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ABSTRACT Online frequent episode mining is more complicated than the traditional static frequent
episode mining due to the continuous, unbounded and time-varying data stream. Especially in the multiple
data streams, online frequent episode mining is more difficult than the single-source stream, due to the
concurrency, global clock loss, and uncertainty of delay caused by the distributed environment. To cope with
these problems, we propose a new algorithm. Firstly, the data stream with ‘‘happen-before’’ relationship
among multiple sources is combined on the global data lattice. Next, the traversal on global data lattice
generates effective parallel and serial candidate data streams, which guarantee the accuracy of subsequent
mining and reduce the number of global sequences during searching process. Then, we use the frequent
episode tree to detect the expanding online serial episodes and parallel episodes. Finally, we verify the
effectiveness and efficiency of the proposed methods through extensive experiments.

INDEX TERMS Episode, global data lattice, multi-source data stream.

I. INTRODUCTION
Data stream frequent episode mining techniques are broadly
used in network security monitoring analyzing [1], financial
securities management [2], mobile communication services
[3], and sensor data processing [4]. When there are multiple
data sources in a system, data streams from different sources
may often affect others [5]. In the distributed system, it is
necessary to combine the data of each source to preserve the
integrated environment information among the data streams.
More importantly, the data sources may not have the global
clock [6]–[8]. The heterogeneity and constrained resources of
data sources may lead to diverse and unpredictable computa-
tion delay [9], [10]. Implementing a multi-source data stream
can overcome the limitations of the single-source data stream,
and combine to filter out interference information to form
a comprehensive decision on the results, which can produce
more accurate, reliable, and effective data compared with the
single-source data.

Another application is thewireless sensor network scenario
[11], [12]. The sensor nodes deployed in the monitoring area
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cooperate to perceive, collect and process the information
of the perceived objects in the network coverage area and
send them to the observer. By combining the data collected
by each sensor node [13], we can realize the perception of
the object and obtain the complete information. For example,
the data streams, {ABADCCA. . .} and {HFFEGHH. . .} are
based on the data of two nodes in the wireless sensor network
system, where B occurs before E, G occurs before D, and
the observer captures the data stream in one given order
[14], {HFFABEGADCCAHH. . .}. Based on this scenario,
we study the features that consider the order in which data
items occur. The order feature is derived from the ‘‘happen-
before’’ relation on the data streams. Therefore, we pro-
pose an online frequent episode mining algorithm for the
multi-source data stream based on order features. In fact,
to our knowledge, there is no published work defining order
features in data mining.

However, for fast-growing sequence data, old episodes
may become obsolete while new useful episodes keep emerg-
ing. The data stream contains an implicit data feature, the
concept drift. The concept is the target concept hidden in the
data stream. The phenomenon that the concept fundamentally
changes with the flow of the data stream is called concept
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drift. Additionally, a solution is needed to discover the latest
frequent episodes from a growing data stream. We create the
frequent episode tree by using a variable sliding window to
adapt the concept drift, then we propose a streaming frequent
episode mining solution to adapt dynamic changes in the data
stream.

Faced with the significantly increasing number of data
sources, we gradually tend to integrate the computing power
of distributed data sources to maximize the use of existing
resources. The combinations of the multi-source data streams
filter out interference information to form a comprehensive
decision on the result, which in turn can produce more
accurate, reliable, and effective information that cannot be
obtained from a single data source.

FIGURE 1. Multi-source Data Stream Online Frequent Episode.

In this paper, we jointly consider data combinations and
frequent episodes mining that adjusts to the multi-source
data stream [15], [16], as shown in Fig. 1. First, to save
the data information among multiple sources, we present a
systemmodel and order features. Then, we propose combined
data streams based on order features. Moreover, an online
algorithm is designed to deal with the episode mining in
a dynamic manner. Finally, the frequent episode mining is
mainly divided into serial episodes and parallel episodes, then
the mixed episodes merge of the existing serial and parallel
frequent episodes.

To our best knowledge, it is the first time that the research
of multi-source data stream online frequent episode mining
is proposed. The main contributions of the paper can be
summarized as follows:

1. The model of the multi-source data stream with
‘‘happen-before’’ relation is built, and the global data lattice
of data streams is presented to maintain the global data infor-
mation.

2. Taking into account the data lattice with order features,
the concept of multi-sequential data lattice is proposed to
reduce the space overhead.

3. Merge serial frequent episodes and parallel frequent
episodes, we get the complete and effective frequent episodes.

The rest of the paper is organized as follows. In Section II,
we review recent related work. Section III presents a sys-
tem model. Section IV proposes order features, which
describe data lattices contain single-sequential data lattice
and multi-sequential data lattice in detail. Section V proposes
a mining framework for the data stream frequent episode

mining, Section VI describes the MDSOFE algorithm and
analyzes the complexity. Then, the experiment results are
discussed in Section VII. Finally, Section VIII concludes this
paper and points out the application areas.

II. RELATED WORK
We study the problem of multi-source data stream online
frequent episode mining, However, there are several kinds
of research related to this work, including multi-source data
stream combination and online frequent episode mining.

For multi-source data stream inputs, however, it is very
difficult to construct a model to record the information from
these sources. Typical data stream technology is related to
the single-source data stream. Unfortunately, most existing
works focus on data stream frequent episodemining, ignoring
that the data sources are multi-level, multi-angle and multi-
faceted, and the traditional single-source data stream mining
[17], [18] cannot adapt with social progress. A new sampling
system based on binary Bernoulli sampling to support a
multi-source data stream environment was made by Won-
hyeong Cho et al. [15]. The approach assumed each input site
receives and transmits candidate data independently, but they
did not consider the relation among distinct sources. In our
work, we impose a multi-source data stream combination
with order features.

