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ABSTRACT In this manuscript, we adopt a novel approach to present a new bound for the Jensen gap
for functions whose double derivatives in absolute function, are convex. We demonstrate two numerical
experiments to verify the main result and to discuss the tightness of the bound. Then we utilize the bound
for deriving two new converses of the Hölder inequality and a bound for the Hermite-Hadamard gap.
Finally, we demonstrate applications of the main result for various divergences in information theory. Also,
we present a numerical example to verify the bound for Shannon entropy.

INDEX TERMS Jensen inequality, Hölder inequality, Hermite-Hadamard inequality, convex function, Green
function, Csiszár divergence.

I. INTRODUCTION AND PRELIMINARIES
The field of mathematical inequalities and their applications
has recorded an exponential and significant growth in the last
three decades with considerable impact in various areas of
Science such as Engineering [12], Economics [25], Math-
ematical Statistics [24], Qualitative Theory of Integral and
Differential Equations [21], Information Theory and Coding
[16], [18] etc. It is noteworthy that many innovative ideas
about mathematical inequalities and their applications in var-
ious areas of Science can be developed by convexity [3], [4],
[9], [11], [14], [27], [29], [32], [33]. One of the most impor-
tant inequality for convex functions is Jensen inequality,
which generalizes the classical convexity. This inequality is
of pivotal importance, because other classical inequalities for
example Hermite-Hadamard, Hölder, Ky-Fan, Beckenbach-
Dresher, Minkowski’s, arithmetic-geometric and Young’s
inequalities etc can be deduced from this inequality.
An extensive literature exists regarding estimates for the
Jensen gap and their applications inmany branches of Science
[1]–[8], [12], [15], [20], [24]–[26], [28]. In this manuscript,
we present a new bound as an estimate for the Jensen gap.

In the following theorem, Jensen integral inequality has
been presented [17]:
Theorem 1: Let [α1, α2] ⊂ R and h1, h2 : [c1, c2] → R

be two functions such that h1(t) ∈ [α1, α2], ∀ t ∈ [c1, c2].

The associate editor coordinating the review of this manuscript and

approving it for publication was Khmaies Ouahada .

Let the function ψ : [α1, α2] → R be convex and h2, h1h2,
(ψ ◦ h1).h2 are integrable functions on [c1, c2]. Also suppose
that h2(t) ≥ 0 for all t ∈ [c1, c2] and

∫ c2
c1
h2(t)dt > 0, then

ψ

(∫ c2
c1
h1(t)h2(t)dt∫ c2
c1
h2(t)dt

)
≤

∫ c2
c1
(ψ ◦ h1)(t)h2(t)dt∫ c2

c1
h2(t)dt

. (1)

For deriving the main result, we need the following Green
function defined on [ω1, ω2]× [ω1, ω2] [22]:

G(s, x) =


(s− ω2)(x − ω1)

ω2 − ω1
, ω1 ≤ x ≤ s,

(x − ω2)(s− ω1)
ω2 − ω1

, s ≤ x ≤ ω2.

(2)

This is a convex function with respect to both the vari-
ables s and x. Also, the following identity for the func-
tion T ∈ C2[ω1, ω2] holds, which is related to the Green
function (2) [22]:

T (s) =
ω2 − s
ω2 − ω1

T (ω1)+
s− ω1

ω2 − ω1
T (ω2)

+

∫ ω2

ω1

G(s, x)T ′′(x)dx. (3)

We organize the remaining paper as: In Section II, we present
a new main result following by a remark, two numerical
experiments, a proposition, two corollaries and an another
remark which completes the section. Numerical experiments
give the surety of the tightness of the bound which is pre-
sented as the main result, Proposition 1 presents a converse
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of the Hölder inequality, Corollary 1 demonstrate another
converse of the Hölder inequality while Corollary 2 presents a
bound for the Hermite-Hadamard gap. In Section III, we give
applications of the main result for Csiszár divergence, Shan-
non entropy, Kullback-Leibler divergence, Jeffrey’s diver-
gence, Bhattacharyya coefficient, Hellinger distance and Tri-
angular discrimination.

II. MAIN RESULT
In the following theorem, we present a new bound for the
Jensen gap by using functions whose double derivatives in
the absolute function, are convex.
Theorem 2: Let T ∈ C2[ω1, ω2] be a function such that
|T ′′| is convex. Let h, f be two real valued functions defined
on [a1, a2] such that h(y) ∈ [ω1, ω2] for all y ∈ [a1, a2]
with f , hf , (T ◦ h)f as integrable functions on [a1, a2]. Also
suppose that f (y) ≥ 0 on [a1, a2] with

∫ a2
a1
f (y)dy := F > 0,

then∣∣∣ 1
F

∫ a2

a1
(T ◦ h)(y)f (y)dy− T

( 1
F

∫ a2

a1
h(y)f (y)dy

)∣∣∣
≤
|T ′′(ω2)| − |T ′′(ω1)|

6(ω2 − ω1)

