IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received May 12, 2020, accepted May 20, 2020, date of publication May 25, 2020, date of current version June 8, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2997387

Insights Into Efficient k-Nearest Neighbor
Classification With Convolutional

Neural Codes

ANTONIO-JAVIER GALLEGO “, JORGE CALVO-ZARAGOZA"~, AND JUAN RAMON RICO-JUAN

Pattern Recognition and Artificial Intelligence Group, Department of Software and Computing Systems, University of Alicante, 03690 Alicante, Spain

Corresponding author: Juan Ramén Rico-Juan (juanramonrico@ua.es)

This work was supported in part by the Spanish Ministerio de Economia, Industria y Competitividad through Project HISPAMUS under

Grant TIN2017-86576-Research, and in part by the EU FEDER funds.

ABSTRACT The increasing consideration of Convolutional Neural Networks (CNN) has not prevented
the use of the k-Nearest Neighbor (kNN) method. In fact, a hybrid CNN-kNN approach is an interesting
option in which the network specializes in feature extraction through its activations (Neural Codes),
while the kNN has the advantage of performing a retrieval by means of similarity. However, this hybrid
approach also has the disadvantages of the kNN search, and especially its high computational cost which is,
in principle, undesirable for large-scale data. In this paper, we present the first comprehensive study of
efficient KNN search algorithms using this hybrid CNN-kNN approach. This has been done by considering
up to 16 different algorithms, each of which is evaluated with a different parametrization, in 7 datasets of
heterogeneous composition. Our results show that no single algorithm is capable of covering all aspects,
but rather that each family of algorithms is better suited to specific aspects of the problem. This signifies
that Fast Similarity Search algorithms maintain their performance, but do not reduce the cost as much as
the Data Reduction family does. In turn, the Approximated Similarity Search family is postulated as a good
option when attempting to balance accuracy and efficiency. The experiments also suggest that considering
statistical transformation algorithms such as Linear Discriminant Analysis might be useful in certain cases.

INDEX TERMS Classification, convolutional neural networks, efficient searches, nearest neighbor searches,

neural codes.

I. INTRODUCTION
The k-Nearest Neighbor (kNN) classifier is one of the clas-
sical schemes for supervised learning tasks [1] and it is still
considered in current research, as discussed in a recent ret-
rospective by Kuncheva [2]. Most of its popularity originates
from its conceptual simplicity and straightforward implemen-
tation, which are well suited to many disparate duties. This
algorithm hypothesizes about the category of a given input in
the feature space by following a defined similarity measure to
query its k-nearest neighbors in the training set and applying
a plurality vote scheme to select the most common category.
The performance of the classifier, therefore, improves as
the training set increases, since it has been demonstrated
that its error is bounded by twice the Bayes error when the
number of training samples approaches infinity [3]. Since the
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beginnings of information-related technologies, data produc-
tion has been reported to be constantly growing [4], and this
effect has become more remarkable in recent years. A kNN
classifier may, therefore, be able to exploit these large-scale
sources of information in order to improve classification
performance.

As a representative example of instance-based algorithms,
the kNN classifier does not carry out an explicit generaliza-
tion process (i.e., building a model) on the initial training data
but directly considers those samples for classification [5].
This behavior is especially useful when you need, in addition
to knowing the category of a new sample, a list of other
similar samples that belong to the historical (training set).
This might be helpful in some contexts so that human experts
focus their attention on these samples to make decisions or
detect outliers. When other classification algorithms are used,
this inspection would be much more complex or impossible.
Some recent works in areas such as health [6] use kNN to
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improve the accuracy results with respect to SVM (Sup-
port Vector Machines) or ANN (Artificial Neural Networks).
Moreover, in a real application, it would be interesting for
specialists to know which patient records are the most similar
in order to analyze them in detail.

Recent advances in feature learning, namely Convolu-
tional Neural Networks (CNN), have made a breakthrough as
regards the ability to learn suitable features for classification.
That is, rather than resorting to heuristic processes for fea-
ture extraction, these networks are trained to infer a suitable
representation for the task in hand from the raw input signal.
Some authors have, however, shown that it is also interesting
to use CNN only as feature extractor engines, i.e., feeding
the network with raw data and taking one of the intermediate
representations, most typically the second-to-last layer out-
put, as features for the classification task [7], [8].

The kNN method may obtain more complex decision
boundaries than the last layer of a CNN, which usually
estimates a normalized linear function. However, it requires
the features and/or the distance considered to be adequate
for the task. Taking into account that CNN and kNN are
totally complementary in terms of feature extraction and
decision boundaries, it is interesting to consider the hybrid
approach in which both strategies can exploit their potential
and mitigate each others’ drawbacks. Forwarding a raw input
through the network makes it possible to obtain an appro-
priate representation from the last layers. This representa-
tion is a numerical vector that is also referred to as Neural
Codes (NC) [9].

Nevertheless, since the kNN classifier needs to compute a
distance between the input sample and every single sample
in the training data, this entails low efficiency as regards
both classification time and memory usage. This is the
main drawback of this approach, which becomes an insur-
mountable obstacle when considering large-scale training
corpora.

All the strategies with which to alleviate these issues that
have been proposed to date have been evaluated in a con-
ventional scenario as regards the kNN. In addition, to the
best of our knowledge, no work compares all the families
of strategies whose objective is to improve the k-nearest
neighbor search. Many of these strategies normally seek to
improve efficiency, which is often achieved at the cost of
worsening classification accuracy. Since the combined use
with CNN modifies this paradigm, a comprehensive study
has been carried out in order to provide some insights into
the use of efficient strategies for kNN hybridized with NC.
We trust that this study will enable the clarification of which
the best option is, and under what circumstances, in order to
make the use of the CNN-ANN hybrid approach feasible with
large amounts of data.

In summary, the paper makes the following contributions:

1) A detailed formalization of the combination between

kNN and NC.

2) A comprehensive study of how to perform such com-

bination as regards efficiency and accuracy.
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3) Thorough experiments with different types of CNN
configurations, NC sizes, efficient kNN search appro-
aches, heterogeneous datasets, and a wide set of
parameters.

4) Interpretation of the experimental results that goes
beyond listing performance values, which we expect to
be useful for researchers working in this field.

Our paper first reviews the background to the field in
Section II. In Section III, we then go on to explain the method-
ology behind the classification with a hybrid CNN-ANN
approach. The experimentation setup followed to evaluate
the several options considered in a number of datasets is
described in Section IV. The results obtained, along with
a thorough analysis of them, are presented in Section V.
Finally, we summarize the main conclusions in Section VII,
in addition to providing some ideas for future work.

Il. BACKGROUND

As a representative example of instance-based classification,
the kNN classification rule is generally highly inefficient:
since no model is built from the training data, every train-
ing sample is consulted at the time of classifying an input
query. This condition has two clear implications: on the one
hand, a considerable amount of storage requirements, and
on the other, a high computational cost. Some variants of
the kNN include a training process, such as the work of
Zhang et al. [10], in which a model is built in order to infer
the optimal k for each sample. However, this does not reduce
the cost when predicting a sample.

