sampled from the polynomial of degree
d then we are interested to see whether or not the new data
obtained from the scheme lie on the graph of same polyno-
mial. If the new data lie on the graph of same polynomial then
we say that the scheme reproduces polynomial of degree d .
If the new data lie on the graph of another polynomial but with
degree d then we say that the scheme generates polynomial
of same degree. Mathematically, polynomial generation of
degree d is equivalent to u(z) = (1 + z)d+1b(z), where
b(z) is a polynomial. Since d

dzu(z) = 0 at z = 1 so τ =
u′(1)
2 = 0. This implies tki = −τ +

i+τ
2k =

i+0
2k =

i
2k .

This means the scheme has primal parametrization. In the
similar way to the arguments in [23], we can get the degree
of polynomial generation and reproduction with respect to the
primal parametrization of the scheme.
Lemma 10: The degree of polynomial generation of the

scheme (2) is 3.
Proof: Since Laurent polynomial u(z) of the scheme (2)

is

u(z) = (1+ z)3+1b(z),

where

b(z) =
1

16z3

[
(8α − 1)+ (4− 16α)z+ (8α − 1)z2

]
.

This completes the proof. �
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Theorem 11: A refinement scheme (2) reproduces polyno-
mials of degree 1 with respect to the primal parameterizations
with τ = 0 if and only if

u(k)(1) = 2
k−1∏
j=0

(τ − j) and u(k)(−1) = 0, k = 0, 1,

where u(k)(1) is the kth derivative of u(z) at z = 1.
Proof: The Laurent polynomial (3) of the scheme (2)

and its derivative with respect to z are

u(z) = u(0)(z) =
(1+ z)4

16z3
[(8α − 1)+ (4− 16α)z

+ (8α − 1)z2
]
.

u(1)(z) =
(1+ z)3

16z4

[
(24α − 3)z3 − (40α − 9)z2

+ (40α − 9)z1 − (24α − 3)z0
]
.

u(2)(z) =
(1+ z)2

8z5

[
(24α − 3)z4 + (−32α + 6)z3

+ (40α − 9)z2 + (−48α + 12)z1

+(48α − 6)] .

Taking z = −1 in all above, we get

u(k)(−1) = 0, k = 0, 1, 2.

It is easy to see that

u(0)(1) = 2, u(1)(1) = 0, u(2)(1) = 16α.

This further implies that

u(0)(1) = 2, u(1)(1) = 2
1−1∏
j=0

(0− j),

u(2)(1) 6= 2
2−1∏
j=0

(0− j).

Thus

u(k)(1) = 2
k−1∏
j=0

(0− j)

and

u(k)(−1) = 0, k = 0, 1.

This completes the proof. �
Lemma 12: The degree of polynomial generation of the

scheme (4) is 3.
Theorem 13: A refinement scheme (2) reproduces polyno-

mials of degree 1 with respect to the primal parameterizations
with τ = 0 if and only if

u(k)(1) = 2
k−1∏
j=0

(τ − j) and u(k)(−1) = 0, k = 0, 1,

where u(k)(1) is the kth derivative of u(z) at z = 1.

Proof: The Laurent polynomial (3) of the scheme (2)
and its derivative with respect to z are

u(z) = u(0)(z) =
(1+ z)4

16z3
[(8α − 1)+ (4− 16α)z

+ (8α − 1)z2
]
.

u(1)(z) =
(1+ z)3

16z4

[
(24α − 3)z3 − (40α − 9)z2 + (40α

−9)z1 − (24α − 3)z0
]
.

u(2)(z) =
(1+ z)2

8z5

[
(24α − 3)z4 + (−32α + 6)z3

+ (40α − 9)z2 + (−48α + 12)z1 + (48α − 6)
]
.

Taking z = −1 in all above, we get

u(k)(−1) = 0, k = 0, 1, 2.

It is easy to see that

u(0)(1) = 2, u(1)(1) = 0, u(2)(1) = 16α.

This further implies that

u(0)(1) = 2, u(1)(1) = 2
1−1∏
j=0

(0− j),

u(2)(1) 6= 2
2−1∏
j=0

(0− j).

Thus

u(k)(1) = 2
k−1∏
j=0

(0− j) and u(k)(−1) = 0, k = 0, 1.