(
1
F

∫ a2

a1
h3(y)f (y)dy

−

( 1
F

∫ a2

a1
h(y)f (y)dy

)3)
+
ω2|T ′′(ω1)| − ω1|T ′′(ω2)|

2(ω2 − ω1)

×

(
1
F

∫ a2

a1
h2(y)f (y)dy−

( 1
F

∫ a2

a1
h(y)f (y)dy

)2)
. (4)

Proof: Using (3) in 1
F

∫ a2
a1
(T ◦ h)(y)f (y)dy and

T
(
1
F

∫ a2
a1
h(y)f (y)dy

)
, we get

1
F

∫ a2

a1
(T ◦ h)(y)f (y)dy

=
1
F

∫ a2

a1

(ω2 − h(y)
ω2 − ω1

T (ω1)+
h(y)− ω1

ω2 − ω1
T (ω2)

+

∫ ω2

ω1

G(h(y), x)T ′′(x)dx
)
f (y)dy. (5)

and

T
( 1
F

∫ a2

a1
h(y)f (y)dy

)
=
ω2 −

1
F

∫ a2
a1
h(y)f (y)dy

ω2 − ω1
T (ω1)+

1
F

∫ a2
a1
h(y)f (y)dy− ω1

ω2 − ω1

×T (ω2)+
∫ ω2

ω1

G
( 1
F

∫ a2

a1
h(y)f (y)dy, x

)
T ′′(x)dx. (6)

Subtracting (6) from (5), we obtain the following result

1
F

∫ a2

a1
(T ◦ h)(y)f (y)dy− T

( 1
F

∫ a2

a1
h(y)f (y)dy

)
=

∫ ω2

ω1

(
1
F

∫ a2

a1
G(h(y), x)f (y)dy

−G
( 1
F

∫ a2

a1
h(y)f (y)dy, x

))
T ′′(x)dx. (7)

Taking absolute of (7), we have∣∣∣ 1
F

∫ a2

a1
(T ◦ h)(y)f (y)dy− T

( 1
F

∫ a2

a1
h(y)f (y)dy

)∣∣∣
=

∣∣∣∣ ∫ ω2

ω1

(
1
F

∫ a2

a1
G(h(y), x)f (y)dy

−G
( 1
F

∫ a2

a1
h(y)f (y)dy, x

))
T ′′(x)dx

∣∣∣∣
≤

∫ ω2

ω1

∣∣∣∣( 1
F

∫ a2

a1
G(h(y), x)f (y)dy

−G
( 1
F

∫ a2

a1
h(y)f (y)dy, x

))∣∣∣∣|T ′′(x)|dx. (8)

Using the change of variable x = tω1 + (1 − t)ω2 for t ∈
[0, 1]. Also as G(s, x) is convex, so from (8), we get∣∣∣ 1
F

∫ a2

a1
(T ◦ h)(y)f (y)dy− T

( 1
F

∫ a2

a1
h(y)f (y)dy

)∣∣∣
≤ (ω2 − ω1)

∫ 1

0

(
1
F

∫ a2

a1
G(h(y), tω1+(1−t)ω2)f (y)dy

−G(h̄, tω1+ (1−t)ω2)
)
|T ′′(tω1+(1−t)ω2)|dt, (9)

where

h̄ =
1
F

∫ a2

a1
h(y)f (y)dy.

Since |T ′′| is a convex function, therefore (9) takes the form∣∣∣ 1
F

∫ a2

a1
(T ◦ h)(y)f (y)dy− T

( 1
F

∫ a2

a1
h(y)f (y)dy

)∣∣∣
≤ (ω2 − ω1)

∫ 1

0

(
1
F

∫ a2

a1
G
(
h(y), tω1 + (1− t)ω2

)
f (y)dy

−G(h̄, tω1+(1−t)ω2)
)(
t|T ′′(ω1)|+(1−t)|T ′′(ω2)|

)
dt

= (ω2 − ω1)

×

(∫ 1

0
t|T ′′(ω1)|

1
F

∫ a2

a1
G
(
h(y), tω1+(1−t)ω2

)
f (y)dydt

+

∫ 1

0
(1− t)|T ′′(ω2)|

1
F

∫ a2

a1
G
(
h(y), tω1

+ (1− t)ω2

)
f (y)dydt

−

∫ 1

0
t|T ′′(ω1)|G(h̄, tω1 + (1− t)ω2)dt

−

∫ 1

0
(1− t)|T ′′(ω2)|G(h̄, tω1 + (1− t)ω2)dt

)
.