Online frequent episode mining of data stream has been
widely researched [19], [20], most stream processing model
can be divided into the following three types: landmark win-
dow model [21], sliding window model [22], damped win-
dow model [23]. Leung proposed two sliding window-based
algorithms, UF-streaming and SUF-Growth [23], of which
each sliding window contains a fixed number of data when a
window is full, it will first remove old data from the window,
and then add the new data to the window. Manku [24] and
RajeevMotwani proposed the Sticky Sampling algorithm and
the Lossy Counting algorithm to mine frequent episodes in
the data stream and extend the Lossy Counting [25] algorithm
to mine frequent episode sets in the data stream. Graham
Cormode and S.Muthukrishnan considered the Count-Min
SKETCH data structure [26], which allowed for quick query-
ing. However, these researches can be only applied to mine
frequent episodes with a single-source data stream, which
makes it limited in practical use.

The problem for multi-source data stream online frequent
episode mining has high complexity and constraints. To find
the useful and accurate frequent episodes, the algorithm
should consider all possible multi-source data stream com-
bination as well as the fast-growing data streams. Especially
in applications with distributed requirements, it is not accept-
able to solve this problem by using the existing methods.

III. SYSTEM MODEL
In this section, we first describe the data generated by
the multi-source data stream with ‘‘happen-before’’ relation,
then we discuss the global lattice of data streams. Finally,
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TABLE 1. Notations used in the data.

FIGURE 2. Data streams with interactions.

we introduce the 3-dimensional sliding window over data
streams. Notations used in this section are listed in Table 1.

A. DATA WITH ‘‘HAPPEN-BEFORE’’ RELATION
When monitoring a distributed system, we are faced with
multiple distributed data sources, which generate data
streams at runtime. The data sources do not necessarily
have the global clock [27], [28]. They are modeled as n
sources with message passing among each other, e.g., W(1),
W(2), . . . ,W(n). Each data source W(n) produces the data
stream d(k)1 , d(k)2 , d(k)3 , . . . , d(k)n , as shown in Fig. 2. The
arrival of data means the growth of data stream, and we
cannot ignore that the communication via sending/receiving
messages among data streams. For example, in an intelligent
transportation system, a car goes many road sections to its
destination, according to the information of its passed road
collected by traffic sensors on different vehicles, we can find
the road sections that multiple vehicles may pass and regard
them as the data episodes which occur frequently in the data
streams. Sensors collect interactive information to facilitate
further data causality reasoning.

We are now ready to give a precise definition of the
‘‘happen-before’’ relation [9] (denoted by ‘→’) resulting
from data causality.
Definition 1 (‘‘Happen-Before’’ Relation): Given two data

d(k1)i and d(k2)j , we have d(k1)i →d(k2)j [29] if and only if one
of the following three conditions is satisfied:

1. d(k1)i and d(k2)j are on the same process (k1 = k2) and

d(k1)i is generated before d(k2)j , or 2. d(k1)i and d(k2)j are on

the different process (k16=k2), meanwhile, d(k1)i and d(k2)j are
the corresponding sending and receiving of the data message,
or 3. there exists d(k3)r , d(k1)i →d(k3)r , d(k3)r →d(k2)j such that

d(k1)i →d(k3)r →d(k2)j .
Note that this definition has d → d for any data, that

is, the ‘‘happen-before’’ relation satisfies reflexivity, anti-
symmetry and transitivity. In Fig. 2, data streams extra have
the relations, d(1)1 →d(2)4 , d(1)2 →d(2)2 , d(2)2 →d(1)4 , d(2)4 →d(1)6 ,

d(1)6 →d(2)6 , which can represent interactions of the different
data sources.

In this paper, the relation in the order features contains
the order of the events in time and the causal relationship
of events in logical. There are uncertainties in the ‘‘happen-
before’’ relation of the concurrent data due to themulti-source
data stream. Therefore, when the multi-source data streams
are synthesized, there aremany possible scenarios for the data
status of the entire data stream, which are observed in the
traditional model, that is, there are multiple global sequences.
Global sequences will be described below in more detail.

B. GLOBAL DATA LATTICE OF DATA STREAMS
The construction of a lattice [30] is implemented by
multi-source data stream sources. For a system of data
streams, we are thus concerned with global data points of
the system. A global data point may be either non-happen-
before or happen-before. The notion of the non-happen-
before data point is crucial for data stream processing.
Intuitively, a global data point with two data d(k1)i and d(k2)j

is non-happen-before, if d(k1)i and d(k2)j do not have a strict
‘‘happen-before’’ relation with each other, for example, data
d(1)0 and d(2)0 from two sources form a non-happen-before
data point means that sequence {d(1)0 d(2)0 } and {d(2)0 d(1)0 } both
could occur in the global sequence. In the Global Data
Lattice (GDL), black dots ’·’ denote the non-happen-before
data points but the edges between them depict the ‘‘happen-
before’’ relation (denoted by ’→’), the crosses ’×’ denote
the happen-before data points. The lattice structure serves as
a key notion for the detection of global predicates over data
streams. The generation of the sequence has the following
three steps:
Step 1: Build a Single Data Status Table:
We use the following principles to build a single data

status table:
1. Initially set all the local data status in the process to ’-1’.
2. If there is a ‘‘happen-before’’ relation between two

points in different sources, e.g., d(k1)i →d(k2)j , we use the

subscript i of the data d(k1)i to describe the corresponding
status of d(k2)j in order that the interaction between these data
can be described.

3. If there is a ‘‘happen-before’’ relation between two
points in the same sources, i.e., k1=k2 for d(k1)i →d(k2)j there
exist two consecutive local status in the same process, the last
status inherits the value of the previous status.