This completes the proof. �
Lemma 14: The degree of polynomial generation of the

scheme (4) is 3.
Theorem 15: A refinement scheme (4) reproduces polyno-

mials of degree 1 with respect to the primal parameterizations
with τ = 0 if and only if

v(k)(1) = 2
k−1∏
j=0

(τ − j) and v(k)(−1) = 0, k = 0, 1,

where v(k)(1) is the kth derivative of v(z) at z = 1.
Theorem 16: A refinement scheme (4) reproduces polyno-

mials of degree 1 with respect to the primal parameterizations
with τ = 0 if and only if

v(k)(1) = 2
k−1∏
j=0

(τ − j) and v(k)(−1) = 0, k = 0, 1,

where v(k)(1) is the kth derivative of v(z) at z = 1.
Lemma 17: The degree of polynomial generation of the

scheme (11) is 1.
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Theorem 18: A refinement scheme (11) reproduces poly-
nomials of degree 1 with respect to the primal parameteriza-
tions with τ = 0 if and only if

w(k)(1) = 2
k−1∏
j=0

(τ − j) and w(k)(−1) = 0, k = 0, 1,

where w(k)(z) is the kth derivative of the Laurent polynomial
of the scheme (11).
Lemma 19: The degree of polynomial generation of the

scheme (13) is 1.
Theorem 20: A refinement scheme (13) reproduces poly-

nomials of degree 1 with respect to the primal parameteriza-
tions with τ = 0 if and only if

y(k)(1) = 2
k−1∏
j=0

(τ − j) and y(k)(−1) = 0, k = 0, 1,

where y(k)(z) is the kth derivative of the Laurent polynomial
of the scheme (13).

C. LIMIT STENCILS OF THE SCHEMES
Since the limit curves produced by the refinement schemes
do not have closed form so the traditional methods fail to
compute the points on the curve. In this case, we compute
the limit stencils of the schemes. This is just the sequence of
scalers. If we consider the initial points of the polygon as a
sequence of vectors. Then making the linear combination of
these vector and scalars, we get the point on the limit curve
produced by the refinement scheme.
Theorem 21: The limit stencil of the scheme (2) is[
1
3
α(−1+ 8α)

4α + 3
,−

16
3
α(−1+ α)
4α + 3

,
1
3
16α2 − 18α + 9

4α + 3
,

−
16
3
α(−1+ α)
4α + 3

,
1
3
α(−1+ 8α)

4α + 3

]
.

Proof: By taking i = −1 and 0 in even and odd rules
and i = 1 in even rule of the scheme (2), we get

f k+1
−2 = αf

k
−2 + (1− 2α)f k

−1 + αf
k
0 ,

f k+1
−1 =

1
16

(8α − 1)f k
−2 +

1
16

(9− 8α)f k
−1 +

1
16

(9

−8α)f k0 +
1
16

(8α − 1)f k1 .

f k+10 = αf k
−1 + (1− 2α)f k0 + αf

k
1 ,

f k+11 =
1
16

(8α − 1)f k
−1 +

1
16

(9− 8α)f k0 +
1
16

(9

−8α)f k1 +
1
16

(8α − 1)f k2 .

f k+12 = αf k0 + (1− 2α)f k1 + αf
k
2 .

Its matrix representation is: f j+1 = Sf j, where f j+1 =
[f j+1
−2 , f

j+1
−1 , f

j+1
0 , f j+11 , f j+12 ]T , f j = [f j

−2, f
j
−1, f

j
0, f

j
1, f

j
2]
T

and

S

=



α 1− 2α α 0

1
16

(8α − 1)
1
16

(9− 8α)
1
16

(9− 8α)
1
16

(8α − 1)

0 α 1− 2α α

0
1
16

(8α − 1)
1
16

(9− 8α)
1
16

(9− 8α)

0 0 α 1− 2α

0

0

0

1
16

(8α − 1)

α


.

Eigenvalues of this matrix are

λi = 1,
1
2
,
1
4
,
1
8
,
1
4
− α.

The matrix of eigenvectors V corresponding to these eigen-
values is

V =



1 −2
4(2α−3)
−3+8α

−
8(−1+2α)
−1+8α

1

1 −1 1 −1 −
1
4
32α2−28α+3

10α−3

1 0
8α

−3+ 8α
0 −

2α(−1+8α)
10α−3

1 1 1 1 −
1
4
32α2−28α+3

10α−3

1 2
4(2α−3)
−3+8α

−
8(−1+ 2α)
−1+ 8α

1


.

