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ABSTRACT An accurate and efficient measurement of pixel’s sharpness is a critical factor in most
multi-focus image fusion methods. In our practice, we found that the focused regions get more blurred than
the defocus regions when the multi-focus images are blurred digitally. Based on this observation, a novel
multi-focus image fusion method is presented in this paper. In the given fusion scheme, focused regions
detection is achieved by point detection filter and Gaussian filter, which has been certified more effective
than other frequently used image clarity measures. Moreover, unlike the other commonly used consistency
verification, we propose a superpixel-based consistency verification (SCV) method by integrating the image
superpixels to improve the fusion performance. Image superpixels can perceptually represent meaningful
image local features. Two datasets of multi-focus images are used to conduct experiments. Experimental
results demonstrate that the proposed method can be competitive with or even outperform the state-of-the-art
fusion methods in terms of both subjective visual perception and objective evaluation metrics.

INDEX TERMS Clarity measure, consistency verification, image superpixel, multi-focus image fusion,

point detection filter.

I. INTRODUCTION

With the development of electronics and computer technol-
ogy, multiple imaging sensors have been synergistically used
in various image processing systems. Although there are
many kinds of sensors, most optical cameras cannot capture
a single sharper image with all related objects in focus, due
to optical lens’ limitation of depth-of-focus [1]. Multi-focus
image fusion is an effective technology to solve this prob-
lem. In this technology, we firstly shoot multiple images
of the same scene with different focus settings. Then the
source images are merged to get a composite image in which
all objects in the scene are in focus. The composite image
also known as the fused image which is more suitable for
machine or human perception [2]. These years, multi-focus
image fusion technique has been successfully applied in many
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image processing fields such as digital imaging, microscopic
imaging, machine vision and so on [3]-[6].

During the past two decades, a great variety of multi-focus
image fusion algorithms have been proposed and these algo-
rithms can be roughly divided into two categories: transform
domain algorithms and spatial domain algorithms [7]. Trans-
form domain algorithms share a ‘decomposition-fusion-
reconstruction’ framework. It decomposes the input images
into their multi-scale domain firstly. Then the transformed
coefficients are fused by certain fusion rules. Finally,
the fused image is reconstructed from the integrated coef-
ficients. Pyramid transform [8], wavelet transform [9],
contourlet transform [10], curvelet transform [11], shearlet
transform [12] are commonly selected as the decomposition
method. Transform domain algorithms are usually treated as
general image fusion methods which can be used to achieve
large range of fusion tasks such as multi-focus, visual and
infrared image, remote sensing and so on. More recently,
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sparse representation (SR) also has recently attracted sig-
nificant attention in image fusion [13]-[15]. In these meth-
ods, the source image is represented with sparse coefficients
using an over-complete dictionary. Then, the coefficients are
combined with the fusion rules. Finally, the fused image is
reconstructed from the combined sparse coefficients and the
dictionary. Apart from the selection of transform methods,
the fusion rules designed for merging transformed coeffi-
cients in high- or low-frequency domain also play a critical
role in these methods, and many researches have also been
taken in this direction [16], [17].

Spatial domain-based fusion methods also attract numer-
ous researches since human eyes perceive images in spatial
domain. Averaging the pixel values of all source images
directly is the simplest algorithm in pixel-based image fusion
methods, but it leads to blurring effect, contrast reducing
and original image information loss. Aiming to make full
use of the spatial context information, Li et al. first divide
the source images into uniform blocks and maximize the
spatial frequency (SF) [18] in each block [19]. However,
the fusion result may produce undesirable block artifacts on
object boundaries. To mitigate these artifacts, many region
based image fusion methods have been presented. The region
based approaches first segment the source images into regions
rather than blocks by using image segmentation techniques
such as normalized cut [20], watershed transform [21], and
enhance linear spectral clustering [7]. Then the divided
regions with different source images are fused according
to their clarity, such as SF, energy of Laplacian of the
image (EOL) [22], sum-modified-Laplacian (SML) [23] and
FSWM [24]. Obviously, image segmentation techniques as
well as clarity measures have great influence on the fusion
results.

Recently, several state-of-the-art spatial domain fusion
methods have been proposed, including multi-scale weighted
gradient [25], guided filtering [26], dense SIFT [2]. The
Dense SIFT methods employed the local feature descriptors
dense SIFT as the activity level measurement and to match
the mis-registered pixels between multiple source images
to improve the fusion quality in object boundaries [2]. The
multi-scale weighted gradient-based image fusion method
reconstructed the fused image by making its gradient as
close as possible to the magnitude of the merged gradient
rather than employing a decision map [25]. Li et al. first
employed guided filter to optimize the weighted coefficients
of base layers and detail layers, and obtained satisfactory
fusion results [26]. The utilization of guided filter alleviates
the misalignment of decision map with object boundaries.
Similarly, Qiu et al. proposed a novel focus region detection
method based on guided filter and mean filter, guided filter
is not only used to solve the problem of initial decision
map misalignment with object boundaries, but also applied
to refine rough focus maps in focus region detection [27].
Although these newly presented algorithms could improve
the visual qualities of the fusion images, most of them involve
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relatively complex procedures and might produce artifacts
around the object boundaries due to the inaccurate fusion
decision maps. In addition, to overcome issues in handcraft
methods, recently CNN-based image fusion approaches have
been applied to image fusion [28], [29]. Liu et al. first
introduced CNN to fuse multi-focus image. They formulated
multi-focus image as a classification task and used their
model to classify image patches as focused or defocused
to obtain the focus map [28]. However, the use of empir-
ical risk minimization and max pooling limit their fusion
performance. Thus, Du et al. [29] presented a deep support
value convolutional neural network (DSVCNN) by replac-
ing the empirical risk minimization and max pooling layer
by structural risk minimization and standard convolutional
layers. Due to the strong capability in feature extraction
as well as in data representation, the CNN based methods
also achieve state-of-the-art performances. However, these
CNN-based methods are time-consuming and require a lot of
datasets.