= (ω2 − ω1)

×

(
|T ′′(ω1)|

F

∫ a2

a1
f (y)

(∫ 1

0
tG
(
h(y), tω1+(1−t)ω2

)
dt
)
dy

+
|T ′′(ω2)|

F

∫ a2

a1
f (y)

( ∫ 1

0
G
(
h(y), tω1+(1−t)ω2

)
dt
)
dy

−
|T ′′(ω2)|

F

∫ a2

a1
f (y)

( ∫ 1

0
tG
(
h(y), tω1+(1−t)ω2

)
dt
)
dy
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− |T ′′(ω1)|
∫ 1

0
tG(h̄, tω1 + (1− t)ω2)dt

− |T ′′(ω2)|
∫ 1

0
G(h̄, tω1 + (1− t)ω2)dt

+ |T ′′(ω2)|
∫ 1

0
tG(h̄, tω1 + (1− t)ω2)dt

)
. (10)

Now by using the change of variable x = tω1+ (1− t)ω2 for
t ∈ [0, 1], we obtain∫ 1

0
tG(h(y), tω1 + (1− t)ω2)dt

=
1

(ω1 − ω2)3

(
ω3
1h(y)

6

−
ω1h3(y)

6
−

5ω2h3(y)
6

−
ω2ω

2
1h(y)

2
−
ω2ω

3
1

6

+
ω1ω2h2(y)

2
−
ω2
2h

2(y)

2
+
ω2
2ω

2
1

2
+
ω3
2h(y)

3
+ ω2h3(y)

−
ω1ω

3
2

3

)
. (11)

Replacing h(y) by h̄ in (11), we get∫ 1

0
tG(h̄, tω1 + (1− t)ω2)dt

=
1

(ω1 − ω2)3

(
ω3
1h̄

6

−
ω1(h̄)3

6
−

5ω2(h̄)3

6
−
ω2ω

2
1h̄

2
−
ω2ω

3
1

6
+
ω1ω2(h̄)2

2

−
ω2
2(h̄)

2

2
+
ω2
2ω

2
1

2
+
ω3
2h̄

3
+ ω2(h̄)3 −

ω1ω
3
2

3

)
. (12)

Also,∫ 1

0
G(h(y), tω1 + (1− t)ω2)dt

=
(h2(y)− ω2h(y)− ω1h(y)+ ω1ω2)

2(ω2 − ω1)
. (13)

Replacing h(y) by h̄ in (13), we get∫ 1

0
G(h̄, tω1+(1−t)ω2)dt =

((h̄)2 − ω2h̄− ω1h̄+ω1ω2)
2(ω2−ω1)

.

(14)

Substituting the values from (11)–(14) in (10) and simplify-
ing, we get the result (4). �
Remark 1: If we use the Green functions G2 − G5 as

given in [22] instead of G in Theorem 2, we obtain the same
result (4).
Now we demonstrate some numerical experiments to show
the tightness of the bound (4).

Example 1: Let T (y) = y4, h(y) = y, f (y) = 1 for all
y ∈ [0, 1] then T ′′(y) = 12y2 > 0, |T ′′|′′(y) = 24 > 0
for all y ∈ [0, 1]. Which shows that T and |T ′′| are convex

functions. Also, h(y) ∈ [0, 1] for all y ∈ [0, 1], therefore
using inequality (4) for these facts with [ω1, ω2] = [a1, a2] =
[0, 1], we obtain

∫ 1
0 T (h(y))dy − T

( ∫ 1
0 h(y)dy

)
= 0.2 −

0.0625 = 0.1375 and its corresponding right hand side gives
0.25. Thus from inequality (4) we conclude that

0.1375 < 0.25. (15)

Now taking right hand side of inequality (5) in [13], we get

1
2
‖T ′′‖L∞([0,1]).

[
‖h− c‖2L2 + ‖h− c‖

2
L1

]
= 6

[3c2 − 3c+ 1
3

+

(
c2 − c+

1
2

)2]
= 6g(c). (16)

It is important to note that g(c) attains its minimum value at
c = 0.5 which is g(0.5) ≈ 0.1458 and thus from (16) we
obtain

1
2
‖T ′′‖L∞([0,1]).

[
‖h− c‖2L2 + ‖h− c‖

2
L1

]
≈ 0.8748.

Hence from inequality (5) in [13], we get

0.1375 < 0.8748. (17)

Similarly taking right hand side of inequality (8) in [13],
we get

1
2
‖T ′′‖L∞([0,1]).‖h− c‖2L2 −

1
2
inf
[0,1]

T ′′
[ ∫ 1

0
(h(y)− c)dy

]2
= 6

[3c2 − 3c+ 1
3

]
= 6l(c). (18)

Now l(c) attains its minimum value at c = 0.5 which is
l(0.5) ≈ 0.0833 and thus from (18) we deduce

1
2
‖T ′′‖L∞([0,1]).‖h− c‖2L2 −

1
2
inf
[0,1]

T ′′
[ ∫ 1

0
(h(y)− c)dy

]2
≈ 0.4998.