These shortcomings have been widely analyzed in litera-
ture and several strategies with which to tackle them have
been proposed. In general, they can be divided into three
categories: Fast Similarity Search (FSS) [11], Approximated
Similarity Search (ASS) [12], and Data Reduction (DR) [13].

FSS is a family of methods whose performance is based
on the creation of search models for fast prototype retrieval
in the training set. These strategies are generally further sub-
divided into indexing algorithms [14] and the Approximating
and Eliminating Search Algorithm (AESA) family [15]. The
former family represents the set of algorithms that iteratively
partition the search space and build tree structures for an
efficient search; for a new element to be classified, a search
of the tree takes place in order to select the proper space
partition (leaf node in the tree) to subsequently perform an
exhaustive search of the prototypes in that region; this implies
that only one subset of the total number of examples has
to be queried to classify a new instance. Some examples
of these methods and structures are KD Trees [14], Ball
Trees [16], and Metric Trees [17], amongst others. The prob-
lem, however, is that they are extremely sensitive to the
curse of dimensionality, and they additionally require that
input data be represented as feature vectors. Note that, in the
case of our hybrid CNN-kNN approach, these drawbacks are
mitigated because Neural Codes are in fact numerical feature
vectors, and their dimension can be adjusted when config-
uring the network. AESA algorithms, on the other hand,
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demonstrate their potential with structured data (such as
strings, trees, or graphs) because they require only a metric
space, i.e. that in which a pairwise distance can be defined.
These strategies make use of pre-computed distances and the
triangle inequality to discard prototypes. The main disad-
vantage of these algorithms is that they typically deal with
searches involving k = 1 and become memory-inefficient
with large-scale data. In addition to these techniques, there
are also studies that consider specific computing engines
like Apache Spark for the highly efficient performance of
similarity searches [18], [19].

ASS approaches work on the premise of searching for
sufficiently similar prototypes to a given query in the train-
ing set, rather than retrieving the exact nearest instance.
This improves the efficiency of the algorithm at the cost of
decreasing the classification accuracy. When large datasets
are present, the ASS framework emerges as a suitable option
to consider because the possible drawbacks, such as the
accuracy loss produced by not retrieving the actual nearest
prototype, are mitigated by the huge amount of information
available. Some particularly successful principles within this
family are the use of hashing techniques to codify the pro-
totypes of the training set. Typical examples comprise the
Local Sensitive Hashing (LSH) forest [20], which is based
on different distances and demonstrable improvement of the
search scheme, Spectral Hashing [21], which was the first
research that considered consistency with Hamming codes
to find a function whose similar elements are mapped to
similar hash codes with a small number of bits, or Prod-
uct Quantization [22], which divides the features space into
disjoint sub-spaces represented by vectors that are clustered
separately, each of which can be coded with logarithmic
complexity. A different approach is the use of data clustering
in order to restrict the search to a specific portion of the
space [23], [24]. Approximate KD Trees have been also con-
sidered within this family of techniques (e.g., the Fast Library
for Approximate Nearest Neighbors [25]).

DR comprises a set of strategies whose objective is to
reduce the size of the initial training set while maintain-
ing the same recognition performance [13]. The two most
common approaches are Prototype Generation and Proto-
type Selection [26]. The former creates new artificial data
to replace the initial set more efficiently, while the latter
simply selects certain elements from that set that are suffi-
ciently representative. The Condensed Nearest Neighbor [27]
was one of the first techniques developed for this purpose,
yet several proposals can be found in literature in both the
selection [28] and generation [29] paradigms. More recently,
there have been a number of new proposals, such as Instance
Reduction Algorithm using Hyperrectangle Clustering [30]
that reduces non-border instances using a hyper-rectangle
technique with the min-max points obtained by a clustering
algorithm, Reduction through Homogeneous Clusters [31],
which is based on a fast cluster pre-processing procedure
that creates homogeneous clusters to select their centroids
as representative samples, or Edited Natural Neighbor [32],
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which aims to eliminate noise patterns based on the concept
of natural neighbor, with no parameters and whose selection
is made in an adaptive way. In any case, the main problem
with these methods is that they generally imply a significant
loss of accuracy in the classification [13]. Various strategies
with which to resolve these deficiencies have, therefore, been
proposed, such as considering boosting schemes [33], merg-
ing feature and prototype selection by means of genetic algo-
rithms [29], [34], or considering the results of these reduction
algorithms as only a means of constraining the categories to
be taken into account by the conventional kNN [35].

lll. METHODOLOGY

Convolutional Neural Networks (CNN) are multi-layer archi-
tectures designed to extract high-level representations of a
given input. They have dramatically improved the state of
the art as regards image, video, speech, and audio recogni-
tion tasks [36]. When trained for supervised classification,
the layers of a CNN are eventually able to extract a set of
features that are suitable for the task at hand. These features
are obtained by forwarding a raw input through the network,
in which the last layer merely learns a linear mapping to
provide each possible category of the classification domain
with a probability.

Its high generalization power allows transfer learning to
be used to apply CNN models trained on a domain to a
different task in which the data are similar but the categories
are different [37]. This transfer can be done by fine-tuning
the pre-trained network in the new dataset [38]. Alternatively,
it can also be performed by using the CNN as a feature extrac-
tor, by forwarding samples through the network to obtain the
activations from one of the last hidden layers, which is usually
a fully-connected or a pooling layer. These representations
are also referred to as Neural Codes (NC) [9].

Extracting neural codes and then applying Support Vector
Machines (SVM) or kNN is a common transfer learning tech-
nique [8], [39]. However, a lazy classification method such as
kNN is preferred to SVM for similarity search tasks, in which
the interest lies not only in the category but also in obtaining
similar prototypes. At the inference stage, NCs from the last
hidden layer (the layer before the output or classification
layer) are extracted to perform a kNN search on the train-
ing set. Nevertheless, the power of this hybrid CNN-ANN
approach is initially mitigated by the aforementioned draw-
backs of the kNN classifier itself.

In this paper, we analyze the use of efficient kNN strategies
in the context of the hybrid approach introduced above. The
proposed methodology is illustrated in Fig. 1. The first step is
to train a CNN in a supervised fashion by providing pairs con-
taining the input samples and their labels. Let T = {(x1, y1),
(x1,¥1), - . -, (xm, ym)} be the set of M training samples where
each sample x; has an associated label y; from the set of pos-
sible categorical labels ¥ = {1, ..., L}. The CNN (denoted
by G) implements a function G : X — Y that classifies
an instance x € X C RP into a label of Y. The process of
training G consists of adjusting the set of network weights
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FIGURE 1. Graphical scheme of the classification methodology considered in the present work.

using the training set 7 to minimize the classification error
according to a given loss function £ [40] and considering
any conventional means for network optimization such as
stochastic gradient descent [41].

Once G has been trained, it is used to obtain the set of
encoded training data. This is done by forwarding the samples
of T through the network to extract the feature vectors from
a user-defined feature layer (denoted by G'). That is, G :
X — RY maps an instance x from a D-dimensional repre-
sentation onto a new N-dimensional feature space X/ ¢ RV
representation. This new representation, also referred to as
Neural Codes (NC) [9], is stored in the set Tyc and used to
build the efficient kNN search strategy to be evaluated.