As shown in Fig. 2, the sourceW(1) has the local data status
d(1)4 in the process of d(1)3 →d(1)4 , the process of d(2)2 →d(1)4 , the
value of d(1)3 is ’-1’, the value of d(2)2 is 2, so the value of d(1)4
is expressed as 2. We record the status table of the sources in
Fig. 3. Indicates that the local status d(2)0 , d(2)1 , d(2)2 ofW(2) and
d(1)4 have the ‘‘happen-before’’ relation, and the global data
points G40, G41, G42 are happen-before data points, denoted
by ’×’.
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FIGURE 3. The status table of W(1), W(2). (a) the status table of data in
source W(1). (b) the status table of data in source W(2).

FIGURE 4. Diagram of W(1), W(2). (a) diagram generated from source
W(1). (b) diagram generated from source W(2).

Step 2: Build a Single Process Data Diagram:On the basis
of the status table constructed in the first step, the data dia-
gram of each source can be made, and the single data diagram
is established on the existed relation between the sources to
record happen-before data points and non-happen-before data
points. In Fig. 4(a), the status value of d(1)1 in the source W(1)

is ’-1’, which indicates that there does not exist the ‘‘happen-
before’’ relation between d(1)1 and W(2) at the moment, and
all the dots of the column d(1)1 are initialized as non-happen-
before data points, e.g., G(1)

16 is ‘•’ in Fig 4a. In Fig 4b,
the status value of d(2)6 in W(2) is ’6’, which indicates that
there exists the ‘‘happen-before’’ relation between d(2)6 and
the first seven data in W(1). d(1)0 , d(1)1 , d(1)2 , d(1)3 , d(1)4 , d(1)5 , d(1)6
in row d(2)6 are denoted as the happen-before data points, their
corresponding points is denoted by ’×’, e.g., G(2)

16 is denoted
by ’×’ in Fig. 4(b).
Step 3: Build theGlobal Data Lattice:When the single pro-

cess data diagram formmulti-source data stream global status
with combination, they meet the ‘‘OR’’ operator, boolean
form of the non-happen-before data point is defined as false,
happen-before data point is defined true, e.g., G(1)

16 is false,
G(2)
16 is true, so G16 = G(1)

16 ‖G
(2)
16 is true, that means G16 in

the GDL is happen-before data point. G(1)
34 is false, G(2)

34 is
false, so G34 = G(1)

34 ‖G
(2)
34 is false; G(1)

64 is true, G(2)
64 is false,

so G64 = G(1)
64 ‖G

(2)
64 is true. And so on, we connect the non-

happen-before data points, it becomes the GDL, which can
characterize the concurrency and ‘‘happen-before’’ relation
in the data stream. Fig. 5 shows the GDL of the above
example.

FIGURE 5. Global Data Lattice.

Algorithm 1 BuildGDL

Input: table[i]: the single status value table[i] of d(k)i in data
status table, k: the number k of the data streams, n: the length
of the array table
Output: GDL: a binary file constituted by 0 and
1 for i←0 to n
2 if (table[i] = −1)
3 Initialize the global status;
4 else
5 for j←0 to table[i]
6 draw ’×’ in the diagram;
7 table[j]← false;
8 for j← table[i]+1 to n
9 draw ’•’ in the diagram;
10 table[j]← true;
11 for i←0 to n
12 for t←0 to k
13 table[i]← table[i] || table[j];
14 return GDL;

The three steps above introduce the construction frame-
work of the lattice. As is shown in Algorithm 1, we transform
the single status value into a diagram, line 3 initializes the
status value to ’−1’. Then we judge the status of the process
is ‘‘non-happen-before’’ relation or ‘‘happen-before’’ relation
in lines 5 to 10. According to Algorithm 1, the global data
diagram of the single process will be operated to do ‘‘logical
OR’’ merger in lines 11 to 13, so that we can get the GDL
under the multi-source data stream environment. In short,
lines 1 to 10 constructed the whole data diagram of all the
sources, and lines 11 to 13 will use the ‘‘OR’’ operator to
merge data points to get the final GDL we need.

C. THE N-SOURCE DATA STREAMS
It is similar to the synthesis of two-source data streams,
the n-source data streams synthesis is also divided into the
construction of a single data status table, the construction
of a single process data diagram and the construction of a
GDL, e.g., in the process of building the GDL, for the n
sources W(1), W(2), W(3), · · · ,W(n), the global data lattice G
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has G=G(1)
||G(2)

|| G(3)
||. . . ||G(n). Then, we can search the

data stream to get a global sequence in the GDL.

D. GDL COMPLEXITY ANALYSIS
Assume that the space for storing a GDL is one unit, the time
of sequence conversion process is negligible, the number of
the data stream is d, and we set m to describe the number of
data.

For the original GDL, the worst-case space cost is O(dn),
where n is the number of the sources in a multi-source envi-
ronment. Each node of the lattice stores global data informa-
tion and a predecessor node and a subsequent node of data
information. Among them, the global status of the n-source
data streams is n-dimensional, and the upper bound of the
length of the linked list is O(n), so the lattice storage space
cost isO(n2dn). We compare the new data with other n-1 data
to see if there is the ‘‘happen-before’’ relation between them,
so the time complexity of constructing new global data points
is O(n2). The worst-case time of GDL is O(n3dn), where dn

represents the number of GDL in the window and n is the
number of the data source.

