IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received April 27, 2020, accepted May 15, 2020, date of publication May 25, 2020, date of current version June 4, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2997473

QRS Complex Detection Using Novel
Deep Learning Neural Networks

WENIJIE CAI™ AND DANQIN HU

School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China

Corresponding author: Wenjie Cai (wjcai @usst.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 31830042.

ABSTRACT Objective: Accurate QRS complex detection is essential for electrocardiography (ECG)
diagnosis. Many proposed algorithms don’t perform satisfactorily on noisy and arrhythmia ECGs. The
purpose of this study is to develop a noise resistant and generalizable method to detect QRS complexes
accurately. Methods: Two deep learning models based on multi-dilated convolutional blocks are proposed.
One model (CNN) is mainly composed of convolutional blocks and Squeeze-and-Excitation networks
(SENet). The other model (CRNN) contains a hybrid convolutional and recurrent neural network. With
5-fold cross-validation approach the models are trained and tested on four open-access ECG databases:
the China Physiological Signal Challenge (2019) database (CPSCDB), the MIT-BIH Noise Stress Test
Database (NSTDB), the MIT-BIH Arrhythmia Database (MITDB) and the QT Database (QTDB). Results:
The F1 score of CNN model on CPSCDB, NSTDB, MITDB and QTDB are 0.9929, 0.9892, 0.9994 and
0.9998 respectively. The F1 score of CRNN model on these four databases are 0.9947, 0.9953, 0.9995 and
0.9998 respectively. The ensemble of both models scored the first place in the China Physiological Signal
Challenge (2019). Conclusion: The proposed models achieve state-of-the-art performance in QRS complex
detection and show good generalization on different databases. This work might help make better ECG
diagnosis.

INDEX TERMS Convolutional neural network, deep learning, electrocardiography, QRS complex, recurrent

neural network.

I. INTRODUCTION

Cardiovascular diseases (CVD) are the leading cause of death
globally, taking around 17.8 million lives each year [1].
Electrocardiogram (ECG) is the most widely used diagnostic
tool for CVD. It is easily performed, noninvasive and can give
immediate information. About 3 million ECGs are produced
each day throughout the world [2]. With the development
of wearable devices, more and more ECGs are generated
for analysis. Automated diagnostic methods are required to
process ECGs generated by wearable devices and to reduce
doctors’ workload. Many diagnostic methods are based on
accurate QRS complex detection. QRS complexes serve as
the beat positions and provide information about rhythm
and intraventricular conduction. Normally they are the most
prominent parts of the ECG and can be easily identified by
human eyes. A lot of algorithms have been developed to
automatically detect QRS complex since several decades ago.
Common QRS complex detectors share a two-stage structure
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including the preprocessing stage and the decision stage [3].
The preprocessing stage takes advantages of linear filtering
and non-linear transformation to enhance QRS complex and
attenuate other waves, noises and artifacts. The decision
stage establishes the peak detection logic and additional
decision rules to optimize the detection results. The popu-
lar methods include digital filtering [4], [5], wavelet trans-
form [6]-[9], empirical mode decomposition [10], Hilbert
transform [5], [8], and machine learning [11], [12]. A recent
study tested ten widely used QRS detection algorithms on
six ECG databases with varying degrees of noise and found
that these algorithms showed very high detection accuracy on
high quality ECG databases but poor accuracy on low quality
ECG signals [13]. For long-term ECG monitoring, intermit-
tent strong noise is unavoidable due to patient movement,
muscle activity or even loose lead contact. It still remains
a challenge to locate them accurately on noisy arrhythmic
ECG.

Deep learning has been very successful in computer vision,
natural language processing and speech recently. It’s reported
that a deep neural network achieved better than average
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FIGURE 1. Schematic diagram for the proposed QRS complex detection method.

cardiologists in classifying 12 rhythm classes ECG [14]. And
there have already been a few deep learning approaches to
detect QRS complexes. Wang et al. proposed two parallel
residual neural network (ResNet) like deep neural networks
and achieved positive predictive value of 99.98% and sensi-
tivity of 99.92% on ECG data from the MIT-BIH Arrhythmia
Database (MITDB) [15]. However, they discarded 2 records
and the last 4.44 seconds of each remaining record, which
might attenuate the model’s generalization. Xiang et al. con-
structed two-level convolutional neural network and got pos-
itive predicted value of 99.91% and sensitivity of 99.77%
for the MITDB data [16]. Yang et al. turned one dimen-
sional ECG into two dimensional picture and used a faster
Regional CNN model to detect QRS complexes. They tested
the model on 24-h wearable ECG recordings and got a sensi-
tivity of 98.76% and a positive predictively of 98.52% [17].
These results are comparable to state-of-the-art approaches
and show promising application of deep learning in QRS
complex detection. However, according to the research done
by Habib er al., the CNN model didn’t generalize well
when the testing database was different from the training
database [18]. A more generalized and robust QRS detector
is required for real application.