In general, a kNN search hypothesizes about the category
of a given input or query g by following a defined similar-
ity measure to query its k-nearest neighbors in the training
set T. The query q is classified by a plurality vote within its
neighbors, with the query being assigned to the most common
class among its k nearest neighbors. Therefore, kNN can be
defined as:

mode (Yk (arg miny {d(q, xi)}>>
x;eT

where d(g, x;) denotes the distance between the proto-
types g and x;. Note that the distance considered is the
Euclidean one because, as described above, the features
compared (in this case, the NC) are numerical feature
representations. Other distances could also be consid-
ered, like Manhattan or Mahalanobis [42], or even other
types of structural-based measures, such as SimRank [43],
C-Rank [44] or HeteRank [45]. However, the Euclidean dis-
tance has been used in all cases for two reasons. On the
one hand, some of the efficient search methods compared
exploit properties of distance functions (such as the triangle
inequality), for this reason, pseudometrics as the referenced
structural-based measures cannot be applied. On the other
hand, since the implementation of some of these methods is
based on the Euclidean distance, we decided to keep the same
metric for all cases to make a fair comparison.

As can be seen from the equation above, kNN performs
an exhaustive search for ¢ in the whole training set 7'. This
implies a poor search efficiency that worsens as the size
of T increases. The kNN-based efficient search methods
simply try to reduce the number of distances calculated
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by using some of the strategies previously described in
Section II.

To summarize, Algorithm 1 shows the formalization of the
training process using pseudocode. The algorithm receives
as input the training set 7, the CNN topology G, the effi-
cient kNN search method §, and the training parameters
(epochs and batch size), and returns the trained network as
output along with the new training set Tyc, and the search
method S prepared to search within this set. It is impor-
tant to note that this algorithm uses only the training set T
(i.e., it does not need the test set). Therefore, it can be per-
formed as a pre-process before the inference stage without
affecting the efficiency of the search, but rather the opposite.

Algorithm 1 Training Stage

Input : 7 « {(xi,yi)}l@l

G < CNN topology
S <« Efficient kNN search method
e, b < Epochs, batch size
Output: G, S, Tnc
1 G < FitGwith {T, e, b}
2 Tne < GF(T)
3 S <« Fit § with Tyc¢

The classification of new samples comprises a series of
steps that make use of the data prepared during Algorithm 1.
Specifically, Algorithm 2 shows the formalization of the
classification process using pseudocode. The test sample g is
forwarded through the pre-trained network G to transform its
original features by using the feature layer G/ to obtain its NC
(stored in gyc). The kNN strategy S that has been built during
the training stage is then used to perform the classification.

Algorithm 2 Inference Stage

Input : ¢,G, S, Tnc
Output: N,

1 gne < GP(g)

2 Ny < S(gne, Tne)

In this work we wish to provide a detailed analysis of
the advantages and disadvantages of each of the existing
options as regards performing an efficient kNN classification
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with NC. In this context, it is also interesting to analyze how
the different configurations and parameters affect both the
accuracy (which is strongly related to the accuracy of the
underlying CNN) and the efficiency of the approach. For
instance, in the case of the dimension of the NC, the accuracy
of the network may improve for a particular size, which may
not be optimal for the efficiency of the subsequent kNN
search.

In the proposed scheme, it is possible to adjust the
dimension of the NC by changing the size of the feature
layer GI' from which the NCs are extracted. As previously
stated, the last hidden layer of the CNN is usually used
as the feature layer [9], [46], which typically consists of a
fully connected layer with N artificial neurons. Therefore,
varying the dimension of the NCs simply consists of adding or
removing neurons from this layer and retraining the network
to adjust the weights to the new dimension.

Furthermore, it is necessary to determine the size of the
feature layer. In many cases, this is not empirically evaluated
and the size provided by the network configuration is directly
used, so high-dimensional NCs are often used (e.g., 4096 [9]).
However, it is to be expected that this size will directly affect
both the classification performance and the efficiency of the
search [47]. For example, when using FSS techniques such
as KDTree [14], if the dimensionality of the data is very
large, it can degrade the number of searches performed by
the method, thus making it as inefficient as the performance
of an exhaustive search [48].

The dimension of the NC and many other issues will
be addressed after conducting comprehensive experiments
considering different network configurations, datasets, and
classification scenarios. The experimental plan used to carry
out this analysis is described in the following section.

IV. EXPERIMENTAL SETUP

A. DATASETS

The configuration presented was evaluated with different
datasets selected to depict different numbers of features and
samples. Our evaluation specifically comprises the following
seven datasets of images (summarized in Table 1):

o United States Postal Office (USPS) [49] and MNIST [50]
are datasets of binary images depicting handwritten dig-
its. Each comprises 10 classes (from O to 9).

o Handwritten Online Musical Symbol (HOMUS) [51]
depicts binary images of isolated handwritten music
symbols collected from 100 different musicians.

o NIST SPECIAL DATABASE 19 (NIST) of the National
Institute of Standards and Technology [52] consists of a
dataset of isolated characters.

o CIFAR-10 and CIFAR-100 [53] are standard object
recognition datasets for the computer vision community.
They consist of 32 x 32 color images extracted from the
80 million tiny images dataset [54] and containing 10
and 100 different categories, respectively.

« MIRBOT is a collaborative application for object recog-
nition using a mobile device [55]. The data collected
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TABLE 1. Description of the image datasets used in the experimentation,
including the number of instances, the number of classes, and the input
shape of the samples. The input shape is denoted by ¢ x h x w, where c is
the number of channels of the image (1 for binary or grayscale images
and 3 for color images), h is the height and w is the width.

Name No. of instances Classes Input shape
USPS 9298 10 1x16 x 16
MNIST 70 000 10 1x 28 x 28
HOMUS 15200 32 1 x 40 x 40
NIST 44951 26 1x32x32
CIFAR10 60000 10 3 x 32 x 32
CIFAR100 60000 100 3 x 32 x 32
MIRBOT100 20370 100 3 X 224 x 224

consists of color images of varying sizes, which are
rescaled here to 224 x 224. The application establishes
a hierarchy of classes, depending on the level of detail,
with a varying number of samples for each one. In this
work, we consider the 100 classes with more that are
most representative (MIRBOT-100).

Concerning the pre-processing of the input data, the values
of the pixels from MNIST, HOMUS, and NIST images are
divided by 255 for normalization, whereas the mean image
is subtracted from the CIFAR (10 and 100) and MIRBOT
images. USPS data are already normalized at their origin.

B. CONVOLUTIONAL NEURAL NETWORK MODELS

The hybrid classification scheme requires the definition of a
CNN network configuration. Outperforming the state of the
art as regards the previous datasets is not, however, within
the scope of this paper. We shall, therefore, consider network
models that have been proven to deal well with the corpora in
order to properly evaluate the effectiveness and the efficiency
of the hybrid CNN-kNN scheme. The details of the CNNs for
each dataset are provided in Table 2.