In most multifocus image fusion methods, the consis-
tency verification is usually used as a post-processing tech-
nique to remove the misjudgment in the final fused results.
Majority filter is the earliest consistency verification based
on the idea that neighboring coefficients should maintain
a very consistent focus judgment [30]. For mathematical
morphology-based fusion methods, the focus misjudgment in
initial focus segmentation map is seen as noise or undesir-
able artifacts which can be easily removed by morphology
operators [31]. However, the nonlinear mathematical mor-
phology has the risk of removing the details in the fused
images if the morphology operator is designed irrationally.
In the guided filtering-based image fusion method [26],
although the simple Laplacian coefficients are used as
saliency measure, the quality of fused result has a great
improved due to the guided filtering-based consistency
verification. A reasonable consistency verification strategy
can evidently improve the performance of most fusion
scheme.

In this paper, a novel multi-focus image fusion method with
point detection filter-based focus measure and superpixel-
based consistency verification is proposed. In experimen-
tal practice, we find that if an image is digitally blurred
with a blur kernel, the local quality of the focus areas will
degrade more evidently than that of defocus areas. Based
on this observation, we can separate the focused areas of
different image by comparing their image quality degrada-
tion between the raw image and the corresponding blurred
image. We presented a new approach to evaluate the pixel’s
sharpness by convoluting the input image with a point detec-
tion filter. This approach is effective and easy to implement.
The performance evaluation of the proposed clarity mea-
sure is demonstrated in Section II-A. Comparing the quality
changes of the source images, the focused and defocused
areas are separated using the focus map which is further
optimized by SCV. Different from the region based image
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filtering

I, and [g: Input source images
GF: Guided filtering

SCV: Superpixel-based consistency verification

D: Final decision map

FIGURE 1. The schematic diagram of the proposed fusion algorithm.

fusion methods, the superpixel algorithm simple linear iter-
ative clustering (SLIC) [32] is used for consistency verifica-
tion. Finally, the fused image is constructed by integrating
the focus regions in each source image according to the
refined focus map. The effectiveness of our method is vali-
dated on two datasets under three objective quality metrics.
The results are compared with five state-of-the-art multi-
focus image fusion methods. Experimental results show that
the proposed algorithm is competitive with these methods,
in both terms of subjective visual perception and quantitative
evaluations.

To sum up, this paper has following contributions:

(1) This paper presents a novel measure on image pixel’s
sharpness. The strategy is inspired by the found that image
quality of focus areas is degraded significantly more than that
of blurred areas when an image is digitally blurred. Further-
more, the present sharpness evaluate strategy can be easily
implemented using Gaussian filtering and point detection
filter.

(2) Inspired by the success of consistency verification in
multi-focus image fusion, this paper proposed an extension
of guide filter based consistency verification to integrate the
image superpixels, which demonstrates better performance in
visual perception.

(3) To demonstrate the efficacy of fusion strategy and show
its superiority over other state-of-the-art alternatives, experi-
ments on two datasets of multi-focus images are conducted.
The results demonstrate the superiority of the proposed
method in both subjective visual perception and objective
evaluation metrics.
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PD: Point detection filtering

S: Initial focus segmentation map

Ip: Fused image

All frequently used symbols in this paper are listed
in Table 1.

TABLE 1. List of all frequently used symbols.

Symbol Definition

I,,1,  inputsourceimages

1, fused image

M, the Gaussian blurred image of /, and /,
T, activity level map of /, and /,

w the point detection filter

H the 5x5 Gaussian kernel

S initial segmentation map

D finial decision map

c the standard deviation in Gaussian kernel
r the block size in guided filtering

K the number of superpixels k in SLIC

Il. MULTI-FOCUS IMAGE FUSION FRAMEWORK

The schematic diagram of the proposed fusion algorithm is
illustrated in Fig. 1, in which we can see that there are three
main steps in the proposed fusion method. In the first step,
the pixel’s sharpness of the input images is calculated by the
proposed Gaussian filtering and point detection filter-based
clarity measures. In the second step, initial focus segmen-
tation map S is constructed by comparing the sharpness of
the input images. The SCV is used to refine the initial focus
segmentation map. Finally, the fused image IF is constructed
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by combining the source images I4 and Ip according to the
final decision map D.

A. THE CLARITY MEASUREMENT WITH POINT
DETECTION FILTER

In experimental practice, we found that if an image is digitally
blurred with a blur kernel, the local quality of the focused
areas will degrade more evidently than that of defocused
areas.

Focal plane Lens

FIGURE 2. Geometric optics model.

Fig. 2 illustrates optical lens imaging model. As shown
in Fig 2, when the distance between the object and the lens is
equal to the focal length d , all the rays from the point of the
object converge to a single sensor point and generate a sharp
image in the sensor area. Otherwise, when d # dy, these rays
will generate a blurred image in the image sensor.