The aim of this study is to propose a noise-resistant deep
learning method that reaches cutting edge performance for
QRS complex detection and generalizes well in different
ECG databases. Our algorithms won the first place in the
CPSC2019 and achieved state-of-the-art accuracies on three
other common ECG databases.

Il. DATABASES

The China Physiological Signal Challenge (2019) database
(CPSCDB) consists of 5232 single-lead ECG recordings
which were collected from patients with CVD [19]. It con-
tains many noisy ECG excerpts together with various arrhyth-
mia patterns. All recordings are sampled at 500 Hz and
each is 10 s long. The training set has 2000 recordings
and was used for training. The test set has 3232 record-
ings and was used for algorithm performance evaluation by
the challenge committee. This database can be accessed at
http://2019.icbeb.org/Challenge.html.

MITDB consists of 48 half-hour two-lead ECGs which are
sampled at 360 Hz [20]. It’s the most popular standard ECG
database tested for QRS detection algorithms. Because there
is only one record that contains ventricular flutter segments,
model training and testing can’t be reasonably arranged.
In the same way as others [7], [10], [21] we also excluded
the ventricular flutter segments in record 207 and used all
109494 beats in this study.
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FIGURE 2. Preprocessing for removing towering spikes.

NSTDB has 12 half-hour ECG recordings. These
recordings were created by adding calibrated amounts of
noise to two clean records (118 and 119) fm MITDB. The
noise signal was added intermittently after the first 5 min of
each record. The signal-to-noise ratios (SNR) of the noisy
segments are: 24, 18, 12, 6, 0, —6 dB [22].

QTDB contains 105 fifteen-minute two-lead recordings
which have various QRS and ST-T morphologies. 23 records
have no annotations and the remaining 82 records were
selected for our research. These recordings have a sampling
rate of 250 samples per second. To be consistent with most
reports, the first lead data in these three databases were used
in this study.

lll. METHODS

The flowchart of our proposed method is shown in Figure 1.
The raw ECG is preprocessed and then fed into a deep learn-
ing model. The model’s output information is further judged
by the decision rules to obtain the final result.

A. PREPROCESSING

Single towering spike whose voltage is more than 20 mV
is examined and replaced by the normal sample immedi-
ately before it (Figure 2). These spikes are only existed in
CPSCDB and the spike removal algorithm makes no change
to the recordings in other three databases. All ECG recordings
are resampled to 500 Hz using fast Fourier transformation
method. To achieve better model generalization, the mean
of signal values is subtracted for each recording. No further
preprocessing such as differentiating, normalization or noise
filtering is required.
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FIGURE 3. The architectures of proposed deep learning models. (a) CNN model. (b) CRNN model. (c) The architecture of

each dilated block.

TABLE 1. Details of the dilated blocks.

Layer Ke.rnel Dilation Rate
Size Block1 Block2 Block3

Conv1 11 1 2 4
Conv2 7 1 2 4
Conv3 7 1 4 8
Conv4 5 1 8 16
Convb 5 1 8 32
Conv6 5 1 8 64

B. PROPOSED DEEP LEARNING MODELS

The proposed CNN model is shown in Figure 3a. There
are three parallel dilated CNN blocks following the input
layer and each convolutional block contains six 1D con-
volution layers (Figure 3c). The first convolution layer has
the kernel size of 11. The second and third convolution
layers are stacked and have the kernel size of 7. The rest
three convolution layers are also stacked with the kernel size
of 5. Different sets of dilation rate for convolution layers
were designed for these dilated blocks. A dilation rate of 2
means a convolution takes every other point as the input.
The combination of different dilation rates is to get different
receptive fields for the output neurons. The details are shown
in Table 1. Block 1 has the smallest receptive field size that is
equivalent to 0.18 s of original samples. The receptive fields
of block 2 and block 3 are 0.97 s and 3.97 s of ECG samples
respectively. The batch normalization layer connected to the
convolution layer is used to speed up the training process
and improve generalization. The Max pooling layer following
the batch normalization layer is to down-sample the features
while keeping important information. Then the concatenation
features extracted by convolutional blocks are fed into the
squeeze-and-excitation networks (SENet) followed by three
fully connected layers. The last layer uses sigmoid activation
to predict QRS complexes. The size of the output layer is
one-eighth the size of the input layer. So every output point
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denotes 0.016 s of the original signal. And each QRS complex
is expected to correspond to 7 points in the output which equal
0.112s.