IV. DATA LATTICE WITH ORDER FEATURES
Before we describe our research on single-sequential data
lattice, multi-sequential data lattice and complex data lat-
tice formed by non-happen-before data points, we begin this
section by introducing the basic concepts in this paper.
Definition 2 (Single-Sequential Data Lattice): Given data

sources W(i), W(j) with generated data, we assume that
d(i)k1 ∈W

(i), d(j)k1, d
(j)
k2, d

(j)
k3,. . . ,d

(j)
kn ∈W

(j), if and only if the
uniquely deterministic sequence {d(i)k1d

(j)
k1d

(j)
k2d

(j)
k3. . . d

(j)
kn} exits

among the data lattice, it is said that the data lattice formed
by this sequence is the single-sequential data lattice, denoted
by S(n−1), where n is the number of data points in the single-
sequential data lattice.
Definition 3 (Multi-Sequential Data Lattice): Given data

sources W(i), W(j) with generated data, we assume that d(i)k1,
d(i)k2, d

(i)
k3, . . . , d

(i)
km ∈W

(i), d(j)k1, d
(j)
k2, d

(j)
k3, . . . , d

(j)
kn ∈W

(j), when
many uncertain sequences exits among the data lattice, and
the data corresponding to different sources have the ‘‘happen-
before’’ relation with each other, denoted by M(m−1)(n−1),
where m, n is the number of data points corresponding to the
sources in the multi-sequential data lattice.

We reinterpret the notion of time based on lattice’s def-
inition of the ‘‘happen-before’’ relation among the data
items, corresponding to the happen-before data points. The
data arrives at runtime deterministically and irrevocably, the
GDL is further divided into single-sequential data lattice
and multi-sequential data lattice. Single-sequential data lat-
tice which has the feature of small computational memory
space overhead can generate the unique sequence, while
the number of sequences in the multi-sequential data lattice
is uncertainty under the condition of the ‘‘happen-before’’
relation. In this paper, we propose a method for construct-
ing binary sequences which can reduce the space overhead

by generating simple binary sequences to represent various
possible sequences in the GDL. Note that there is a situation
where the GDL overlap, we extend the definition of the
multi-sequential data lattice to handle all these cases, and call
it as the complex data lattice. Our next step is to define the
complex data lattice we are interested in.
Definition 4 (Complex Data Lattice): When two groups

of multi-sequential data lattices are confirmed in the non-
happen-before data stream, and at least one adjacent side
exists between two groups of multi-sequential data lattices,
we define the lattice with the above characteristics as the
complex data lattice.
It is known from the GDL model of two source data

streams that with the combination of data streams, the GDL
has single-sequential, multi-sequential and complex data lat-
tice. Single-sequential data lattice generates the uniquely
deterministic sequence {d(i)k1d

(j)
k1d

(j)
k2d

(j)
k3. . . d

(j)
kn} to reduce com-

putational memory space, we can easily demonstrate a sin-
gle sequence. In further text, we consider multiple possible
sequences for the multi-sequential and complex data lattice.
To counter this problem, we introduce binary sequences to
reserve all the possibilities in different sources.
Definition 5 (Binary Sequences): Given two data streams

from data sources, we define the structure{
d (i)k1, d

(i)
k2, d

(i)
k3, · · ·, d

(i)
km

d (j)k1, d
(j)
k2, d

(j)
k3, · · ·, d

(j)
kn

}
containing all data items occurring from data sources, line
1 represents the data stream from W(1), and line 2 represents
the data stream from W(2), note that we can reverse the first
and second rows in curly braces.

FIGURE 6. Complex data lattice. (a) multi-sequential data lattices
connected by an edge. (b) multi-sequetial data lattices connected by two
edges.

When there is one adjacent side that exists between two
groups of multi-sequential data lattices, the complex data
lattices are divided according to the multi-sequential data
lattices. For example, in Fig. 6(a), the non-happen-before
data points between event e and event f can be determined
as the dividing points. Moreover, if there are two sides con-
nected crossly, i.e., there exist multiple ways to get from one
to another, for example, Fig. 6(b) can be determined by non-
happen-before data points between event s and event t, as well
as the non-happen-before data points between event n and p,
then the binary sequences are listed by dividing points, and
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the binary sequence groups can be used to represent complex
data lattices.
Definition 6 (Binary Sequence Groups): Based on the

above discussion, we list binary sequences by dividing points
in the data lattice, then define the structure{
d (i)k1, d

(i)
k2, · · ·, d

(i)
kp

d (j)k1, d
(j)
k2, · · ·, d

(j)
kq

}{
d (i)k(p+1), · · ·, d

(i)
km

d (j)k(q+1), · · ·, d
(j)
kn

}
,{

d (i)k1, d
(i)
k2, · · ·, d

(i)
kr

d (j)k1, d
(j)
k2, · · ·, d

(j)
ks

}{
d (i)k(r+1), · · ·, d

(i)
km

d (j)k(s+1), · · ·, d
(j)
kn

}
, · · ·

consisting of cases which are required by dividing points,
each case corresponds to several possible data streams, when
we need to get all sequences, the binary sequence groups with
all cases can describe them.
The binary sequence in Fig. 6(a) has the following three

cases when we determine the non-happen-before data points
between event e and event f as the dividing point:{

de
a

}{
f
bc

}
,

{
de
ab

}{
f
c

}
,

{
de
abc

}
f

The binary sequence in Fig. 6(b) has the following four
cases when we determine the non-happen-before data points
between event s and event t, data point between event n and
event p as the dividing points:{

rs
mn

}{
t
p

}
,

{
rs
m

}{
t
np

}
,

{
r
mn

}{
st
p

}
,

{
r
m

}{
st
np

}
In practice, data lattice composed of {d(i)k1d

(i)
k2d

(i)
k3 . . . d

(i)
km}

and {d(j)k1d
(j)
k2d

(j)
k3 . . . d

(j)
kn} may generate many possible

sequences due to the ‘‘happen-before’’ relation of the concur-
rent data. However, the traditional method can only observe
one sequence in the multi-sequential data lattice and complex
data lattice by a single perspective, ignoring a large amount
of effective information between data items. Using binary
sequence to record multi-sequential data lattice and complex
data lattice, the original complete data items information can
be retained.

FIGURE 7. A oy data lattice.