In all cases, the last hidden layer of all the networks con-
sists of a fully-connected layer with N neurons, from which
the NC will be extracted. In the experiments, the implications
of the parameter N will be evaluated empirically. At the time
of training, all these configurations are obviously added with
a Softmax layer of L neurons — where L is the number
of labels or categories in the dataset — from which the
classification is obtained.

The comparison of the hybrid approach CNN-kNN against
the individual kNN or CNN classifiers has already been
addressed in some previous works [59]-[61]. Therefore,
we shall skip this question to focus our experiments on
the efficient k-nearest neighbor search under the hybrid
paradigm, which is the most novel aspect of the present work.

C. EFFICIENT kNN STRATEGIES

Given that there are many different approaches for an effi-
cient kNN search, we have selected a set of representative
strategies from the different families of algorithms that were
introduced in Section II. For the sake of comparison, the con-
ventional kNN search (brute force) has also been included in
the experiments.
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TABLE 2. CNN network configurations considered in order to obtain NC representations from each dataset. Notation Conv(f, w, h) stands for a layer
with f convolution operators of size w x h pixels, FC(n) represents a fully-connected layer of n neurons, Drop(d) implements a dropout stage with a value

of d% and MaxPool (w, h) stands for the max-pooling operator of dimensions w x h pixels.

Dataset | CNN configuration
Conv(32,3,3)
II\J,S\IP;SST Conv(32,33) MaxPool(2,2) FD%I\I()O 5
Drop(0.25) S
HOMUS 1?42%3316(2323)) 151(;?1»%518(238 Conv(128.33) Conv(64x3x3) FC(512) FC(256) FC(N)
NIST Drop(0.2) Drop(0.2) Drop(0.2) Drop(0.2) Drop(0.1) Drop(0.1) Drop(0.1)
CIFARI0 | VGG16 [56] FC(N)
CIFARI00 | ResNet50 [57] FC(N)
MIRBOT100 | Xception [58] FC(N)

- Fast Similarity Search (FSS): In terms of this family
of space partitioning techniques, we have selected the
KDTree [14] and BallTree [16] methods, which have
been configured to evaluate 10, 20, 30, and 40 prototypes
in each leaf node.

- Approximate Similarity Search (ASS): With regard
to approximate search approaches, we have princi-
pally considered the use of hashing techniques, such
as Local Sensitive Hashing (LSH) [20], Spectral Hash-
ing (SH) [21] and Product Quantization (PQ) [22].
We also include the Clustering-based k-Nearest Neigh-
bor (ckNN) algorithm [24] since it is representative of
the use of clustering methods for the purpose in hand.
In this case, we evaluate the algorithm with its proposed
automatic selection of the number of clusters, in addition
to fixed values of 25, 50, 75, 100, 200, and 500.

- Data Reduction (DR): We assessed two different
options for this particular family of approaches: on the
one hand, we considered the Reduction through Homo-
geneous Clusters (RHC) algorithm [31], while on the
other, we tested the meta-algorithm kNNc [35]. This
algorithm receives a DR method as a parameter and con-
siders its reduced set to restrict the search to the c-nearest
classes of the query. We evaluated the parameter c for the
values 1 (which is equivalent to performing the classifi-
cation with only the base DR algorithm), 2, and 3. The

set of base DR algorithms considered is listed below:
— Classical algorithms: Condensing Nearest Neighb-

or [27], Editing Condensing Nearest Neighbor [62],
and Fast Condensing Nearest Neighbor [63].

— Rank methods: Farther Neighbor and Nearest
to Enemy [64], and Instance Rank based on
Borders [65].

— Heuristic methods: Decremental Reduction Opti-
mization Procedure 3 [66] and Iterative Case Fil-
tering Algorithm [67].

A summary of the strategies considered is provided
in Table 3. The interested reader is referred to the referenced
articles for further details on the operation of the strategies
and the meaning of their parameters.
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Furthermore, all the methods have been tested with differ-
ent values of the parameter k of the kNN search, specifically
k=1,3,5, and 7.

D. EVALUATION

In order to analyze the impact of the different strategies for
kNN classification, we take into account both their accuracy
and their efficiency.

Given that some of the datasets are not evenly balanced,
the accuracy metric used for evaluation is the weighted aver-
age of the F-measure (Fm) scores of each class. Fm is a
widely used metric in information retrieval and class imbal-
ance problems [68]. Taking one class as positive and the rest
as negative, at a time, the Fm can be defined by means of
precision and recall as:

.. P
Precision = ———
TP + FP

TP
Recall = ——
TP + FN

Precision - Recall
Fm =

' Precision + Recall

where TP denotes the number of true positives, FP denotes
the number of false positives, and FN denotes the number
of false negatives. Given that the ground-truth of our data
is the true category of each sample, we can easily compute
these metrics comparing the ground-truth category with the
category determined by the kNN strategy.

In terms of efficiency, the execution time would be an
interesting measure to consider. The problem is that it con-
tains a high level of subjectivity and imprecision that depends
on many factors that are not related to the goodness of
the strategies considered: implementation, programming lan-
guage, underlying computing architecture, and so on. In order
to measure the efficiency more objectively, we shall consider
the algorithmic cost of each strategy as O(DN), where D is
the number of distances to be computed and N is the dimen-
sion of the samples. Note that the distance considered is
always the Euclidean distance, because NC is a numeri-
cal feature representation. The proposed cost is, therefore,
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TABLE 3. Summary of the different efficient kNN strategies considered in this work, along with their identifiers, algorithmic family and set of parameters.
In all cases, the methods have been tested with different values of the parameter k of the kNN search, specifically k =1, 3,5, and 7.

Algorithm Identifier Family Parameters evaluated

k-Nearest Neighbor kNN -

KDTree [14] KDTree FSS leaf € {10, 20, 30,40}

BallTree [16] BallTree FSS leaf € {10, 20, 30,40}

Local Sensitive Hashing [20] LSH ASS trees € {10, 20, 30,40}

Spectral Hashing [21] SH ASS nbits € {40, 80,100,120}

Product Quantization [22] PQ ASS nsubq € {1,2,4,8}

Clustering-based k-Nearest Neighbor [24] ckNN ASS ¢ € {auto, 25, 50, 75, 100, 200, 500}

Reduction through Homogeneous Clusters [31] RHC DR

Condensing Nearest Neighbor [27], [35] CoNN DR ke {1,3,5,7}ce{1,2,3}

Editing Condensing Nearest Neighbor [35], [62] ECNN DR ke {1,3,5,7}ce{1,2,3}

Fast Condensing Nearest Neighbor [35], [63] FCNN DR ke {1,3,5,7},c€{1,2,3}

Farther Neighbor [35], [64] FN DR ke {1,3,57}ce{1,2,3Lr=0.1

Nearest to Enemy [35], [64] EN DR ke {1,3,5,7}ce{1,2,3}, r=0.1

Instance Rank based on Borders [35], [65] IRB DR ke {1,3,5,7}ce{1,2,3},r=0.1

Decremental Reduction Optimization Procedure 3 DROP3 DR ke {1,3,5,7},ce{1,2,3}

[35], [66]

Iterative Case Filtering [35], [67] ICF DR ke{1,3,5,7},c€{1,2,3}
closely related to the actual computational cost of performing V. RESULTS

a classification with these strategies. In our results, the actual
cost reported will be that normalized by the highest cost (that
obtained by performing all possible distances with the largest
NC size), signifying that the value remains in a range between
0 and 100 (%).