The defocus image can be modeled as the convolution of
a sharp image with the point spread function (PSF) [33]. The
PSF can be approximated by a Gaussian function g (x,0) ,
where the standard deviation o = kc measures the defocus
blur amount, the smaller the standard deviation, the better
the image quality. As the amount of defocus blur is estimated
at edge locations, we model two blurred edge with Gaussian
function g (x, 01) and g (x, 02) as follows

fi(x) =5@)*gx,01) ey
f2(x) = 5(x)*g(x,02) @

where s (x) is the step function. Note that the edge is located
atx = 0. f1 (x) and f> (x) are focus and defocus edges since
o1 < 0. Fig 3 shows the overview of our blur estimation
method. f1 (x) and f> (x) are re-blurred using a Gaussian
function g (x, 03).

) =fi(x)*g(x,03) 3)
fa(x) =H () xg(x,03) “4)

It can be clearly noted that the differences between f] (x)
and f3 (x) are larger than that between f> (x) and f4 (x).

In order to verify the observation for 2D image, we selected
a focused region Fig. 4(b) and a defocused region Fig. 4(c)
from Fig. 4(a). Then both are blurred by Gaussian blur with
standard deviation set from 0.5 to 4. The SF is calculated from
each blurred result and illustrated in Fig. 5. The blue plot
shows the SF in defocused region while the red plot shows
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FIGURE 3. The overview of our blur estimation approach: here, is the
convolution operators. The black dash line denotes the edge location.

the SF in defocused region. It is evident that the SF in focused
region degrade more sharply than that in defocused region.
This situation is the same as the 1D edge model.

Inspired by this observation, we proposed a new method to
evaluate the sharpness of a pixel as following.

Step 1: Blurring the input source images by an average
filter. For both source images I4 and Ip, their blurred versions
M, are obtained by Gaussian kernel as (5).

M,=HxlI, q¢€f{A, B 5)

where I, denotes the source image and H denotes the 5 x 5
Gaussian kernel with standard deviation o.

Step 2: In multi-focus images, the texture of the focus
region is rich relative to the defocus region, which means to a
large extent that the difference between the pixels in the focus
area is larger than that in the defocus area. Point detection
filter can calculate the sum of the difference between the
center pixels and their surrounding pixel. Thus when we
convolute an image with a point detection filter, the larger
the result, the sharper the pixel. Absolute difference of the
original image and the blurred image yields the activity level
map as (6).

Ty = |Iq*W| - |Mq*W

, q€{A, B} (6)

where I and M are the original image and blurred image
respectively. W is a point detection filter defined as (7).

—0.0417 —0.0417 —0.0417 —0.0417 —0.041
—0.0417 —0.0417 —0.0417 —0.0417 —0.0417
W=1]-0.0417 —0.0417 1 —0.0417 —0.0417
—0.0417 —0.0417 —0.0417 —0.0417 —0.0417
—0.0417 —0.0417 —0.0417 —0.0417 —0.0417

)
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FIGURE 4. An outdoor image with partial defocus. (a) original image; (b) focused region; (c) defocused

region.
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FIGURE 5. Spatial frequency in the focused region and defocused region
different standard deviation.

The evaluate strategy is based on the idea that image quality
of focus areas is degraded significantly more than that of
blurred areas when an image is digitally blurred.

We used the strategy in [22] to evaluate the validity of the
novel sharpness measuring. Firstly, two multi-focus source
images are decomposed into small blocks with equal size.
Then, we use the proposed method as well as other widely
used focus measuring methods to calculate the sharpness of
each image block. Finally, the blocks with greater sharpness
measures from each block pair are chose to construct the
composite image. We use root mean square error (RMSE)
between the composite image and ground truth reference
image to evaluate the performance of the focus measures.
Note that no consistency verification was used in this process,
as it will disturb the results obtained by focus measures
directly.

RMSE is defined as

Yo S, (R (m, n) — F (m, n))?
M x N

RMSE =

®)

where R and F denote ground-truth reference image and the
composite image respectively. F' (m, n) is the pixel’s intensity
at position (m, n). M and N denote the rows and columns of
the image.

Fig. 6 shows two test images ‘clock’ and ‘disk’ with sizes
512 x 512 and 640 x480, respectively. In experiments,
the block size is set to be 32 x 32 pixels and the standard
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FIGURE 6. Two gray test images ‘clock’ and ‘disk’ The first column are
ground-truth reference images (focus everywhere); The second and third
columns are source images with focus on right and left respectively.

deviation of Gaussian filter in (1) is set to 2. The main image
clarity measures employed in spatial domain include SF,
EOL, SML, and FSWM. Since Huang et al in [22] has proven
that SML and EOL perform better than other three common
focus measures, we only compared with SML, EOL and
neighbor distance filter (ND) proposed in [34]. Fig. 7 shows
the selection maps and fused images obtained by ND, EOL,
SML, and our method, respectively. Apparently, the perfor-
mance of SML and our method in clarity measure are better
than those of ND and EOL. Fig. 8 shows the quantitative
comparisons of different focus measures in term of RMSE.
The proposed focus measure achieves the lowest RMSE,
which implies the composite image obtained by our method
is certainly closer to the reference image.

In this paper, we use the absolute value of sharpness mea-
sure in (6) to yield an initial focus segmentation map as.

S (m.n) = 1 |Ta (@, n)| > |Tg (m, n)| ©)
0 elsewise

where S (m,n) = 1 denotes that pixel in I4 is focused,
elsewise the pixel in Ip is focused.