Its inverse V−1 is, as shown at the bottom of the next page.
The diagonal matrix D of the eigenvalues can be written as

D =



1 0 0 0 0

0
1
2

0 0 0

0 0
1
4

0 0

0 0 0
1
8

0

0 0 0 0
1
4
− α


.

Since S = VDV−1 therefore S j = VDjV−1. Also

f j+1 = Sf j = S2f j−1 = S3f j−2 = · · · .S jf 0.
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So we have, f j+1 = (VDjV−1)f 0. This implies f∞ =

V (limj→∞ Dj)V−1f 0. So

f∞
−2

f∞
−1

f∞0

f∞1

f∞2



=



1
3
α(−1+ 8α)

4α + 3
−

16
3
α(−1+ α)
4α + 3

1
3
16α2 − 18α + 9

4α + 3

1
3
α(−1+ 8α)

4α + 3
−

16
3
α(−1+ α)
4α + 3

1
3
16α2 − 18α + 9

4α + 3

1
3
α(−1+ 8α)

4α + 3
−

16
3
α(−1+ α)
4α + 3

1
3
16α2 − 18α + 9

4α + 3

1
3
α(−1+ 8α)

4α + 3
−

16
3
α(−1+ α)
4α + 3

1
3
16α2 − 18α + 9

4α + 3

1
3
α(−1+ 8α)

4α + 3
−

16
3
α(−1+ α)
4α + 3

1
3
16α2 − 18α + 9

4α + 3

−
16
3
α(−1+ α)
4α + 3

1
3
α(−1+ 8α)

4α + 3

−
16
3
α(−1+ α)
4α + 3

1
3
α(−1+ 8α)

4α + 3

−
16
3
α(−1+ α)
4α + 3

1
3
α(−1+ 8α)

4α + 3

−
16
3
α(−1+ α)
4α + 3

1
3
α(−1+ 8α)

4α + 3

−
16
3
α(−1+ α)
4α + 3

1
3
α(−1+ 8α)

4α + 3





f 0
−2

f 0
−1

f 00

f 01

f 02


.

Hence the limit stencil is[
1
3
α(−1+ 8α)

4α + 3
,−

16
3
α(−1+ α)
4α + 3

,
1
3
16α2 − 18α + 9

4α + 3
,

−
16
3
α(−1+ α)
4α + 3

,
1
3
α(−1+ 8α)

4α + 3

]
.

�
Similarly, we get the following results.
Theorem 22: The limit stencil of the scheme (4) is[
1
6

(16β + 1)β
8β2 + 6β + 1

,
1
6

16β + 1
8β2 + 6β + 1

,
1
3
8β2 + β + 2
8β2 + 6β + 1

,
1
6

×
16β + 1

8β2 + 6β + 1
,
1
6

(16β + 1)β
8β2 + 6β + 1

]
.



1
3
α(−1+ 8α)

4α + 3
−
16
3
α(−1+ α)
4α + 3

1
3
−18α + 16α2 + 9

4α + 3

1
12
−

2
3
α −

2
3
+

4
3
α 0

−
1
96

(−3+ 8α)(−1+ 8α)
α

1
24

(−3+ 8α)(4α − 1)
α

−
1
48

(−3+ 8α)2

α

−
1
12
+

2
3
α

1
6
−

4
3
α 0

−
1
8

10α − 3
α(4α + 3)

1
2

10α − 3
α(4α + 3)

−
3
4

10α − 3
α(4α + 3)

−
16
3
α(−1+ α)
4α + 3

1
3
α(−1+ 8α)

4α + 3

2
3
−

4
3
α −

1
12
+

2
3
α

1
24

(−3+ 8α)(4α − 1)
α

−
1
96

(−3+ 8α)(−1+ 8α)
α

−
1
6
+

4
3
α

1
12
−

2
3
α

1
2

10α − 3
α(4α + 3)

−
1
8

10α − 3
α(4α + 3)



.
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Theorem 23: The limit stencil of the scheme (11) is
[0, 0, 1, 0, 0].
Theorem 24: The limit stencil of the scheme (13) is

[0, 2α
4α+1 ,

1
4α+1 ,

2α
4α+1 , 0].