These measures (Fm and cost) allow us to analyze the
performance of each of the strategies considered. Neverthe-
less, no comparison between the whole set of alternatives
can be established in order to enable us to determine which
is the best. The problem is that these strategies attempt to
minimize the computational cost at the same time as they
attempt to increase accuracy. These two goals are, quite
often, contradictory, and improving one of them consequently
implies a deterioration in the other. From this point of view,
efficient kNN classification can be seen as a Multi-objective
Optimization Problem (MOP) in which two functions are
optimized at the same time: accuracy and efficiency. The
common means employed to evaluate this kind of problems is
the non-dominance concept. One solution is said to dominate
another if, and only if, it is better or equal in each goal
function and, at least, strictly better in one of them. The best
solutions (there might be more than one) are consequently
those that are non-dominated.

The strategies considered will, therefore, be evaluated
by assuming a MOP scenario in which each of them is
a 2-dimensional solution defined as (Fm,cost). In order to
analyze the results, the pair obtained by each scheme will be
plotted on a 2D point graphs on which the non-dominated
set of pairs will be highlighted. In the MOP framework,
the strategies within this set can be considered to be the best
without defining any order amongst them [69].
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A. NC PARAMETERIZATION

In this first experimental section, we wish to evaluate how
the parameterization of NC affects the accuracy and the effi-
ciency of the conventional kNN approach. Although this will
also be seen in the next section, the use of efficient techniques
for kNN does not allow us to properly evaluate these specific
issues in detail.

We believe that the most important parameter of the NC
configuration is the size of the neural layer from which they
are extracted, which represents the dimensionality of the NC
itself.

In addition, we have considered the use of the £, norm for
the normalization of the NC [8]. If x is a vector of size N
which represents the NC, the £, norm is defined as:

N
= | Il
k=1

In our preliminary experiments, the use of the £, led to
a statistically significant improvement in terms of accuracy
(Wilcoxon signed-rank test with « > 0.01), so we shall from
here on report the results regarding this normalization.

Figure 2 shows the results obtained in this first experiment.
The evolution of the accuracy with respect to the size of the
NC (in logarithmic scale) is depicted. Obviously, when the
number of dimensions is very small (i.e., 1, 2, or 4), the NC
does not represent the samples at all well and very poor
performances are attained. As the dimensionality increases,
the growth is very pronounced and quickly stabilizes at
around 64 and 128, from which values fluctuate in a less
significant manner.
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FIGURE 2. Performance of the conventional kNN in terms of both
accuracy (Fm) and efficiency (cost) with respect to the size of the NC.

The cost of performing the kNN search with respect to
the size of the NC is also represented in Fig. 2. As all the
results of this experiment have been obtained under the same
conditions (same source code and environment), in this case
the decision was made to use the time in milliseconds as a
measure of cost. Observe, as mentioned previously, that the
cost is closely related to the size of the NC since the cost of
the distance is proportional to it. The most interesting aspect
of this experiment worth noting is that, while increasing the
size of NC always increases the computational cost, it is not
necessary to use the highest dimensionality to attain the best
performance in terms of accuracy.

Another parameter that directly influences both the Fm
and the cost of the search is the size of the training set.
A trivial way to increase the search efficiency is to reduce
the size of this set, however, if the deleted prototypes are not
correctly selected by a DR algorithm, this would significantly
affect the Fm obtained. As previously argued, the perfor-
mance of the classifier improves as the training set increases
because the likelihood of finding similar prototypes is higher.
In addition, it has been demonstrated that its error is bounded
by twice the Bayes error when the number of training sam-
ples approaches infinity [3]. To evaluate this fact with the
datasets considered in this paper, Fig. 3 shows the average Fm
obtained by increasing the size of the training sets (note that
for this experiment, the prototypes removed from the datasets
were selected at random). As can be seen, when the search set
is very small (less than 15%) the Fm is abruptly reduced. This
result improves as the size increases and, even when the size
is close to the total number of samples, a slight upward trend
is observed. For this reason, the rest of the experiments will be
conducted using the complete training set, with the intention
that the improvement attained can only be attributed to the
efficient kNN search method used.

B. EFFICIENT SEARCH PERFORMANCE
In this section we present the results of the comparison of
the different efficient strategies. Since the size of the NC
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FIGURE 3. Average Fm obtained by varying the size of the training set.

representation might have implications as regards the opera-
tion of these strategies, we shall compute the evaluation met-
rics by taking into account the different NC sizes considered
in the previous section. Likewise, for all cases, odd values of
k from 1 to 9 will be used for classification. Considering all of
the above, the number of experiments comes to a total of 1 600
per dataset. The average values amongst all the dataset-wise
results will be reported.

Given this amount of experiments, we shall divide the anal-
ysis of the results in such a way that detailed conclusions can
be drawn. We shall first carry out a global analysis in which
all the strategies of the different families will be evaluated
simultaneously, after which we shall present the results by
focusing on each individual family.

YR Sibeane ¢ < . > . . NC
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FIGURE 4. Average results of 1, 600 selected experiments in terms of
both accuracy (Fm) and efficiency (cost).

1) GENERAL COMPARISON
Figure 4 represents the whole set of experiments carried out.
Each strategy for a particular parameter set represents a pair
in the (Fm, cost) evaluation space. These pairs are extracted
as the averages of the classification experiments with all the
datasets, such that the results represent better general trends.
As stated previously, our priority will be the analysis of
non-dominated points, since we consider that they represent
the optimal set in terms of efficiency and effectiveness within
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all the experiments. This is also considered for the sake of the
analysis, given that the huge amount of experiments carried
out does not allow us to analyze every single result in detail.
The set of non-dominated points is highlighted in the afore-
mentioned figure, in addition to being detailed in Table 4. The
family to which each algorithm belongs is also included.

TABLE 4. List of algorithms (with parameters) that belong to the general
non-dominated frontier.