Fig. 9(a) and (b) are two gray source images of the same
scene. Fig. 9(a) is focused on the statue while Fig. 9(b) is
focused on the background building. Fig. 9(c) and Fig. 9(d)
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FIGURE 7. The fused ‘clock’ and ‘disk’ images and selection maps. From left to right are experiment
results obtained by ND, EOL, SML and our method, respectively.

RMSE
RMSE

ND EOL SML  Ours ND EOL SML  Ours

FIGURE 8. Evaluation of different focus measure by RESM in ‘clock’ and
‘disk.

are their Gaussian filtered versions. Fig. 9(e)-(h) are the
processing results of Fig. 9(a)-(b) by point detection filter.
As shown in Fig. 9(e) and (g), we can see the back-
ground of the two images has changed little, but the fore-
ground has obvious changes. The same situation is illustrated
in Fig. 9(f) and (h). Based on this observation, an initial focus
segmentation map obtained by (9) illustrated in Fig 9(i),
where the focus area and the non-focus area are roughly
separated.

B. SUPERPIXEL BASED FUSION MAP

CONSISTENCY VERIFICATION

The initial focus map is always not a perfect segmentation as
shown in Fig. 9(i). The essential cause of situation is that the
focus segmentation is usually a high-level vision task based
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FIGURE 9. An example of focus region detection. (a) and (b) are
multi-focus images; (c) and (d) are Gaussian filtered images of two source
images; (e)-(h) obtained based on W convoluting with (a)-(d) respectively;
(i) initial focus segmentation map S; (j) the refined segmentation map
filtered by guided filtering; (k) final decision map obtained by superpixel
based consistency verification; (I) the final fused image.

on the understanding the scene globally. However, most focus
measures are based on local pixel values statistics features.
Therefore, the initial focus map is usually post-processed
with consistency verification to remove the misjudgment in
the final fused results.
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m.
(d) Corner

FIGURE 10. Multi-focus image pairs from Grayscale dataset.

In this paper, we comprehensively use superpixel, guided
filters, and morphology operators to realize the robust consis-
tency verification. More especially, the superpixel segmenta-
tion is used to cluster a set of image pixels that share similar
visual characteristics. The superpixels represent perceptually
meaningful image local features. The processing flow of
our consistency verification scheme can be seen in Fig. 1.
Firstly, initial focus segmentation map S is preprocessed with
a guided image filtering and the source image is performed as
guided images. This operation makes the focus map consis-
tent with the source images content. Then, the filtered map is
further segmented into small visual regions using SLIC which
is an adaptation of k-means for superpixel generation. It oper-
ates faster and more memory efficient than existing methods.
The parameter k adjusts desired number of approximately
equally sized superpixels. The statistics number of ‘0’ and ‘1’
in ith superpixel region is denoted by NR;. Finally, the final
decision map D is constructed as

1 NR! > NR!

10
0 elsewise (10)

JER: =
where R; denotes the ith superpixel region. NRl-1 and NR? is
the number of 1 and of 0 in R; of the initial focus segmentation
map S, respectively.

Furthermore, we use morphological operators to refine the
decision map D. An example of decision map acquisition is
demonstrated in Fig. 9. The initial focus segmentation map
S is shown in Fig. 9(i) in which the misjudgments illustrated
as noisy or cracks. Fig. 9(j) is the focus map processed by
guided filtering. Fig. 9(k) is the final decision map obtained
by superpixel-based consistency verification which yields a
smooth and edge-aligned labeling.

C. FUSED RESULT

With the final decision map D, the fused image is obtained
by (11)

Ir = IxxD+ Igx (1 — D) (11)

where x denotes the point multiple operator.
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Noticed that the proposed method can easily extend to
achiever color image fusion. The input color images are trans-
lated into YUV color space. The intensity component Y is
used as input gray images to get the clarity segmentation map.
Then, we adopt the intuitive scheme that fuses three original
RGB color channels separately.

Ill. EXPRIMENTS

In this section, we conduct numerical experiments to verify
our main results. We first introduce the datasets used to
test the performance evaluation of different methods. Then
the influences of three free parameters on fusion perfor-
mance are analyzed. Finally, the performance of the proposed
fusion method is compared with other state-of-the-art alter-
natives. We also provide the experimental results discussion
in details. The experiments are performed on an Intel(R)
Core™5-8250U @1.60GHz PC with the MATLAB R2016a
simulation software.

A. IMAGE DATASETS

In experiments, we evaluate the proposed fusion algorithm on
two image datasets. The first one is the grayscale multi- focus
dataset which contains 6 pairs of commonly used grayscale
images in many related papers. The second one is color image
dataset composed of 6 pairs of color multi-focus images
of size 520 x 520 which are selected from a multi-focus
image dataset “Lytro” and is publicly available online [35].
Fig. 10 shows the grayscale multi-focus image dataset and
Fig. 11 shows the color multi-focus image dataset.

B. OBJECTIVE EVALUATION METRICS

In our experiments, we exploit seven evaluation metrics
to objectively evaluate the performance of fused images
obtained by different algorithms, which are information the-
ory based metric Qpy [36], Oryr [37], image feature based
metric QB/F[38], Or[39], structural similarity based met-
ric Qy [40], Ow[39], and human perception based metric
Qcpl41]. For all the seven evaluation metrics, a larger value
indicates a better fused result.
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FIGURE 11. Multi-focus image pairs from Lytro dataset.
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FIGURE 12. Performance of the proposed method with different free parameters setting. (a) standard deviation §; (b) block size r in guided

filtering; (c) the number of superpixels k in SLIC.