Hence from inequality (8) in [13], we get

0.1375 < 0.4998. (19)

From (15), (17) and (19), it can easily be concluded
that the bound in (4) for the Jensen gap is better than
the bounds in (5), (8) from [13]. Also, inequality (15)
verifies the tightness of the bound in (4), towards the
Jensen gap.
Example 2: Let T (y) = ey, h(y) = y2, f (y) = 1 for all

y ∈ [0, 1] then T ′′(y) = ey > 0, |T ′′|′′(y) = ey > 0
for all y ∈ [0, 1]. Which shows that T and |T ′′| are convex
functions. Also, h(y) ∈ [0, 1] for all y ∈ [0, 1], therefore using
inequality (4) for the above facts with [ω1, ω2] = [a1, a2] =
[0, 1] we obtain

∫ 1
0 T (h(y))dy − T

( ∫ 1
0 h(y)dy

)
= 1.4627 −

1.3956 = 0.0671 and right hand side of inequality (4) gives
0.0748. Thus from inequality (4), we deduce the following
result

0.0671 < 0.0748. (20)
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Now taking right hand side of inequality (5) in [13], we get

1
2
‖T ′′‖L∞([0,1]).

[
‖h− c‖2L2 + ‖h− c‖

2
L1

]
= 1.3592

[
c2 −

2
3
c+

1
5
+

(4
3
c
3
2 − c+

1
3

)2]
= 1.3592g(c). (21)

Now g(c) attains its minimum value at c ≈ 0.31 which is
g(0.31) ≈ 0.1536 and thus from (21) we get

1
2
‖T ′′‖L∞([0,1]).

[
‖h− c‖2L2 + ‖h− c‖

2
L1

]
≈ 0.2088.

Hence from inequality (5) in [13], we get

0.0671 < 0.2088. (22)

Similarly taking right hand side of inequality (8) in [13],
we obtain

1
2
‖T ′′‖L∞([0,1]).‖h− c‖2L2 −

1
2
inf
[0,1]

T ′′
[ ∫ 1

0
(h(y)− c)dy

]2
= 1.3592

[
c2 −

2
3
c+

1
5

]
−

1
2

[3c− 1
3

]2
= l(c). (23)

Now l(c) attains its minimum value at c ≈ 0.33 which is
l(0.33) ≈ 0.1208 and thus from (23) we get

1
2
‖T ′′‖L∞([0,1]).‖h− c‖2L2 −

1
2
inf
[0,1]

T ′′
[ ∫ 1

0
(h(y)− c)dy

]2
≈ 0.1208.

Hence from inequality (8) in [13], we get

0.0671 < 0.1208. (24)

Now inequalities in (20), (22) and (24) show that the
bound in (4) for the Jensen gap is better than the bounds
in (5), (8) from [13]. Also, inequality (20) gives the
surety of the tightness of the bound in (4), towards the
Jensen gap.
In the following proposition, we present a converse of
the Hölder inequality as an application of the above
theorem.
Proposition 1: Let p1 ∈ R+−{(2, 3)∪(0, 1]}, p2 > 1 such

that 1
p1
+

1
p2
= 1 and ζ1, ζ2 : [a1, a2]→ R+ be two functions

such that ζ p11 (y), ζ p22 (y), ζ1(y)ζ2(y) and ζ 21 (y)ζ
1− p2

p1
2 (y) are

integrable on [a1, a2]. Also, let [ω1, ω2] be a positive interval

such that ζ1(y)ζ
−
p2
p1

2 (y) ∈ [ω1, ω2], then( ∫ a2

a1
ζ
p1
1 (y)dy

) 1
p1
( ∫ a2

a1
ζ
p2
2 (y)dy

) 1
p2
−

∫ a2

a1
ζ1(y)ζ2(y)dy

≤

(
p1(p1 − 1)(ωp1−22 − ω

p1−2
1 )

6(ω2 − ω1)

(∫ a2
a1
ζ 31 (y)ζ

1−2 p2p1
2 (y)dy∫ a2

a1
ζ
p2
2 (y)dy

−

(∫ a2
a1
ζ1(y)ζ2(y)dy∫ a2
a1
ζ
p2
2 (y)dy

)3)

+
p1(p1−1)(ω2ω

p1−2
1 −ω1ω

p1−2
2 )

2(ω2 − ω1)

(∫ a2
a1
ζ 21 (y)ζ

1− p2
p1

2 (y)dy∫ a2
a1
ζ
p2
2 (y)dy

−

(∫ a2
a1
ζ1(y)ζ2(y)dy∫ a2
a1
ζ
p2
2 (y)dy

)2)) 1
p1
∫ a2

a1
ζ
p2
2 (y)dy. (25)