Family = Label NC  Params Cost Fm

DR ECNN 2 k=l;ce=L;r=1.0 0.05 20.63
DR IRB 32 =7;c=1;r=0.1 0.06 80.49
DR IRB 128  k=5;c=1;r=0.1 0.07 81.71
DR 1I-NE 8 k=5;c=1;r=0.1 0.09 83.17
DR IRB 8 =3;c=1;r=0.1 0.12 84.53
ASS ckNN 128  k=3; c=auto 1.30 86.95
ASS ckNN 512 k=3; c=auto 1.56 87.35
ASS ckNN 512 k=7;¢=500 262 87.54
FSS KDTree 512  k=3;leaf=10 8.61 87.76

An initial remark to begin with is that the set of non-
dominated results is fairly reduced, signifying that few
algorithms are really competitive. As expected from the def-
inition of non-dominance, all these results represent differ-
ent levels of the trade-off between accuracy and efficiency.
We can observe a clear trend with respect to the family of
algorithms to which they belong. First, we find the ECNN
algorithms (NC = 2), IRB (NC = 32, 128), and 1-NE
(NC =38), of the DR algorithm family, which achieve the
highest efficiency. In some cases, like the first, this is at
the expense of decreasing the Fm to an unacceptable level
(20.63). On the opposite side, we find the KDTree algorithm
(NC = 512) from the FSS family, which obviously attains
the best accuracy by performing an exact search at the cost
of having the worst efficiency in the non-dominated set. The
ASS family is at the center of both evaluation parameters
since it contains algorithms that are more efficient than FSS
and more accurate than DR. In this case, a single algorithm
ckNN (NC = 128, 512) is found, whose different configura-
tions make it possible to approach either higher effectiveness
or higher efficiency.

With regard to the size of NC, we can observe that there is
no fully-established regularity. However, the non-dominated
results that achieve the highest accuracy generally consider a
larger NC, none of which exceeds 512.

2) FAST SIMILARITY SEARCH RESULTS

The results obtained by the algorithms of the FSS family
are discussed below. Since these strategies are equal to the
conventional kNN in terms of accuracy, the only issue to
evaluate here is the efficiency attained. Note that this may
lead to confusion given that, by modifying the size of NC and
the parameter k, we will obtain different levels of Fm (but all
of them have a result that is analogous with all the distances
computed). Note that each size of NC considered represents
a totally new CNN training.
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FIGURE 6. Relevant region of the FSS non-dominated frontier in terms of
both accuracy (Fm) and efficiency (cost). The blue dashed line represents
the general non-dominated frontier.

The results of this single family are shown in Fig. 6,
in which the non-dominated points within this set are high-
lighted. The general non-dominated front is also included as
a reference (dashed line) in order to show, in a graphic man-
ner, how the FSS family behaves with respect to the global
context. The detailed non-dominated results are presented
in Table 5.

TABLE 5. List of FSS algorithms (with parameters) that belong to their
specific non-dominated frontier. Results appertaining to the general ND
frontier are marked with an asterisk (*).

Label NC  Params Cost Fm

KDTree 8 k=3;leaf=10 045 80.10
KDTree 16  k=3;leaf=10 0.47 84.84
KDTree 32 k=3;leaf=10 1.53 85.72
KDTree 64  k=3;leaf=10 3.10 86.71
KDTree 128  k=3;leaf=10 523 87.34
KDTree* 512 k=3;leaf=10 8.61 87.76

In the case of the FSS family, all the best results are

obtained by the KDTree algorithm, for which different NC
values form the non-dominance front. It is interesting to note
that, while the computational cost falls proportionally to the
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size of NC, the accuracy does not follow such a linear factor.
This means that, thanks to the parameterization of the NC, it is
possible to attain a relatively low cost without being far from
the best accuracy. It should be emphasized, however, that this
has a limit because very low values of NC (below 16) lead to
a notable loss of accuracy.

In relation to the general results, we can observe that this
family only contributes with a single interesting point: that
which achieves the best accuracy with a moderate cost. The
remaining FSS results are dominated by other configurations.
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FIGURE 7. Relevant region of the ASS non-dominated frontier in terms of
both accuracy (Fm) and efficiency (cost). The blue dashed line represents
the general non-dominated frontier.

3) APPROXIMATE SIMILARITY SEARCH RESULTS

As observed in the general comparison, the ASS family is
that which has an equable trade-off between accuracy and
efficiency. Figure 7 depicts the relevant region of the eval-
uation space with the non-dominated points of this family of
algorithms (detailed in Table 6).

TABLE 6. List of ASS algorithms (with parameters) that belong to their
specific non-dominated frontier. Results appertaining to the general ND
frontier are marked with an asterisk (*).

Label NC  Params Cost Fm

SH 2 nbits=40 0.19 13.16
ckNN 16  k=3;c=auto 092 84.68
ckNN 32 k=3; c=auto 1.02 85.45
ckNN 64  k=3; c=auto 1.17 86.52
ckNN* 128  k=3; c=auto 1.30 86.95
ckNN* 512 k=3;c=auto 1.56 87.35
ckNN* 512 k=7;¢=500 262 8754
LSH 512 trees=40 399 87.59

Most of the non-dominated set of ASS algorithms orig-
inates from the ckNN algorithm, whose parameterization
manages to cover almost the entire front. The exceptions are
the SH algorithm (NC = 2), which achieves the lowest cost
but becomes irrelevant owing to its very poor accuracy, and
the LSH algorithm, which slightly improves the accuracy of
the best ckNN by a small margin.

Figure 7 also depicts the general non-dominated frontier,
in which the goodness of the non-dominated algorithms of
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this family in relation to the general results will be clearly
observed. On the one hand, the rest of the non-dominated
front with higher precision barely outperforms them with
little margin, and on the other, the non-dominated points with
a lower cost begin to show a remarkable drop in terms of Fm.
It can, therefore, be concluded that the ASS algorithms have
a very interesting trade-off between accuracy and efficiency
with respect to the general results.

4) DATA REDUCTION RESULTS

As mentioned above, the DR family appears on the general
non-dominance front as a representative of the lowest com-
putational costs. The problem, as stated in Section 2, is that
this may lead to a relevant loss of accuracy. Figure 8 depicts a
zoomed region of the evaluation space covering the relevant
non-dominated front formed by DR algorithms. The details of
the results appertaining to that front are provided in Table 7.
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FIGURE 8. Relevant region of the DR non-dominated frontier in terms of
both accuracy (Fm) and efficiency (cost). The blue dashed line represents
the general non-dominated frontier.

TABLE 7. List of DR algorithms (with parameters) that belong to their
specific non-dominated frontier. Results appertaining to the general ND
frontier are marked with an asterisk (*).

Label NC  Params Cost Fm

ECNN* 2 =1;c=1;r=1.0 0.05 20.63
IRB* 32 k=7;c=1;r=0.1 0.06 80.49
IRB* 128  k=5;c=1;r=0.1 0.07 81.71
1-NE* 8 =5;¢c=1;r=0.1 0.09 83.17
IRB* 8 k=3;c=1;r=0.1 0.12 84.53
RHC 128 1.91  86.27
RHC 512 2.65 86.79

The figures show a heterogeneous non-dominated front
formed by several algorithms. Nevertheless, the differences
in their results are rather limited. The front is formed of
several results because small increases in cost lead to small
increases in accuracy. Given these small differences, the most
interesting case may be that of IRB (NC = 8), which obtains
the best accuracy (84.53 of Fm) of all the algorithms with a
cost below 1%. Note that this algorithm also belongs to the
general non-dominated front.
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The RHC algorithm is also presented as an interesting
alternative within the DR family, as it barely increases the
cost and obtains a noticeably higher accuracy. In relation to
the general non-dominance front, however, we can observe
that this algorithm is dominated by other results with higher
accuracy and similar cost (namely ckNN).