C. ANALYSIS OF THE FREE PARAMETERS

In this subsection, the influences of different parameters to
objective fusion performance are analyzed with an image
dataset shown in Fig. 8 and Fig. 9. The fusion performances
are evaluated by the average values of Quy, Qpay, QAB/F,
Or, Oy, Ow, Ocs, and Qcp. Obviously, the standard devi-
ation ¢ in (1), the block size r in guided filtering and the
number of superpixels k in SLIC are three free parameters
in the proposed method. When analyzing the influence of o,
block size r is preset as 10 and the number of superpixels
k is set as 100. In like manner, when we analyze the influ-
ence of block size r in guided filtering, we set the standard
deviation o to 2 and set the number of superpixels k to 100.
Similarly, when analyzing the influence of the parameter k in
SLIC, standard deviation o is set to 2 and block size r is
set t0o10. As shown in Fig. 12, the fusion performance show
sign of levelling off with large rang. The evaluation met-
rics in Fig. 12(a)-(c) illustrated that our method does not
rely heavily on the exact parameter choice. In this paper,
the default parameters are setas o =2, r = 10, and k = 100.

D. EXPRIMENTAL RESULTS AND DISCUSSION

To confirm the effectiveness of the proposed method,
we compare our algorithm with five state-of-the-art multi-
focus image fusion approaches, including convolutional
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neural network based image fusion algorithm [28], multi-
scale focus measures and generalized random walk based
image fusion algorithm [41], guided filter and mean fil-
ter based image fusion algorithm [27], guided filtering
based image fusion algorithm [26], image matting based
image fusion algorithm [43], and boundary finding based
algorithm [44]. For convenience, convolutional neural net-
work based image fusion algorithm is abbreviated as CNN;
multi-scale focus measures and generalized random walk
based image fusion algorithm is abbreviated as MFGR;
guided filter and mean filter based image fusion algorithm
is abbreviated as GFMF; guided filtering based image fusion
algorithm is abbreviated as GF; image matting based image
fusion algorithm is abbreviated as IM; boundary finding
based algorithm abbreviated as BE. The source codes of CNN
can be downloaded from website [45]. The source codes of
MEFGR can be downloaded from website [46]. The source
code of GFMF can be downloaded from website [47]. The
source codes of BF can be downloaded from website [48],
and the source codes of IM and GF can be downloaded from
website [49]. The optimal parameters reported in the related
publications are used in our experiments.

The qualitative evaluation of multi-focus image fusion
algorithm is completed by comparing the visual quality of
fusion image. For Grayscale datasets, Flower and Temple
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() MFGR

b ours

FIGURE 13. The Flower source image pair and their fused image obtained with different fusion methods.

(a) BF (b) CNN

(e) IM

(f) MEGR

(c) GF

(g) Ours

FIGURE 14. The normalized difference image between each fused image in Fig. 13 and the source image in Fig.13 (b).

source images in top row of Fig. 10 are chosen for visual
comparison. For both ‘flower’ and ‘temple’ images, the left
images are near focused, where the flower and the stone lion
are in focus and clear in vision, whereas the wall and back-
ground temple are out of focus and blurred. The right images
are far focused, and the situations for the flower and the back-
ground temple are contrary. The fusion results of Flower and
Temple source images by different fusion methods are shown

99964

in Fig. 13 and Fig.15, respectively. The fusion results in both
Fig. 13 and Fig.15 show that all the algorithms could achieve
the purpose of multi-focus image fusion. In order to show
the fusion results more clearly, Fig. 14 and Fig. 16 show the
difference image obtained by subtracting the second source
image shown in Fig. 13(b) and Fig.15(b) from each fused
image, and the values of each difference image is normalized
to the range of 0 to 1. From Fig. 14(a)-(f), we can observe that
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(1) Ours

() MFGR

FIGURE 15. The Temple source image pair and their fused image obtained with different fusion methods.

the fused images of these compared methods produce signif-
icant undesirable block artifacts on the boundary between the
flower and the background wall, and the fused image of BF
loses some original image information in the lower part of
the flower. As shown in Fig. 14(g), our method owns highest
visual quality among other six methods. From Fig 16(a)-(g),
it also can be seen that compared to other approaches, our
algorithm can locate the boundary between the stone lion and
the temple more accurate. Because of the lack of space, only
the fused results of other gray images by our proposed method
are presented in Fig. 17, which also provides high quality
visual results. The object features from both source images
are preserved clearly in the fused image and no reconstruction
artifacts are produced.