Proof: Using (4) for T (ς ) = ςp1 , f (y) = ζ
p2
2 (y) and

h(y) = ζ1(y)ζ
−
p2
p1

2 (y), we deduce((∫ a2

a1
ζ
p2
2 (y)dy

)p1−1∫ a2

a1
ζ
p1
1 (y)dy−

(∫ a2

a1
ζ1(y)ζ2(y)dy

)p1) 1
p1

≤

(
p1(p1 − 1)(ωp1−22 − ω

p1−2
1 )

6(ω2 − ω1)

(∫ a2
a1
ζ 31 (y)ζ

1−2 p2p1
2 (y)dy∫ a2

a1
ζ
p2
2 (y)dy

−

( 1∫ a2
a1
ζ
p2
2 (y)dy

∫ a2

a1
ζ1(y)ζ2(y)dy

)3)

+
p1(p1−1)(ω2ω

p1−2
1 −ω1ω

p1−2
2

2(ω2 − ω1)

(∫ a2
a1
ζ 21 (y)ζ

1− p2
p1

2 (y)dy∫ a2
a1
ζ
p2
2 (y)dy

−

( 1∫ a2
a1
ζ
p2
2 (y)dy

∫ a2

a1
ζ1(y)ζ2(y)dy

)2)) 1
p1
∫ a2

a1
ζ
p2
2 (y)dy.

(26)

Utilizing the inequality xβ − yβ ≤ (x− y)β , 0 ≤ y ≤ x, β ∈

[0, 1] for β = 1
p1
, x =

( ∫ a2
a1
ζ
p2
2 (y)dy

)p1−1( ∫ a2
a1
ζ
p1
1 (y)dy

)
and
y =

( ∫ a2
a1
ζ1(y)ζ2(y)dy

)p1
, we obtain

( ∫ a2

a1
ζ
p1
1 (y)dy

) 1
p1
( ∫ a2

a1
ζ
p2
2 (y)dy

) 1
p2
−

∫ a2

a1
ζ1(y)ζ2(y)dy

≤

((∫ a2

a1
ζ
p2
2 (y)dy

)p1−1∫ a2

a1
ζ
p1
1 (y)dy

−

( ∫ a2

a1
ζ1(y)ζ2(y)dy

)p1) 1
p1
. (27)

Now using (27) in (26), we get (25). �
In the following corollary, we demonstrate another converse
of the Hölder inequality as an application of Theorem 2.
Corollary 1: Let ζ1, ζ2 : [a1, a2]→ R+ be two functions

such that ζ p11 (y), ζ p22 (y) and ζ1(y)ζ2(y) are integrable on
[a1, a2]. Also, let [ω1, ω2] be a positive interval such that
ζ
p1
1 (y)ζ−p22 (y) ∈ [ω1, ω2], then
(i): For p1 > 1 and p2 =

p1
p1−1

, we have( ∫ a2

a1
ζ
p1
1 (y)dy

) 1
p1
( ∫ a2

a1
ζ
p2
2 (y)dy

) 1
p2
−

∫ a2

a1
ζ1(y)ζ2(y)dy

≤

{(1− 1
p1

) (
ω

1
p1
−2

2 − ω

1
p1
−2

1

)
6p1(ω2 − ω1)

×

(∫ a2
a1
ζ
3p1
1 (y)ζ−2p22 (y)dy∫ a2
a1
ζ
p2
2 (y)dy

−

(∫ a2
a1
ζ
p1
1 (y)dy∫ a2

a1
ζ
p2
2 (y)dy

)3)
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+

(
1− 1

p1

) (
ω2ω

1
p1
−2

1 − ω1ω

1
p1
−2

2

)
2p1(ω2 − ω1)

×

(∫ a2
a1
ζ
2p1
1 (y)ζ−p22 (y)dy∫ a2
a1
ζ
p2
2 (y)dy

−

(∫ a2
a1
ζ
p1
1 (y)dy∫ a2

a1
ζ
p2
2 (y)dy

)2)}
×

∫ a2

a1
ζ
p2
2 (y)dy. (28)

(ii): For 0 < p1 < 1 and p2 =
p1

p1−1
with 1

p1
∈ (0,∞)\(2, 3),

we have∫ a2

a1
ζ1(y)ζ2(y)dy−

( ∫ a2

a1
ζ
p1
1 (y)dy

) 1
p1
( ∫ a2

a1
ζ
p2
2 (y)dy

) 1
p2

≤

{( 1
p1
− 1

) (
ω

1
p1
−2

2 − ω

1
p1
−2

1

)
6p1(ω2 − ω1)

×

(∫ a2
a1
ζ
3p1
1 (y)ζ−2p22 (y)dy∫ a2
a1
ζ
p2
2 (y)dy

−

(∫ a2
a1
ζ
p1
1 (y)dy∫ a2

a1
ζ
p2
2 (y)dy

)3)

+

(
1
p1
− 1

) (
ω2ω

1
p1
−2

1 − ω1ω

1
p1
−2

2

)
2p1(ω2 − ω1)