The results presented in Section 2, are graphically pre-
sented in Section 3.

III. NUMERICAL AND GRAPHICAL ANALYSIS OF THE
SHAPES
In this section, we present the numerical and graphical exam-
ples to examine the features of the scheme (1). For this
purpose, we explore the influence of the parameters on the
final shapes produced by the refinement procedures. Here
we take different initial sketches made by joining the points
by straight lines. Then we apply the refinement procedure
on these sketches to get smooth shapes. The values of the
parameters have been randomly taken from the parametric
ranges for the different order of continuities of the schemes.
The refinement scheme defined in (1) only deals with the
closed polygons (sketches). For open polygon, by introducing
two auxiliary points f 0

−1 = 2f 00 − f
0
1 and f kn+1 = 2f kn − f

k
n−1,

we suggest the following rules to refine first and last edges of
the polygon

f k+10 = f 00

f k+11 =

(
β − αβ +

1
2

)
f 00 +

(
2αβ − 2β +

1
2

)
f 01

+ (β − αβ) f 02 ,

and

f k+12n−2 = αf
k
n−2 + (1− 2α) f kn−1 + αf

k
n

f k+12n−1 = (1− α) βf
k
n−2 +

(
−2β + 2αβ +

1
2

)
f kn−1

+

(
β − αβ +

1
2

)
f kn .

Example 25: Figure 3 shows the interpolatory behaviors
of the scheme up to three refinement steps whereas the doted
polygon is the initial sketch which is made by six initial con-
trol points (x, y) =

[
(5, 0), (10, 0), (20, 10), (10, 20), (5, 20),

(−5, 10)
]
denoted by red solid circles. Here we fix the values

of parameters as α = 0 and β = −0.05. We observe that
the final shape lies outside the initial sketch. We also observe
that by eliminating one parameter α, the scheme (1) produce
curves which always passes through the initial control points,
while the values of second parameter may vary from 1

8−
1
8

√
5

to 0 (see Theorem 8) to get different shapes.
Example 26: Figure 4 shows the approximating behav-

iors of the scheme up to three refinement steps whereas the
doted polygon is the same initial sketch used in Example 25.
Here we settle the value of parameters α = 1

12 and β =
−

1
44 . These values may vary to get different types of smooth

approximating shapes. To get an approximating shape we can
eliminate parameter β but can not eliminate parameter α.

FIGURE 3. Initial sketch along with refined sketches produced by
interpolatory scheme.

FIGURE 4. Initial sketch along with refined sketches produced by
approximating scheme.

If we get the values of these parameters from the statements of
Theorems 5-7 and Theorem 9. We observe that the presented
final shape lies inside the initial sketch and does not interpo-
late any of the initial control point.

To see another interesting performance of the presented
refinement scheme, we apply subclasses of refinement
scheme (1), that are given in (2), (4), (11) and (13), on the
same initial sketch and get the smooth shapes of various types
of our choice. This performance can be seen in Examples 3-4
and Figures 4-5.
Example 27: Figure 5 shows the interproximate (inter-

polate some points while approximate the other points)
behaviors of the scheme in non-uniform setting of the
parameters. Here we choose two initial points for inter-
polation and the other four initial points for approxima-
tion. The values of the parameters at each initial point
are set as: (αi, βi) =

[
( 1
12 ,−

1
44 ), (

1
12 ,−

1
44 ), (

1
12 ,−

1
44 ) ,

(0,− 3
50 ), (0,−

3
50 ), (

1
12 ,−

1
44 )
]
.

Example 28: Figure 6 also shows the interproximate
behaviors in non-uniform setting of the parameters of the
scheme up to three refinement steps. Here we choose four
initial points for interpolation and the the other two initial
points for approximation. Here the setting of parametric
values are: (αi, βi) = [(0,− 3

50 ), (0,−
3
50 ), (

1
8 , 0), (0,−

3
50 ),

(0,− 3
50 ), (

1
8 , 0)].

Example 29: Figures 7(a)-(c) show the interpolatory and
approximating performance of the scheme on an open poly-
gon. We show the limit curves after three subdivision steps
produced by the scheme at three different values of the shape
parameters (α, β) = (0,−0.05), (α, β) =

(
1
12 ,

1
44

)
and

(α, β) =
(

3
16 ,

1
26

)
respectively.