We also conduct the proposed method on color image
datasets shown in Fig. 11. For each pair images in Fig. 11,
the left image near focused while the right image is far
focus. Taking Fig. 11(a) as an example, the left image is
near focused, where the statue is in focus and clear in vision,
whereas the background wall is out of focus and blurred. The
right image is far focused, and the situations for the statue and
the background wall are contrary. Fig. 11(a) and Fig. 11(b)
are also selected for visual comparison in detail. Fig. 18 and
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Fig. 20 show the corresponding fusion results of proposed
algorithm and other state-of-the-art approaches. As shown
in Fig. 18 and Fig. 20, all fusion results of our method
and other state-of-the-art approaches demonstrate high visual
quality. To make better comparison, the normalized differ-
ence images obtained by subtracting the second source image
shown in Fig. 18 (b) from each fused image is provided
in Fig. 19. From Fig. 19(a)-(f), we can observe that the fused
image of CNN, MFGR, GFMF, GF, and BF are overall high
quality except that the regions around the statue are slightly
blurred, but the fusion result of IM produce undesirable
artifacts around the statue. The normalized difference image
shown in Fig. 19(g) shows that our method owns highest
visual quality in the boundary regions between the statue
and the background wall among other six compared methods.
Fig. 21 shows the normalized difference images obtained
by subtracting the first source image shown in Fig. 20(a)
from each fused image. From the area enclosed by a green
rectangle in Fig. 21, we can note that a small focused region
in Fig. 20(a) preserved by GF, IM, and MFGR, but their
fusion quality around the boundary regions labeled by blue
rectangle is poor, especially for IM. As shown in Fig. 21(a),
the fusion results of BF misclassified on Koala, the CNN
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() MFGR.

") GEME

78

i

g) Ours -

FIGURE 16. The normalized difference image between each fused image in Fig. 15 and the source image in Fig.15 (b).

(a) BF )

(b) CNN (c) GF

(d) GEMF

(e) IM (f) MFGR

FIGURE 17. The fusion results of gray images from Grayscale dataset obtained with different fusion methods.

method also suffer from some artifacts in the blue region.
The normalized difference image shown in Fig. 21(g) demon-
strates that the fused image of our method owns highest visual
quality among all these six methods. The fusion results of
other test color images in Fig. 11 are shown in Fig. 22.
All objects in scene are reserved clearly in the fused images.
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In addition to the visual comparison, seven evaluation

metrics, Qmr, Qrmr, Q*P'F, O, Qv, Ow, and Qcp are used
to evaluate the fusion performance objectively. TABLE 2-8

show the Oz, Qrmi. Q*®/F, Qp. Qv. Qw. and Qcp of
the fused image obtained by different fusion algorithms on
Gray dataset and Lyrto dataset, separately. The bold values in
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(1) Ours

FIGURE 18. The statue source image pair and their fused image obtained with different fusion methods.

(a) BF (b) CNN (c) GF (d) GFMF

(e) IM (f) MFGR (g) Ours

FIGURE 19. The normalized difference image between each fused image in Fig. 18 and the source image in Fig.18 (b).

these table indicate the maximum values in the corresponding it can been seen that only the values of BF are better than
rows, the underlined values in these table indicate the second our method in Girl, Flower, and Women. This means that
largest values in the corresponding rows, and the greater our method can well preserve the original information of
value means the better performance of the corresponding different sources image in most cases. In terms of the image
algorithm. For the information based metrics Qp; and Qppyy, feature-based metrics QAB/ F and OE, the proposed method
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(i) Ours

FIGURE 20. The Sydney source image pair and their fused image obtained with different fusion methods.

(&) IM (f) MEGR (2) Ours

FIGURE 21. The normalized difference image between each fused image in Fig. 20 and the source image in Fig.20 (a).

also gives a largest value in most of the examples. It should be filtering based methods call inherit global salient edges effec-
noticed that the proposed method, GFMF, and GF give a sta- tively. As shown in TABLE 6 and TABLE 7, the proposed
ble and better performance of Qg, this is because the guided method outperform BF, CNN, IM and MFGR obviously,
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(a) BF (b) CNN " (c) GF

(d) GEMF

() ™ . (f) MPR (g Our

FIGURE 22. The fusion results of color images from Lytro dataset obtained with different fusion methods.

TABLE 2. Quantitative assessments (Qp) of different multi-focus image fusion methods on different source images.

Source Methods

Images BF CNN GF GFMF ™M MFGR Ours
Flower 0.8863 0.8415 0.7337 0.8525 0.8499 0.8502 0.8750
Temple 0.5847 0.5269 0.3355 0.5508 0.5527 0.5416 0.5970
Calendar 1.3091 1.2596 1.2371 1.2826 1.3006 1.2782 1.3164
Corner 1.1436 1.1390 1.0838 1.1391 1.1179 1.1318 1.1493
Girll 0.8200 0.7915 0.6517 0.8046 0.7899 0.7860 0.8146
Newspaper 0.8301 0.7637 0.5694 0.7724 0.7640 0.7585 0.8310
Statue 0.8379 0.7955 0.7445 0.8159 0.7736 0.8124 0.8497
Sydney 0.8397 0.7991 0.7077 0.8234 0.7936 0.8110 0.8598
Woman 0.8172 0.7827 0.6982 0.7990 0.7589 0.7889 0.8150
Wine 0.7539 0.7301 0.6510 0.7432 0.7331 0.7385 0.7564
Zoo 0.5911 0.5513 0.4553 0.5660 0.5599 0.5598 0.5947
Horse 1.1035 1.0883 1.0822 1.0975 1.0670 1.0989 1.1170
Average 0.8764 0.8391 0.7458 0.8539 0.8384 0.8463 0.8813

and competitive with the GF and GFMF of the structural
similarity based metrics Qy and Qw, which means the fused
image of our method, GF and GFMF can well preserve
the complementary information of different source images.
As shown in TABLE 8, our method also gives a stable
and higher values for human perception-based metrics Qcp
in most cases, which indicates that the fused images of
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proposed method have better effects in visual perception
without introducing distortions. Although the proposed algo-
rithm is not the most efficient multi-focus image fusion
approach, the experiment results show that our method also
is competitive with the state-of-the-art algorithms in terms
of both subjective visual perception and objective evaluation
metrics.
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TABLE 3. Quantitative assessments (Qfy,) of different multi-focus image fusion methods on different source images.