×

(∫ a2
a1
ζ
2p1
1 (y)ζ−p22 (y)dy∫ a2
a1
ζ
p2
2 (y)dy

−

(∫ a2
a1
ζ
p1
1 (y)dy∫ a2

a1
ζ
p2
2 (y)dy

)2)}
×

∫ a2

a1
ζ
p2
2 (y)dy. (29)

(iii): For p1 < 0 and p2 =
p1

p1−1
, we have∫ a2

a1
ζ1(y)ζ2(y)dy−

( ∫ a2

a1
ζ
p1
1 (y)dy

) 1
p1
( ∫ a2

a1
ζ
p2
2 (y)dy

) 1
p2

≤

{( 1
p2
− 1

) (
ω

1
p2
−2

2 − ω

1
p2
−2

1

)
6p2(ω2 − ω1)

×

(∫ a2
a1
ζ
3p2
2 (y)ζ−2p11 (y)dy∫ a2
a1
ζ
p1
1 (y)dy

−

(∫ a2
a1
ζ
p2
2 (y)dy∫ a2

a1
ζ
p1
1 (y)dy

)3)

+

(
1
p2
− 1

) (
ω2ω

1
p2
−2

1 − ω1ω

1
p2
−2

2

)
2p2(ω2 − ω1)

×

(∫ a2
a1
ζ
2p2
2 (y)ζ−p11 (y)dy∫ a2
a1
ζ
p1
1 (y)dy

−

(∫ a2
a1
ζ
p2
2 (y)dy∫ a2

a1
ζ
p1
1 (y)dy

)2)}

×

∫ a2

a1
ζ
p1
1 (y)dy. (30)

Proof: (i): Let T (ς ) = ς
1
p1 , then it can easily be shown

that the function T is concave and |T ′′| is convex. Therefore
using (4) for h(y) = ζ

p1
1 (y)ζ−p22 (y), f (y) = ζ

p2
2 (y), we

get (28).

(ii): In this case, the functions T (ς ) = ς
1
p1 and |T ′′| are

convex. Therefore using (4) for h(y) = ζ p11 (y)ζ−p22 (y), f (y) =
ζ
p2
2 (y), we get (29).

(iii): If p1 < 0, we have 0 < p2 < 1, which shows that this
case is the reflection of case (ii). Therefore, replacement of
p1, p2, ζ1, ζ2 by p2, p1, ζ2, ζ1 in (29) will lead us towards the
result (30). �
The following corollary proposes a bound for the Hermite-
Hadamard gap as an application of Theorem 2.
Corollary 2: Let ψ ∈ C2[a1, a2] be a function such that
|ψ ′′| is convex, then∣∣∣ 1
a2 − a1

∫ a2

a1
ψ(y)dy− ψ

(a1 + a2
2

)∣∣∣
≤

(|ψ ′′(a1)| + |ψ ′′(a2)|)(a2 − a1)2

48
. (31)

Proof: Using (4) for ψ = T , [ω1, ω2] = [a1, a2] and
f (y) = 1, h(y) = y for all y ∈ [a1, a2], we get (31). �
Remark 2: The inequality (31) has also been proved by

Sarikaya et al. in [30].

III. APPLICATIONS IN INFORMATION THEORY
Information theory is a branch of Science, which scien-
tifically deals with the communication, quantification and
storage of different kinds of information. Information is
an abstract entity, therefore it cannot be quantified easily.
A probability density function can be used for quantification
of information about a certain event. A divergence can mea-
sure the difference between two probability densities. Csiszár
[22] introduced a divergence known as Csiszár divergence,
which is the base for other divergences for example Kullback-
Leibler divergence, χ2-divergence, Jeffrey’s divergence etc.
Divergences have many applications in various fields of Sci-
ence, Technology and Art for example Pattern recognition
[23], Genetics [10], Applied Statistics [19], Signal processing
and Coding [31] etc. Jensen inequality plays a vital role to
deduce the estimates for various divergences [16], [18], [20],
[28]. In this section, we present some applications of ourmain
result for various divergences.
Definition 1 (Csiszár divergence): Let [ω1, ω2] ⊆ R and

φ : [ω1, ω2] → R be a function. Also let X : [a1, a2] →
[ω1, ω2], Z : [a1, a2] → (0,∞) be two functions such
that X (y)

Z (y) ∈ [ω1, ω2] for all y ∈ [a1, a2], then the Csiszár
divergence is defined by [22]

Dc(X ,Z ) =
∫ a2

a1
Z (y)φ

(X (y)
Z (y)

)
dy.