In Fig. 7, the sequence of single-sequential data lat-
tice S2 ={d(2)2 d(2)3 } is the unique sequence, similarly,
S3 ={d

(1)
6 d(1)7 d(2)6 d(2)7 }. However, multi-sequential data lattice

M31 corresponds to four sequences, such as {d
(2)
1 d(1)1 d(1)2 d(1)3 },

{d(1)1 d(2)1 d(1)2 d(1)3 }, {d(1)1 d(1)2 d(2)1 d(1)3 }, {d(1)1 d(1)2 d(1)3 d(2)1 }. We
use the binary sequence to describe the occurrences of
the multi-sequential data lattice. For example, for multi-
sequential data lattice M31, M22, we will have the following:

M31 =

{
d (2)1
d (1)1 , d (1)2 , d (1)3

}
, M22 =

{
d (2)4 , d (2)5
d (1)4 , d (1)5

}
.

In this paper, single-sequential data lattice and multi-
sequential data lattice appear alternately, we transform the
GDL structure into a sequence of the single-sequential data
lattice and multi-sequential data lattice. Then we can get an
effective parallel and serial candidate data stream. So we
propose to do parallel frequent episodes mining first, then
serial frequent episodes mining. Such steps ensure that all
frequent episodes are mined in our job. The two-source data
stream conversion process is described in Algorithm 2.

Algorithm 2 GDLtoSeq
Input: GDL: a binary file constituted by 0 and 1
Output: S: Sequence
1 for each Node p do
2 Subscript← Subscript +1;
3 Superscript← Superscript +1;
4 if (Subscript =1 || Superscript =1)
5 p ∈ S(n−1);
6 i← min(Subscript), j← min(Superscript);
7 r← max(Subscript), t← max(Superscript);
8 S = Gij→ Grt;
9 if (Subscript =0 || Superscript =0)
10 p ∈M(m−1)(n−1);
11 S =M(m−1)(n−1);
12 return S;

Definition 7 (Global Data Point):Given a global data point
G, we say thatG corresponds to a happen-before data point or
non-happen-before data point, if G′ occurs after G, denoted
G→ G′.
IF Gij = [di, dj] and Gkj = [dk , dj],Gij → Gkj =

[dj, di, dk ].
IF Gij = [di, dj] and Gik = [di, dk ],Gij → Gik =

[di, dj, dk ].
In the actual system, due to the existence of concurrent

and message delay, there will be a variety of possibilities
in the combination of the data stream, we can divide the
sequence by single-sequential or multi-sequential, and reduce
the space-time overhead for the frequent episodesmining. For
example, the sequence G00→G77 can be expressed as:

d (1)0 d (2)0

{
d (2)1
d (1)1 d (1)2 d (1)3

}
d (1)3 d (2)2 d (2)3

×

{
d (2)4 d (2)5
d (1)4 d (1)5

}
d (1)6 d (1)7 d (2)6 d (2)7 .

To ensure that all frequent episodes are mined, we mine the
frequent episodes just in the multi-sequential data lattice as
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the new candidate episodes, after that, we decompose multi-
sequential data lattices by Cartesian product. At last, four data
streams are mined to get frequent episodes without binary
sequences, such as:

(1) d (1)0 d (2)0 d (2)1 d (1)3 d (2)2 d (2)3 d (2)4 d (2)5 d (1)6 d (1)7 d (2)6 d (2)7 ;

(2) d (1)0 d (2)0 d (2)1 d (1)3 d (2)2 d (2)3 d (1)4 d (1)5 d (1)6 d (1)7 d (2)6 d (2)7 ;

(3) d (1)0 d (2)0 d (1)1 d (1)2 d (1)3 d (1)3 d (2)2 d (2)3 d (2)4 d (2)5 d (1)6 d (1)7 d (2)6 d (2)7 ;

(4) d (1)0 d (2)0 d (1)1 d (1)2 d (1)3 d (1)3 d (2)2 d (2)3 d (1)4 d (1)5 d (1)6 d (1)7 d (2)6 d (2)7 .

Especially, if we instantiate the sequence G00 → G77

as AB
{

E
DCA

}
CA

{
BE
DA

}
BCAA, we regard the parallel

episode
{
E
D

}
as the new candidate episode X. The original

data stream can be transformed into the parallel candidate
data stream, (1) ABXCAXBCAA. Then, we decompose the
original data stream by Cartesian product as serial candi-date
data stream, (2) ABECABEBCAA, (3) ABECADABC AA,
(4) ABDCACABEBCAA, (5) ABDCACADABCAA. In the
end, we got five parallel and serial candidate data stream,
we can mine the frequent episodes in turn from these data
streams.

V. DATA STREAM FREQUENT EPISODE MINING
According to the data streams in Section 4, frequent episode
mining [31] is to find the episodes from the parallel and serial
candidate data stream. Frequent episode mining is mainly
divided into serial episodes mining and parallel episodes min-
ing.Mixed episodesmining is a combination of existing serial
frequent episodes and parallel frequent episodes. Besides,
for a fast-growing sequence data stream, old episodes may
become obsolete while new useful episodes keep emerging.
More importantly, in time-critical applications [32], we need
a fast solution to discover the latest frequent episodes from
a growing data stream. To this end, we have proposed a
streaming frequent episode mining solution.

A. MINING FRAMEWORK
Related research on frequent episode mining based on
multi-source data streams scenarios, we build the Frequent
Episode Tree (FET) by using a variable sliding window and
minimal occurrence. The main idea is to realize the efficient
management by treating the data stream continuously synthe-
sized from the source as discrete segments in the time series.
With creating and updating the FET, the candidate data stream
can be mined to obtain parallel episodes, which have better
performance in terms of data storage, update, and memory
consumption.

First of all, we set some parameters and definitions:
(1) Sequence: Let S be the finite set of events with the strict

chronological order, denoted as S={E1-t1, E2-t2, . . ., Ek-tk}.
(2) Episode: An episode is defined as a non-empty totally

ordered set, denoted α = {E1ldotsEk}.
(3) L, the Length of the Window: Only consider the last L

timestamps in the frequent episode mining.