Source Methods
Images BF CNN GF GFMF ™M MFGR Ours
Flower 0.6141 0.6135 0.6089 0.6147 0.6112 0.6147 0.6170
Temple 0.5754 0.5752 0.5675 0.5765 0.5742 0.5759 0.5789
Calendar 0.6221 0.6199 0.6058 0.6219 0.6222 0.6208 0.6254
Corner 0.6092 0.5959 0.5873 0.6060 0.5791 0.6035 0.6100
Girll 0.6054 0.6053 0.5974 0.6057 0.6006 0.6036 0.6059
Newspaper 0.5823 0.5775 0.5704 0.5791 0.5744 0.5772 0.5852
Statue 0.6821 0.6803 0.6753 0.6818 0.6674 0.6810 0.6835
Sydney 0.5806 0.5797 0.5662 0.5814 0.5682 0.5790 0.5849
Woman 0.6106 0.6068 0.5795 0.6091 0.5839 0.6024 0.6098
Wine 0.5893 0.5879 0.5811 0.5886 0.5856 0.5885 0.5897
Zoo 0.5921 0.5909 0.5832 0.5918 0.5869 0.5901 0.5924
Horse 0.6655 0.6639 0.6598 0.6649 0.6529 0.6628 0.6661
Average 0.6107 0.6081 0.5985 0.6101 0.6006 0.6083 0.6124
TABLE 4. Quantitative assessments (QAB/F) of different multi-focus image fusion methods on different source images.
Source Methods
Images BF CNN GF GFMF M MFGR Ours
Flower 0.6834 0.6880 0.6867 0.6883 0.6863 0.6886 0.6889
Temple 0.7179 0.7168 0.7144 0.7185 0.7193 0.7192 0.7217
Calendar 0.6879 0.6835 0.6769 0.6849 0.6882 0.6848 0.6886
Corner 0.6567 0.6461 0.6464 0.6546 0.6420 0.6544 0.6551
Girll 0.6860 0.6864 0.6830 0.6868 0.6829 0.6865 0.6865
Newspaper 0.6464 0.6434 0.6408 0.6471 0.6425 0.6439 0.6537
Statue 0.7485 0.7568 0.7551 0.7567 0.7459 0.7573 0.7570
Sydney 0.7382 0.7397 0.7364 0.7415 0.7317 0.7423 0.7456
Woman 0.6816 0.6845 0.6740 0.6853 0.6686 0.6834 0.6884
Wine 0.7636 0.9642 0.9655 0.9656 0.9606 0.9651 0.9657
Zoo 0.7765 0.7754 0.7742 0.7760 0.7754 0.7770 0.7779
Horse 0.7534 0.7530 0.7536 0.7537 0.7446 0.7544 0.7553
Average 0.7117 0.7282 0.7256 0.7299 0.7240 0.7297 0.7320
TABLE 5. Quantitative assessments (Q) of different multi-focus image fusion methods on different source images.
Source Methods
Images BF CNN GF GFMF M MFGR Ours
Flower 0.7515 0.7647 0.7676 0.7673 0.7574 0.7666 0.7661
Temple 0.8784 0.8861 0.8909 0.8967 0.8727 0.8916 0.8990
Calendar 0.8437 0.8404 0.8459 0.8475 0.8452 0.8480 0.8489
Corner 0.8260 0.8265 0.8266 0.8265 0.8129 0.8265 0.8263
Girll 0.7557 0.7566 0.7617 0.7599 0.7413 0.7613 0.7594
Newspaper 0.6134 0.6147 0.6172 0.6210 0.6164 0.6170 0.6191
Statue 0.7906 0.8276 0.8279 0.8288 0.8057 0.8275 0.8261
Sydney 0.9009 0.9179 0.9263 0.9268 0.9155 0.9241 0.9298
Woman 0.8360 0.8432 0.8460 0.8474 0.8356 0.8461 0.8470
Wine 0.9440 0.9466 0.9493 0.9495 0.9385 0.9485 0.9499
Zoo 0.9403 0.9382 0.9433 0.9427 0.9386 0.9422 0.9424
Horse 0.9084 0.9107 0.9119 0.9092 0.8970 09114 0.9087
Average 0.8324 0.8394 0.8429 0.8436 0.8314 0.8426 0.8436

To evaluate the computational efficiency, the running time
for processing 12 sources image sets by each algorithm
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is counted and listed in TABLE 9. In terms of the aver-
age time, it can be noticed that the CNN method suffered
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TABLE 6. Quantitative assessments (Qy) of different multi-focus image fusion methods on different source images.