Theorem 3: Let φ ∈ C2[ω1, ω2] be a function such that
|φ′′| is convex. Also X : [a1, a2]→ [ω1, ω2], Z : [a1, a2]→

(0,∞) be two functions such that
∫ a2
a1

X (y)dy∫ a2
a1

Z (y)dy
,
X (y)
Z (y) ∈ [ω1, ω2],

for all y ∈ [a1, a2], then∣∣∣∣ 1∫ a2
a1
Z (y)dy

Dc(X ,Z )− φ
(∫ a2

a1
X (y)dy∫ a2

a1
Z (y)dy

)∣∣∣∣
≤
|φ′′(ω2)| − |φ′′(ω1)|

6(ω2 − ω1)

×

∫ a2a1 X3(y)
Z2(y)

dy∫ a2
a1
Z (y)dy

−

(∫ a2
a1
X (y)dy∫ a2

a1
Z (y)dy

)3

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+
ω2|φ

′′(ω1)| − ω1|φ
′′(ω2)|

2(ω2 − ω1)

×

∫ a2a1 X2(y)
Z (y) dy∫ a2

a1
Z (y)dy

−

(∫ a2
a1
X (y)dy∫ a2

a1
Z (y)dy

)2
 . (32)

Proof: Using (4) for T = φ, h(y) = X (y)
Z (y) and f (y) =

Z (y), we obtain (32). �
Definition 2 (Shannon entropy): For a positive probabil-

ity density function Z (y) defined on [a1, a2], the Shannon
entropy is defined by [22]

Es(Z ) = −
∫ a2

a1
Z (y) logZ (y)dy.

Corollary 3: Let [ω1, ω2] ⊆ R+ and Z (y) be a positive
probability density function defined on [a1, a2] such that
1

Z (y) ∈ [ω1, ω2] for all y ∈ [a1, a2], then

log(a2 − a1)− Es(Z )

≤
ω2
1 + ω1ω2 + ω

2
2

2ω2
1ω

2
2

( ∫ a2

a1

1
Z (y)

dy− (a2 − a1)2
)

−
ω1 + ω2

6ω2
1ω

2
2

( ∫ a2

a1

1
Z2(y)

dy− (a2 − a1)3
)
. (33)

Proof: Using (32) for the function φ(ς ) = − log ς, ς ∈
[ω1, ω2] and X (y) = 1, we get (33). �
In the following example we verify the inequality (33).
Example 3: Let Z (y) = 1

y ln 2 for all y ∈ [a1, a2] = [1, 2]
be a reciprocal distribution, then 1

Z (y) ∈ [ 12 ,
3
2 ] = [ω1, ω2] for

all y ∈ [1, 2]. Therefore using (33) for these facts we obtain

log(a2 − a1)− Es(Z )

= 0.0199

< 0.0429 =
ω2
1 + ω1ω2 + ω

2
2

2ω2
1ω

2
2

( ∫ a2

a1

1
Z (y)

dy− (a2 − a1)2
)

−
ω1 + ω2

6ω2
1ω

2
2

( ∫ a2

a1

1
Z2(y)

dy− (a2 − a1)3
)
.

Definition 3 (Kullback-Leibler divergence): For two posi-
tive probability densities X (y) and Z (y) defined on [a1, a2],
the Kullback-Leibler divergence is defined by [22]

Dkl(X ,Z ) =
∫ a2

a1
X (y) log

(X (y)
Z (y)

)
dy.

Corollary 4: Let [ω1, ω2] ⊆ R+ and X : [a1, a2] →
[ω1, ω2], Z : [a1, a2] → (0,∞) be two positive probability
density functions such that X (y)

Z (y) ∈ [ω1, ω2], for all y ∈
[a1, a2], then

Dkl(X ,Z ) ≤
ω1 + ω2

2ω1ω2

(∫ a2

a1

X2(y)
Z (y)

dy− 1
)

−

∫ a2
a1

X3(y)
Z2(y)

dy− 1

6ω1ω2
. (34)

Proof: Using (32) for the function φ(ς ) = ς log ς, we
get (34). �
Definition 4 (Jeffrey’s divergence): For two positive prob-

ability densities X (y) and Z (y) defined on [a1, a2], the

Jeffrey’s divergence is defined by [22]

Dj(X ,Z ) =
∫ a2

a1
(X (y)− Z (y)) log

(X (y)
Z (y)

)
dy.

Corollary 5: Let [ω1, ω2] ⊆ R+ and X : [a1, a2] →
[ω1, ω2], Z : [a1, a2] → (0,∞) be two positive probability
densities such that X (y)Z (y) ∈ [ω1, ω2], for all y ∈ [a1, a2], then

Dj(X ,Z ) ≤
ω2
1 + ω

2
2 + ω1ω2 + ω1ω

2
2 + ω2ω

2
1

2ω2
1ω

2
2

×

( ∫ a2

a1

X2(y)
Z (y)

dy− 1
)
−
ω1 + ω2 + ω1ω2

6ω2
1ω

2
2

×

( ∫ a2

a1

X3(y)
Z2(y)

dy− 1
)
. (35)

Proof: Using the function φ(ς ) = (ς − 1) log ς in (32),
we get (35). �
Definition 5 (Bhattacharyya coefficient): For two positive

probability densities X (y) and Z (y) defined on [a1, a2], the
Bhattacharyya coefficient is defined by [22]

Cb(X ,Z ) =
∫ a2

a1

√
X (y)Z (y)dy.