FIGURE 8. Frequent Episode Tree. build the corresponding FET based on
the data stream ABECADABCAA, the nodes of the tree are made up of
event: support.

(4) δ, the Maximum Occurrence Window Threshold: The
episode must have occurred in the window δ.

(5)Minimal Occurrence: Given two time windows, [t1, t2]
and [t ′1, t

′

2]. [t1, t2] is subsumed by [t ′1, t
′

2] if t
′

1 ≤ t1, t2 ≤ t ′2,
we define theminimal occurrencewindow of α as (α, [t1, t2]).
(6) Last Occurrence: Given time window [ti, tj], episode

occurrence (α, [t1, t2])(ti ≤ t1 ≤ t2 ≤ tj) is the last in the
time window α if and only if there is no other occurrence of
(α, [t ′1, t

′

2])(ti ≤ t
′

1 ≤ t
′

2 ≤ tj, t
′

1 > t1).
(7) Support: The number of occurrences of episode α on

the event sequence S is called the support of α, denoted as
sup.
(8) Frequent Episode:An episode is called frequent, if and

only if its support is no less than min_sup, a user-specified
minimum support threshold. Otherwise, the episode is infre-
quent.
Secondly, we know the FET is a root tree, each node

represents an event. Each node can have child nodes. The
data stream from the root node to the end represents an
episode consisting of several events. The following attributes
are maintained in the node, event type E, the support thresh-
old of the node, and the timestamp of the event occurrence
location. The growth of the FET is expanded layer by layer.
The position of each node is used to divide the data stream,
which narrows the search space. Its typical structure of the
serial candidate data stream ABECADABCAA is shown as
Fig. 8.
For fast-growing sequence data, old data stream may be

outdated, and new useful data stream is constantly emerging,
we can use the variable sliding window to discover the lat-
est frequent episodes in the sequence. The variable sliding
window is similar to the traditional window model, focusing
on the last occurrence. The initial size is specified by the
user, and then the window size can be dynamically adjusted
according to the mining results. When the data item arrives,
the data is inserted into the FET through the algorithm of the
FET tree, and then the algorithm is used to mine the tree and
the concept drift detection is performed on the mining result.
If a concept drift occurs, delete the data before the checkpoint
and shrink the window size, otherwise continue to insert data,
and the window continues to increase with the increase of
data. In the variable window, each FET has a root node, which
is an empty node, and the child node composed of a data item
that arrives in the data stream. With this data structure, each
node in the FET (except the root node) represents an episode.
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Algorithm 3-1 BuildTree
Input: s: Sequence, min_sup: minimum support threshold,
δδ: maximum occurrence window threshold
Output: root: Frequent Episode Tree pruning
1 root← createNode();
2 for each Event e in Find1_episode(s) do
3 node← createNode(e);
4 add childNode node to root;
5 for each Node n in childNode do
6 expandTree(n);
7 return root;

Algorithm 3-2 Find 1_Episode
Input: s: Sequence, min_sup: minimum support threshold
Output: res: frequent 1- episode
1 res← null;
2 alter← null;
3 for each Event e in s do
4 add e to alter;
5 sup← sup +1;
6 for each Event e in alter do
7 if (sup >= min_sup)
8 add e to res;
9 return res;

Further, by defining the same node table, the process of
episode iteration is transformed into the pruning and scanning
process of the FET, which improves the generation efficiency.
Therefore, FET describes the data stream information in the
current timewindow, which is convenient for mining frequent
episodes in the future.

When new data arrives, in the first step, the sliding window
Lmoves forward, introducing new components; in the second
step, we transfer the new component to δ, generate FET and
determine the node type.

In the first step, FET construction and pruning steps are as
follows, scan the sequence and find all the frequent 1-episode,
and add the frequent 1-episode to the first-level nodes of the
episode tree. For all frequent n-episode, follow-up events are
probed in the sequence according to δ. If the min_sup can be
satisfied and the event is not used by other frequent episodes,
create a child node for the node and set the event’s use flag
to true. Repeat until you cannot construct a new node. In this
process, there is no need to generate candidate episodes. The
construction of the FET is shown in Algorithms 3-1 to 3-3.

For the sequence of events given in Fig. 8, the support for
the episodes C, D, and E is 2, when we prune the FET, we can
set the support threshold and scan interval, such as min_sup
= 2, δ = 2, the pruning result is as shown in Fig. 9.
By analyzing and summarizing the nature of FET, this

method has the following advantages:
(1) Save memory. Compared with the traditional method to

manage the data stream in the frequent episode mining, FET

Algorithm 3-3 expandTree
Input:p: start position
Output:Tt: expand tree;
1 alter← null;
2 for each StartPosition p do
3 for each Event e in δ
4 if(e = false)
5 e← true;
6 add e,p to alter;
7 if(alter = false)
8 sup← sup +1;
9 if (alter = null)
10 return Tt;
11 for each EventItem e in alter do
12 if(sup > min_sup)
13 n← createNode(e);
14 add childNode n to p;
15 expandTree(n);

FIGURE 9. Prune FET.

can make full use of the characteristics of the prefix tree to
compress memory;

(2) States update efficiently. FET uses its structural advan-
tages to extend the last minimum occurrence node, reduce
redundancy, and achieve efficient state update.

(3) Adapt well to different processing models. The binary
sequence-structure generated by multi-source data stream
synthesis can still be processed by the prefix tree model.

(4) Accuracy. Since the data items are updated with time,
we establish the FET to save the last frequent episodes, and
will not pruning them frequently. We can ensure that the
frequent episodes excavated are accurate, including serial
frequent episodes and parallel frequent episodes.

(5) Complement. We establish a global data lattice by
describing the successive relationships between multi-source
data streams, and completely retain all logical relation-
ships and causal relationships between data items. On this
basis, mining is performed to ensure that complete frequent
episodes are obtained.