C. STATISTICAL FEATURE TRANSFORMATION

In our last series of experiments, we shall evaluate the oper-
ation of the efficient algorithms for a kNN search when a
statistical transformation of the feature space is applied to
the NC. To this end, we consider the Linear Discriminant
Analysis (LDA) [70] and the Principal Components Analysis
(PCA) [71] algorithms, both of which are usually considered
for this purpose [72], [73].

These techniques perform a linear transformation of the
data in pursuit of different objectives. LDA seeks a subspace
in which the classes in question are better discriminated.
PCA, on the other hand, seeks a subspace in which the basis
vectors have a maximum variance. One important difference
is that LDA is a supervised technique — it requires the labels
of each sample — whereas PCA is unsupervised. In our
experiments, LDA makes use of the Eigenvalue decomposi-
tion with the optimal-shrinkage covariance estimator using
Ledoit and Wolf lemma [74], while the PCA implementation
automatically selects the number of components such that
the amount of variance that needs to be explained is greater
than 0.95.

In this case, in order to restrict the number of experiments
to be carried out, we have considered only those algorithms
that are non-dominated in any of the results reported above.
The experiments carried out for all NC sizes of these algo-
rithms were, therefore, repeated by applying LDA and PCA
before performing the classification and computing the eval-
uation measures.

The non-dominated results obtained after applying LDA
are shown in Table 8. As occurred in the previous section,
the non-dominance front is formed of DR algorithms in the
cases of lower cost, of FSS in the cases of higher precision,
and of ASS in the intermediate cases. The difference, in this
case, is that we can observe results obtained with initially
large NC, which are dramatically reduced by the use of LDA.

TABLE 8. List of algorithms (with parameters) that belong to the
non-dominated frontier of the LDA mapping.

Family  Label NC  Params Cost Fm % LDA reduction
DR RHC 16 0.10  73.50 18.75
DR RHC 4096 0.12  84.98 99.02
DR RHC 1024 0.13  85.08 96.08
ASS ckNN 4096  k=7;¢=200 1.14  86.71 99.02
ASS ckNN 1024 k=7; ¢=500 1.52  87.08 96.08
FSS KDTree 1024 k=7;leaf=10 7.14 87.22 96.08

The analogous case with PCA is shown in Table 9.
As might be expected of an unsupervised technique, the accu-
racy is relatively lower than that obtained with LDA. How-
ever, the trend is similar: PCA makes it possible to start with
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TABLE 9. List of algorithms (with parameters) that belong to the
non-dominated frontier of the PCA mapping.

Family  Label NC  Params Cost Fm % PCA reduction
DR RHC 32 0.11 7631 48.13
ASS ckNN 64 k=7;¢=200 1.12 83.98 63.59
ASS ckNN 32 k=7;c=100 1.15  84.08 48.13
ASS ckNN 512 k=7; ¢=500 1.76 ~ 85.14 87.97
ASS LSH 4096  trees=40 2.62  85.67 97.24
DR ECNN 1024 k=l;c=3;r=1.0 1072 86.32 92.45

larger NCs that are reduced by this technique. It is, however,
striking that no FSS representative appears. The most plausi-
ble explanation for this is that PCA produces noise, which is
better dealt with by non-exact algorithms.
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FIGURE 9. Relevant region of the LDA/PCA non-dominated frontier in
terms of both accuracy (Fm) and efficiency (cost). The blue dashed line
represents the general non-dominated frontier.

About measuring the goodness of applying these trans-
formations with respect to the general results, Fig. 9 shows
the area of interest of the results, highlighting both the
non-dominated results from LDA and PCA and those orig-
inally obtained. Note that neither LDA nor PCA obtain much
better results than those originally attained. The case of PCA,
whose results are clearly dominated by the general results,
is particularly noteworthy. Furthermore, while LDA is com-
petitive, it does not represent a clear improvement in all cases
either. Despite not being formally demonstrated, we believe
that this may be caused by the use of NC, which already
makes a (non-linear) transformation to an appropriate sub-
space, leaving no room for these techniques to improve the
performance. However, if it is necessary to use a pre-trained
network that cannot be modified, and whose last hidden
layer is large (eg. larger than 512 neurons), then it would be
appropriate to use this type of techniques, especially LDA.

VIi. DISCUSSION

We will jointly analyze the results obtained during exper-
imentation in this section. Based on this analysis, we will
provide some “‘rule of thumb” for the use of specific com-
binations within the CNN-kNN paradigm according to the
needs of the application scenario.
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TABLE 10. List of best algorithms (with parameters) that belong to the non-dominated frontier of the NC, LDA and PCA mapping with FSS, ASS and DR
families. Table is sorted ascending by Cost value. The global non-dominated are marked with v at the last column.

Type Family  Algorithm NC  Params Cost Fm  Precision Recall Global ND
NC DR ECNN 2 =1;c=1;r=1.0 0.05 20.63 22.04  29.59 v
NC DR IRB 32 k=7;c=1;r=0.1 0.06  80.49 81.32  80.54 v
NC DR IRB 128 =5; c=1;r=0.1 0.07 81.71 82.57 81.72 v
NC DR 1-NE 8 k=5;c=1;r=0.1 0.09 83.17 84.72  83.34 v
LDA DR RHC 16 0.1 73.5 7559 7447

PCA DR RHC 32 0.11  76.31 77.03  77.16

NC DR IRB 8 =3; c=1;r=0.1 0.12 8453 86.13 84.35

LDA DR RHC 4096 0.12  84.98 85.75 85.11 v
LDA DR RHC 1024 0.13  85.08 8520 8557 v
PCA  ASS ckNN 64 k=7;c=200 1.12 83.98 8492  83.75

LDA ASS ckNN 4096  k=7;c=200 1.14  86.71 87.16  86.68 v
PCA  ASS ckNN 32 k=7;c=100 1.15  84.08 84.85 83.91

NC ASS ckNN 128  k=3; c=auto 1.3 86.95 87.46  86.83

LDA  ASS ckNN 1024 k=7; c=500 1.52  87.08 8732  87.14

NC ASS ckNN 512 k=3; c=auto 1.56  87.35 87.58 87.41 v
PCA  ASS ckNN 512 k=7;¢=500 176 85.14 85.71 85.10

NC ASS ckNN 512 k=7; ¢c=500 2,62 8754 87.98 87.58 v
PCA  ASS LSH 4096  trees=40 2,62  85.67 8596  85.61

LDA FSS KDTree 1024 k=7; leaf=10 7.14 8722 87.44 8734

NC FSS KDTree 512 k=3;leaf=10 8.61 87.76 88.12  87.76 v
PCA DR ECNN 1024 =1;¢c=3;r=1.0 10.72 86.32 86.95 86.23

To provide an overview, Table 10 shows the set of best
algorithms for each representation family (NC, LDA, PCA)
from previous sections, where the new non-dominance front
has been recalculated (““Global ND’’ column). These results
are graphically shown in Fig. 10. Note that, in this case,
we also add Precision and Recall metrics, in addition to the
Cost and Fm. However, it can be observed that, unless few
relevant exceptions, both Precision and Recall report very
similar figures, and so that the Fm can be reliably used as
a summary of the overall accuracy.
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FIGURE 10. Best results of NC, LDA and PCA with non-dominated frontier
in terms of both accuracy (Fm) and efficiency (cost). The black dashed line
represents the general non-dominated frontier.