Corollary 6: Let [ω1, ω2] ⊆ R+ and X : [a1, a2] →
[ω1, ω2], Z : [a1, a2] → (0,∞) be two positive probability
density functions such that X (y)

Z (y) ∈ [ω1, ω2], for all y ∈
[a1, a2], then

1− Cb(X ,Z ) ≤
ω

3
2
1 − ω

3
2
2

24ω
3
2
1 ω

3
2
2 (ω2 − ω1)

( ∫ a2

a1

X3(y)
Z2(y)

dy− 1
)

+
ω

5
2
2 − ω

5
2
1

8ω
3
2
1 ω

3
2
2 (ω2 − ω1)

( ∫ a2

a1

X2(y)
Z (y)

dy− 1
)
.

(36)
Proof: Using (32) for the function φ(ς ) = −

√
ς, we

get (36). �
Definition 6 (Hellinger distance): For two probability

density functions X (y) and Z (y) defined on [a1, a2], the
Hellinger distance is defined by [22]

Dh(X ,Z ) =
1
2

∫ a2

a1

(√
X (y)−

√
Z (y)

)2
dy.

Corollary 7: Let [ω1, ω2] ⊆ R+ and X : [a1, a2] →
[ω1, ω2], Z : [a1, a2]→ (0,∞) be two probability densities
such that X (y)Z (y) ∈ [ω1, ω2], for all y ∈ [a1, a2], then

Dh(X ,Z ) ≤
ω

3
2
1 − ω

3
2
2

24ω
3
2
1 ω

3
2
2 (ω2 − ω1)

( ∫ a2

a1

X3(y)
Z2(y)

dy− 1
)

+
ω

5
2
2 − ω

5
2
1

8ω
3
2
1 ω

3
2
2 (ω2−ω1)

(∫ a2

a1

X2(y)
Z (y)

dy−1
)
. (37)

Proof: Using (32) for the function φ(ς ) = 1
2 (1−

√
ς )2,

we get (37). �
Definition 7 (Triangular discrimination): Let X (y) and

Z (y) be two positive probability density functions defined on
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[a1, a2], then the Triangular discrimination is defined by [22]

D4(X ,Z ) =
∫ a2

a1

(X (y)− Z (y))2

X (y)+ Z (y)
dy.

Corollary 8: Let [ω1, ω2] ⊆ R+ and X : [a1, a2] →
[ω1, ω2], Z : [a1, a2] → (0,∞) be two positive probability
density functions such that X (y)

Z (y) ∈ [ω1, ω2], for all y ∈
[a1, a2], then

D4(X ,Z )

≤
4((ω1 + 1)3 − (ω2 + 1)3)

3(ω1 + 1)3(ω2 + 1)3(ω2 − ω1)

( ∫ a2

a1

X3(y)
Z2(y)

dy− 1
)

+
4(ω2(ω2 + 1)3 − ω1(ω1 + 1)3)
(ω1 + 1)3(ω2 + 1)3(ω2 − ω1)

( ∫ a2

a1

X2(y)
Z (y)

dy− 1
)
.

(38)
Proof: Using (32) for the function φ(ς ) = (ς−1)2

ς+1 , we
obtain (38). �
Remark 3: It is important to note that we can give the

discrete version of the results presented in this manuscript.

IV. CONCLUDING REMARKS
A growing interest in applying the notion of convexity to
various fields of science has been recorded, in the last few
decades. Convex functions have some rational properties
such as differentiability, monotonicity and continuity, which
help pretty good in their applications. The Jensen inequal-
ity has generalized the concept of classical convexity. This
inequality and the results around its gap, resolve some diffi-
culties in the modeling of some physical phenomena. Thus,
we have derived a new bound for the integral version of
the Jensen gap involving functions whose absolute value
of second derivative are convex. Based on this bound, we have
deduced converses of the Hölder inequality as well. Also,
a bound for the Hermite-Hadamard gap has been obtained.
Finally, we have demonstrated some bounds for Csiszár,
Jeffrey’s and Kullback-Leibler divergences etc in information
theory as applications of the main result. The numerical
experiments, which are demonstrated in Section II not only
confirm the sharpness of the Jensen inequality but also give
the surety of the tightness of the bound in (4) towards the
Jensen gap. An application of the main result for Shannon
entropy has also been discussed through a numerical exam-
ple, which verifies the bound of Shannon entropy. Also, it is
important to note that the bounds around various divergences
can be applied for signal processing, magnetic resonance
image analysis, pattern recognition and image segmentation
etc. The proposed idea may inculcate further research in the
area of mathematical inequalities.
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