B. FET COMPLEXITY ANALYSIS
Let L be the sequence length, e be the event typeset, and FE
is the frequent episode set. The number of nodes in the FET
is m. It is easy to see from the tree construction process that
each time a new frequent episode is mined, a node is added
to the FET. Therefore, the value of m is | FE |. The number of
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all frequent 1-episodes is n, and the maximum n is | e |. The
total number of identical nodes is K, and the maximum K is
L / min_sup.

The construction of pruning episode tree is the main
time costs of this algorithm. The construction of the
FET of the MDSOFE algorithm first generates all fre-
quent 1-episodes with a generation complexity of O(L).
The number of nodes in the FET is | FE |, and the
detection cost of each node is the number of times the
event recorded in the node occurs in the sequence p
times the detection maximum interval δ∗| FE | < L,
can be derived, avp < L / | FE |, the growing cost of the tree
is O(δ ∗| FE |∗ avp)< O(δ∗| FE |∗ L / | FE |) = O(δL), so the
time complexity is O(δL). All nodes in the FET have at most
| FE|, so the space overhead for storing nodes is O(| FE |).

VI. ALGORITHM MDSOFE
We will introduce serial frequent episodes and parallel fre-
quent episodes obtained by traversing the GDL and the FET
by the Multi-source Data Stream Online Frequent Episode
Mining (MDSOFE) algorithm in this section.

A. DISCOVERING FREQUENT EPISODES
Considering the parallel relationship in the data stream, it still
exists in the results of frequent episode mining, and the
mining of parallel episodes is based on the binary sequence.
According to the Algorithm 4, there are altogether four steps
for getting frequent episodes, 1) build the GDL; 2) get the
parallel and serial candidate data stream; 3) mine the parallel
and serial episodes; 4) get the mixed episodes. The concrete
steps of mining frequent episodes are as follows:

1) STEP 1: BUILD THE GDL
Through Algorithm 1, the sequence ‘‘happen-before’’ rela-
tion between different data sources is retained, and the GDL
is established.

2) STEP 2: GET THE PARALLEL AND SERIAL CANDIDATE
DATA STREAM
Through the Algorithm 2, the traversal of GDL generates an
effective parallel and serial candidate data stream.

3) STEP 3: MINE THE PARALLEL AND SERIAL EPISODES
Mine the parallel and serial episodes. Through the Algorithm
3, when the new data arrives, judge whether the minimal
occurrence episode support threshold in the detectionwindow
is greater than the minimum support threshold, and if there
is a threshold greater than the minimum support threshold,
the minimum occurrence is the frequent parallel and serial
episode; if not, this episode will be pruned to determine the
next minimal occurrence.

4) STEP 4: GET THE MIXED EPISODES
We merge the serial episodes and parallel episodes, then we
regard all the mixed episodes as the frequent episodes from
multi-source data stream mining.

Algorithm 4MDSOFE Algorithm
Input: L1: the size of the window, δ: maximum occurrence
window threshold, min_sup: minimum support
Output: FE: frequent episodes contain serial episodes(SE)
and parallel episodes(PE)
1 G← BuildGDL(k, table[i], n);
2 S← GDLtoSeq(G);
3 Tt← BuildTree(S, min_sup, δ);
4 for each Node g ∈ Tt do
5 α← ep(g);
6 PE← PE ∪α;
7 for each Node p ∈ Tt do
8 α← ep(p);
9 SE← SE ∪α;
10 FE← SE ∪ PE;
11 return FE;

B. MDSOFE COMPLEXITY ANALYSIS
In short, combined with section III and section V, we analyze
the time and space complexity of the MDSOFE algorithm.
In section III, the lattice storage space cost isO(n2dn), and the
worst-case time of GDL isO(n3dn). As far as we know, in the
process of the mining, GDL is bounded by the window size δ,
we can use O(n2δn) and O(n3δn) to describe the worst-case
space and time cost of the GDL, where δ is much less than
d. The worst-case time of the n-source data stream frequent
episode mining is O(n3δn+ δL), and the worst-case space is
O(n2δn+| FE |). From the performance analysis, the window
size δ and the number of data stream n can bound the cost
of the multi-source data streams frequent episode mining.
Thus, the proposed algorithm is useful in a multi-source
environment.

VII. EXPERIMENTS
In this section, we first introduce an example of multi-source
data stream online frequent episode mining, then we conduct
extensive simulations to evaluate the performance of our
proposed the algorithm MDSOFE by comparing it with the
following two schemes.
• SDSOFE: The algorithm SDSOFE uses the traditional

observer perspective, and mine the unique data stream
according to the principle of ‘‘First Come First Process’’,
so you cannot do parallel episodes mining.
• MDSOFE-BF: The algorithm MDSOFE-BF is a violent

method that takes all combinations between data items into
account by enumeration, and mines all the combined data
streams. Algorithm MDSOFE-BF can be seen as multiple
repeated experiments of algorithm SDSOFE, it still does not
include parallel episodes mining.

To our best knowledge, we are the first to propose the
scheme that exploits both multi-source data stream combi-
nations and mixed frequent episodes mining.

A. DATA PREPARATION
We begin our experiments with a synthetic data stream set
and five real-world data stream sets, denoted by Distributed

VOLUME 8, 2020 107473



T. You et al.: Multi-Source Data Stream Online Frequent Episode Mining

FIGURE 10. Running time with radio r. (a) Running time required in the Distributed Data. (b) Running time required in the RFID.
(c) Running time required in the Smart Traffic. (d) Running time required in the Web site. (e) Running time required in the Weather
Forecast. (f) Running time required in the Aircraft Attitude.