The first thing to remark in this final summary is
that, among the best configurations (not dominated),
we find both representations directly extracted from the
neural network (NC) and those obtained after performing
the supervised statistical transformation (LDA), while the
unsupervised statistical transformation (PCA) is relegated by
previous ones.
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Furthermore, following the non-dominated front we
observe that it navigates through the different families of
algorithms, regardless of the representation. The set with
the lowest cost is formed by those combinations with DR
algorithms, followed by ASS, and then FSS. The represen-
tation does have a higher relevance concerning the Fm, as the
non-dominated combinations that obtain the best results for
this metric use NC.

With the idea of providing a useful analysis for researchers
and developers who wish to use the CNN-kNN paradigm,
we believe that our exhaustive experimentation, objectively
summarized in Table 10 and Fig. 10, can provide the follow-
ing conclusions in this regard:

o« When prioritizing efficiency, DR should be used.
For example, a good combination is RHC with NC
of 1024 dimensions and transformation by LDA (global
average: 85.08 of Fm and 0.13 of cost).

o For a trade-off between efficiency and accuracy,

the ASS family should be considered. Specifically,
our experiments report that ckNN is the most appro-
priate algorithm, as many of its combinations appear
in the global non-dominated front. For example,
one might want to use ckNN[k=3;c=auto] with NC
of 512 dimensions (global average: 87.35 of Fm and 1.56
of cost).
If accuracy is the most important criterion, FSS is the
right choice because it always reports the highest figures.
According to our experiments, KDTree[k=3;leaf=10]
with NC of 512 dimensions gets the highest accuracy
with reduced cost (global average of 87.76 of Fm and
8.61 of cost).

As seems clear from this list of rules, there is no single
algorithm that outperforms the rest in all cases; however,
we have been able to draw conclusions that can be generalized
to different use-cases, since they have been based on a large
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number of experiments, datasets, algorithm combinations,
and parameterizations.

A. RUNTIME COST

In our previous sections, the algorithmic cost was used for
the evaluation of the efficiency because the runtime is a sub-
jective measure that, as discussed before, depends not only
on the underlying hardware but also on the implementation,
the programming language, and the libraries used. However,
intending to analyze the efficiency improvement more intu-
itively — using real units (milliseconds) and not percentages
with respect to the total cost —, we report in Table 11 a com-
parison of the runtime. All the experiments were carried out
using the Python programming language, and the TensorFlow
(v. 1.14) and Scikit-learn (v. 0.20) libraries. The machine used
consists of an Intel(R) Core(TM) 17-8700 CPU @ 3.20GHz
with 23 GB RAM and a Nvidia GeForce GTX 2080 GPU with
cuDNN library.

TABLE 11. Search time (in milliseconds) of the kNN method (brute force)
compared to that of the cKNN method [k=3;c=auto;NC=512] for the
different datasets evaluated.

ms. / query
Dataset Training set size KNN  ckNN
USPS 7444 49.24 6.02
MNIST 56004 413.61 2.39
HOMUS 12160 79.41 4.64
NIST 35972 240.69 2.84
CIFAR10 48000 338.94 2.62
CIFAR100 48000 325.47 2.54
MIRBOT100 16275 114.23 4.10
ImageNet 1281167  8687.14  54.72

For this experiment, the ckNN with k = 3, ¢ = auto and
NC representation of 512 was chosen, since it is one of the
global NDs that obtained a more balanced performance in
terms of Fm and cost. This table makes a comparison of the
results obtained by this algorithm with those obtained by the
original kNN method (which performs an exhaustive search),
with the intention of comparing the temporal improvement.
In addition, the result obtained with a much larger dataset is
also included: ImageNet [75], a generic-purpose dataset for
object classification used in the Large Scale Visual Recogni-
tion Challenge (ILSVRC) with a total of 1,331,167 instances
of 224 x 224 pixels color images divided into 1,000 classes.
In this case, the MobileNet v2 [76] network topology was
used to extract the NCs. For this, we first initialized the
network with the pre-trained weights from the ILSVRC
dataset, and then we fine-tuned these weights for the new NC
layer size.

As can be seen, the proposed approach is able to reduce
the search time significantly in all cases, especially with
datasets with a larger search space (i.e., training set size).
For example, the search time in MNIST goes from taking
almost half a second to just a couple of milliseconds. This
difference is even more noticeable if we pay attention to the
ImageNet case, since it goes from taking 8.7 seconds to only
54 milliseconds. With datasets with a smaller search space,
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such as USPS, HOMUS, or MIRBOT 100, an improvement is
also achieved but not so significant, showing that the efficient
search used by ckNN makes the most of large-scale data.

VII. CONCLUSIONS

In this work, we have presented a comprehensive experimen-
tal study on the use of an efficient k-Nearest Neighbor search
when the space of features is represented by activations of the
last layers of a neural network (Neural Codes). The recent
advances in neural networks, namely Convolutional Neu-
ral Networks (CNN), make this hybrid scheme potentially
profitable since higher accuracy can be obtained than with
conventional feature extraction processes. This also opens
up the possibility of tuning the dimensionality of the feature
space, which may affect both the accuracy and the efficiency
of the process.

In order to make a comparison that covers most of the
possibilities of this hybrid CNN-kNN approach, we have car-
ried out experiments considering several datasets, and many
different types of efficient kNN search, which have been
grouped into three families of algorithms: Fast Similarity
Search (FSS), Approximate Similarity Search (ASS), and
Data Reduction (DR).

First, an experiment was conducted in which the impact
of the NC size in terms of effectiveness and efficiency on the
conventional kNN search was evaluated. It was observed that,
although a larger size of NC always proportionally increases
the cost, the accuracy does not follow such a linear pattern.

In the case of efficient search algorithms, it was noted that
the cost can be greatly reduced with respect to the conven-
tional kNN search. This has been demonstrated in terms of
both algorithmic cost and runtime cost — with significant
reductions. However, these algorithms often reduce the accu-
racy of the classification, thereby forming a heterogeneous
set of non-dominated results. In general, the non-dominance
front is formed of DR algorithms for the lowest costs, of FSS
algorithms for the highest accuracies, and of ASS algorithms
in the intermediate cases. Concerning the statistical transfor-
mations, we have observed that their use does not lead to
significant improvements generally; however, the combina-
tion of LDA with ASS techniques does produce some optimal
combinations.

We believe that this work opens up new perspectives with
which to develop efficient search algorithms for kNN. To do
this, our goal with respect to future research is to move
towards algorithms that are able to perform this search very
efficiently without losing accuracy. A good line in this respect
would be to include this objective in the CNN loss function,
such that the NC not only represent the samples well but also
organize themselves better in the NC space.
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