Source Methods

Images BF CNN GF GFMF M MFGR Ours
Flower 0.9786 0.9802 0.9798 0.9807 0.9784 0.9808 0.9811
Temple 0.9926 0.9928 0.9883 0.9944 0.9923 0.9943 0.9956
Calendar 0.9900 0.9888 0.9830 0.9900 0.9908 0.9896 0.9913
Corner 0.9779 0.9728 0.9722 0.9795 0.9625 0.9787 0.9760
Girll 0.9921 0.9922 0.9885 0.9926 0.9876 0.9919 0.9920
Newspaper 0.9881 0.9866 0.9824 0.9880 0.9834 0.9863 0.9917
Statue 0.9767 0.9780 0.9777 0.9780 0.9728 0.9782 0.9781
Sydney 0.9891 0.9896 0.9865 0.9914 0.9793 0.9910 0.9936
Woman 0.9868 0.9858 0.9730 0.9870 0.9693 0.9842 0.9867
Wine 0.9652 0.9642 0.9655 0.9656 0.9606 0.9651 0.9657
Zoo 0.9961 0.9953 0.9933 0.9959 0.9942 0.9955 0.9960
Horse 0.9834 0.9830 0.9814 0.9832 0.9724 0.9826 0.9836
Average 0.9872 0.9841 0.9810 0.9855 0.9786 0.9849 0.9860

TABLE 7. Quantitative assessments (Q,y) of different multi-focus image fusion methods on different source images.

Source Methods

Images BF CNN GF GFMF M MFGR Ours
Flower 0.8484 0.8559 0.8575 0.8570 0.8519 0.8567 0.8564
Temple 0.9304 0.9340 0.9366 0.9389 0.9281 0.9371 0.9397
Calendar 0.9109 0.9097 0.9121 0.9128 0.9126 0.9131 0.9131
Corner 0.8916 0.8913 0.8914 0.8913 0.8886 0.8914 0.8912
Girll 0.8619 0.8622 0.8651 0.8640 0.8520 0.8650 0.8641
Newspaper 0.8419 0.8431 0.8444 0.8447 0.8433 0.8440 0.8431
Statue 0.8867 0.9077 0.9078 0.9080 0.8963 0.9077 0.9064
Sydney 0.9401 0.9484 0.9523 0.9522 0.9470 0.9517 0.9541
Woman 0.8944 0.8985 0.8996 0.8999 0.8938 0.8993 0.8992
Wine 0.9633 0.9642 0.9655 0.9656 0.9606 0.9651 0.9657
Zoo 0.9633 0.9616 0.9641 0.9636 0.9619 0.9637 0.9644
Horse 0.9509 0.9518 0.9524 0.9512 0.9458 0.9522 0.9508
Average 0.9070 0.9107 0.9124 0.9124 0.9068 0.9123 0.9124

TABLE 8. Quantitative assessments (Qcp) of different multi-focus image fusion methods on different source images.

Source Methods
Images BF CNN GF GFMF M MFGR Ours
Flower 0.8345 0.8363 0.8314 0.8367 0.8319 0.8366 0.8359
Temple 0.8173 0.8159 0.7997 0.8188 0.8137 0.8177 0.8200
Calendar 0.8061 0.8057 0.7974 0.8081 0.8056 0.8065 0.8092
Corner 0.8024 0.7891 0.7853 0.8029 0.7794 0.8020 0.7942
Girll 0.7957 0.7952 0.7891 0.7959 0.7898 0.7951 0.7962
Newspaper 0.7475 0.7422 0.7331 0.7445 0.7418 0.7412 0.7446
Statue 0.8603 0.8627 0.8565 0.8637 0.8442 0.8627 0.8634
Sydney 0.7853 0.7887 0.7745 0.7926 0.7756 0.7900 0.7935
Woman 0.8138 0.8147 0.7961 0.8174 0.7976 0.8129 0.8117
Wine 0.8536 0.8541 0.8478 0.8558 0.8504 0.8548 0.8563
Zoo 0.8654 0.8635 0.8561 0.8654 0.8628 0.8648 0.8660
Horse 0.7853 0.7887 0.7745 0.7926 0.7756 0.7900 0.7935
Average 0.8196 0.8184 0.8097 0.8212 0.8105 0.8197 0.8203
from the highest computation cost with 183.50 seconds. The with 0.40 seconds. The average time of our method is
GF method provides higher efficient than other methods 3.02 seconds, it is also acceptable.
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TABLE 9. Comparison of the computational costs (second).

Source Methods
Images BF CNN GF GFMF M MFGR Ours
Flower 1.79 171.10 0.30 3.71 2.26 2.34 3.01
Temple 1.83 203.58 0.37 4.08 4.82 2.86 2.69
Calendar 1.18 57.57 0.10 3.84 1.94 1.06 2.61
Corner 1.19 83.74 0.07 1.75 1.14 1.38 2.41
Girll 2.31 263.37 0.44 3.05 4.47 3.32 2.79
Newspaper 1.35 82.82 0.13 2.66 0.91 1.30 2.49
Statue 2.03 190.95 0.44 291 4.69 2.94 3.38
Sydney 1.97 24421 0.65 2.94 5.93 3.01 344
Woman 2.16 233.98 0.92 4.11 6.10 3.07 3.32
Wine 1.90 229.78 0.46 344 5.64 3.03 3.34
Zoo 2.04 24433 0.44 2.64 4.90 3.07 3.31
Horse 1.96 197.01 0.45 2.84 5.88 2.98 3.50
Average 1.81 183.50 0.40 3.16 4.06 2.53 3.02

IV. CONCLUSION

This paper proposes a new multi-focus image fusion method
to detect the focus regions in multiple source images using
point filter and Gaussian filter, and presents a superpixel-
based consistency by introducing the SLIC algorithm into
consistency verification to improve the fusion performance.
Compared with several traditional multi-focus fusion meth-
ods, this proposed method achieves good results both subjec-
tively and objectively.
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