Data, RFID, Smart Traffic, Web Site, Weather Forecast, and
Aircraft Attitude. these data samples can simulate two-source
and three-source data streams. The first data stream set Dis-
tributed Data (synthetic dataset) consists of two data streams
generated by two sources, the two sources can generate new
data by combination with each other. The second data stream
set records the data of sensors, different sensors record the

distinct behavioral information under the office environment,
but there exists a relation for a certain action. The third Smart
Traffic data stream set comes from the Regional Transporta-
tion Management Center (RTMC), the real data is collected
by sensors on the Twin Cities Metro freeways from the
website [33]. And the next dataset acquires the user’s prefer-
ences and potential needs through the acquisition of multiple
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FIGURE 11. Frequent episode number with min_sup. (a) Frequent episode number required in the Distributed Data. (b) Frequent
episode number required in the RFID. (c) Frequent episode number required in the Smart Traffic. (d) Frequent episode number
required in the Web site. (e) Frequent episode number required in the Weather Forecast. (f) Frequent episode number required in the
Aircraft Attitude.

information such as user registration information, online
behavior and social relation, this data stream set is down-
loaded from the data mining portal [34]. The Weather Fore-
cast dataset provided by Climate Observation Association of
NWPU includes different dimensions of meteorological fea-
tures such as temperature, humidity, and sunshine duration to
analyse and predict weather. The last dataset is offered from
the Laboratory of Aeronautics College of NWPU, including
several properties of aircraft which determine the attitude

when flying. The data information of all the data stream sets
are listed in Table 2, we use the random sampling method
to set a certain number of the binary sequence in the GDL
according to the ratio, and generate the data with different
degrees of complexity relationship.

B. ALGORITHM COMPARISON
We compared the algorithm SDSOFE, MDSOFE-BF and our
algorithm MDSOFE. The introduction of the recall radio and
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TABLE 2. Data information.

TABLE 3. Recall radio.

TABLE 4. Precision radio.

the precision radio, so that we can compare the three algo-
rithms with each other. The multi-source observer considers
the order of the data items, which reduced data redundancy
in binary sequence group, but contain complete information,
so frequent episode is accurate and complete by algorithm
MDSOFE in the multi-source method.

Recall radio = accurate episode in other method/ all the
frequent episodes in the multi-source method.

Precision radio= accurate episode in other method/ all the
frequent episodes in another method.

To evaluate the practicability of the algorithm, we ran-
domly generate data itemswith the ‘‘happen-before’’ relation,
through the window sliding, data arrived, the formation of
‘‘streaming’’ form. We select 200, 300, 400,500 data items
in the Distributed Data set. It is concluded that the recall
radio and the precision radio of the frequent episodes by the
MDSOFE algorithm are both 1 and the recall radio of the
frequent episodes by method SDSOFE is between 50% and
70%, they do not contain accurate and complete information,
as shown in TABLE 3 and TABLE 4. The violent algo-
rithm MDSOFE-BF mines all meaningful and meaningless
episodes, so the frequent episode recall radio is higher, the
precision radio is low, only 20%-30%.

The rate of multi-sequential data lattice length to the total
is denoted as r. Fig. 10 compares the running time of the
algorithms SDSOFE, MDSOFE, and MDSOFE-BF for the
four data stream sets along with the increase of radio r. It is
shown that the running time of the algorithms SDSOFE and
MDSOFE change a little along with the increase of radio
r, while the algorithm MDSOFE-BF has a small amount of
time when r is small, that is, the complexity of the ‘‘happen-
before’’ relation is low, when the complexity increases, the

FIGURE 12. Execution Time with min_sup and Data Volume. (a) Execution
Time required along with the increase of min_sup. (b) Execution Time
required along with the increase of Data Volume.

running time of the algorithm MDSOFE-BF grows faster,
at the same time, the algorithms SDSOFE, MDSOFE have
high implementation efficiency. Fig. 11 shows that the num-
ber of frequent episodes about the algorithms SDSOFE and
MDSOFE decrease rapidly with the increase of the minimum
support degree. The algorithm MDSOFE-BF mines frequent
episodes but contains a large number of redundant episodes.

Based on the above analysis, considering the accuracy and
completeness of the information, the algorithm MDSOFE
is superior to the algorithms SDSOFE and MDSOFE-
BF. Therefore, the MDSOFE satisfies the condition of the
multi-source data stream frequent episodesmining algorithm.
That is, for a multi-source distributed environment of massive
data, the multi-source data stream online frequent episodes
mining algorithm has the same or better performance than the
existing algorithms that all data are concentrated into a single
source computer system.

Several methods for data stream frequent episode mining,
namely D-FMS,MDSMiner [35], are compared in global fre-
quent episode mining. The D-FMS uses a three-level engine,
which is divided into a first-level front engine, a second-
level middle engine, and a third-level back engine, according
to the flow direction of the data stream. The data stream is
reduced by level, the three-layer architecture of D-FMS forms
a multilayer filtering function for data. For a single source
stream, the direction of data flow is consistent, and the data
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traffic is attenuated after being processed by the primary site.
The MDSMiner proposes the concept of alternative support
for discovering frequent and rare episodes, and defines the
semantic similarity of event sequences for analyzing the rela-
tionships between data streams.

Here, the proposed the MDSOFE performs to process a
multi-source data stream. Based on ensuring that global fre-
quent sequences can be mined, our algorithm can also obtain
parallel frequent episodes. Next, we will compare the support
threshold and the transaction data volume in the Distributed
Data set by these three algorithms in Fig. 12.

VIII. CONCLUSION
The work of the multi-source data stream online frequent
episode mining work combines multiple data sources, retains
the interactive information between data streams, and then
mines the frequent episodes, streamlining complex and
redundant data streams to obtain effective information. This
research can be widely used in the field of smart transporta-
tion and sensors. By collecting simple and effective informa-
tion, the hidden associations between roads can be obtained,
then we can improve the road construction.
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