From Figures 3-6, RS is used for the Refinement Step.
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FIGURE 5. Interproximate behaviour of the scheme for non-uniform
setting of the parameters.

FIGURE 6. Interproximate behaviour of the scheme for non-uniform
setting of the parameters.

FIGURE 7. Bullets are initial points. Dotted polygons are initial polygons.
Solid curves shows limit curves produced by refinement scheme
after 3 refinement steps.

IV. COMPARISON AND CONCLUSION
In this paper, we have presented a unified refinement scheme
with two parameters. This scheme has unified interpolat-
ing, approximating and interproximate schemes. One shape
parameter controls the interpolating property of the refine-
ment scheme while the other controls the approximating
property of the scheme. Interproximate scheme can be

TABLE 1. Properties of the scheme (1) for different values of α and β. Let
DPG, DPR and AO denote the degree of polynomial generation, degree of
polynomial reproduction and approximation order respectively.

achieved by using non-uniform (the refinement rules for
each edge are different) setting of the parameters. It is also
observed that our schemes are the generalized version of
some of the interpolating as well as B-spline schemes. It can
produce different shapes with different degree of smoothness
(i.e. different order of continuity). We have also presented the
theoretical, numerical and graphical analysis of the shapes
produced by the scheme. The scheme for β = − 1

16

(
8α−1
α−1

)
produces
• C0-continuous shape for 7

16 −
1
16

√
137 < α < 5

24 +
1
12

√
91.

• C1-continuous shape for 5
16 −

1
16

√
33 < α < 5

16 +
1
16

√
33.

• C2-continuous shape for 0 < α < 1
2 .

• C3-continuous shape for 1
8 < α < 3

16 +
1
16

√
5.

• C4-continuous shape for α = 3
16 .

The scheme for α = 1
8

(
16β+1
2β+1

)
produces

• C0-continuous shape for− 143
62 −

7
62

√
349 < β < − 81

8 +
7
8

√
129.

• C1-continuous shape for 3
8−

7
88

√
33 < β < 3

8+
7
88

√
33.

• C2-continuous shape for − 1
16 < β < 3

8 .
• C3-continuous shape for 0 < β < 9

164 +
7

164

√
5.

• C4-continuous shape for β = 1
26 .

The scheme for α = 0 produces
• C0-continuous shape for 1

8 −
1
8

√
13 < β < 3

8 .
• C1-continuous shape for 1

8 −
1
8

√
5 < β < 0.

TABLE 2. Comparison: Here ‘‘inter’’ and ‘‘appr’’ means interpolating and approximating.
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The scheme for β = 0 produces

• C0-continuous shape for − 1
4 < α < 3

4 .
• C1-continuous shape for 0 < α < 1

8 +
1
8

√
5.

In Table 1, we summarize the properties of the schemes
for different values of shape parameters α and β. Since the
degree of polynomial generation of all the schemes is one
therefore by [26] the approximation order of all schemes
is two. Since the odd and even rules of our schemes have
complexity 3 and 4 therefore we have compared the order
of continuity of the shapes produced by our schemes and
existing schemes having the complexity 3 and 4. The com-
parison is presented in Table 2. The schemes presented in
this table with labels * and ** have complexity 4 in both
odd and even rules but in our schemes the complexity in
odd rule is less than 4. The schemes with labels * and **
can produce one order extra continuous shapes but with the
high cost of complexity comparative to our approximating
schemes. Moreover, the difference between the shapes with
order of continuities 4 and 5 can not be observed by our
naked eyes so one extra order of continuity in the shapes
with high cost of complexity has no use. Furthermore, our
schemes produce higher order continuous shape then ternary
combined family of schemes [19], [20]. Our interpolating and
exiting schemes in the combined family produce the same
order of continuous shapes. Overall, we conclude that the
proposed schemes are better in the sense of complexity and
continuity than the combined binary and ternary family of
schemes as well as other individual schemes. In this paper,
we have also suggested the method to compute the points
on the limit curves. In future, we will study that how the
theoretical results of the presented refinement schemes are
potentially applicable to the design of graph filters [24].
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