The proposed CRNN model is basically the same as the
CNN model except that two stacked LSTM layers are added
before the SENet (Figure 3b). LSTM layers are good at deal-
ing with time series data. They can extract temporal features
while convolution layers can only extract local features.

The input layer of both models accept variable input sizes.
In current study, we input 10 s long segments of the training
sets into the models during training to take full advantage
of the parallel performance of the GPU. And we used the
original recordings in the test sets for fast model inference.

C. MODEL TRAINING

The models are built using Keras which is a user-friendly
python library for deep learning. Adam is selected as the
training optimizer and its learning rate is set between
le-3 and le-4. The models are trained 60 to 100 epochs with
the batch size of 200. Data augmentation techniques such as
adding random amount of Gaussian noise, combining a sinu-
soidal signal with random initial phase and amplitude [23],
randomly shifting the baseline and making the signal upside
down are applied on the fly to the input data. And So
the models hardly see two identical inputs during training.
It’s very helpful for deep learning models to improve their
performance and robustness.

D. PEAK LOCALIZATION

The decision stage is to localize the QRS complexes by
finding the peaks from the output of the deep learning model.
A fixed threshold of 0.5 is set for the output to determine
whether the samples belong to a QRS complex. Another
threshold of 64 ms for the duration of clustering positive
samples is set to eliminate some wrong predictions. If the
duration of clustering positive samples is longer than 64 ms,
the midpoint of these samples is considered as a QRS com-
plex candidate. After all the candidates are determined, the
distances of adjacent candidates are calculated. If there are
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two candidates whose distance is less than 100 ms, the candi-
date with low confidence score will be removed. The search
will be repeated until all the distances between adjacent
candidates are more than 100 ms. This algorithm was used
in CPSC 2019. However, it may miss paced beats. To fix
that, further search should be performed to locate where the
distances are greater than 1200 ms between adjacent QRS
complexes. For these periods, if there exists at least one
point that is great than 0.5, the threshold of the duration
of clustering positive samples is reduced by 16 ms and this
process will continue until a new QRS candidate is found or
the threshold decreases to zero.

E. PERFORMANCE EVALUATION

For CPSCDB, the accuracy of QRS location and heart rate
(HR) estimations are used for performance evaluation. The
evaluation algorithm, which is provided by the challenge
committee, compares the reference QRS annotations and the
predicted ones for every single ECG recording from 0.5 s
to 9.5 s in the test set. The first and last half second is
omitted. Each predicted location is deemed accurate if it lies
within 75 ms duration of the reference location. When all
the predicted locations and the annotated locations are totally
matched, that recording scores one point. If there is only one
false positive (FP) or false negative (FN) in the prediction,
the recording scores 0.7 and 0.3 points respectively. For other
situations, the recording scores O point. The detailed QRS
scoring rules for a single recording are as follows:

1, FP+FN =0
0.7, FP=1, FN =0

ORSscore =103, FP=0, FN = 1 M
0, FP+FN > 1
The final QRS score is calculated as follows:
RS
ORS yec = ZQT 2)

where N is the number of test recordings.

HR is calculated between 5.5 s and 9.5 s from each
recording. Its scoring rules are described in the following two
equations.

|HRyef — HRyes1 |
H. Rref

where HR s is the reference QRS location and HR g is the
predicted QRS location.

HR,.| = 3

1, HR,; <0.02
0.75, 0.02 < HR,,; < 0.05
HRscore - 05, 005 E HRre[ S 01 (4)

0.25, 0.1 <HR,; <0.2
0, HR, > 0.2

The final QRS score is calculated as follows:

Z HRScore
N
where N is the number of test recordings.

HR oo = (5)
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Sensitivity (Se), positive predictive value (PPV), error rate
(ER) and F1 are calculated in all databases. These metrics are
defined as follows:

TP
Se (%) = ——— x 100 6)
TP + FN
PPV (%) = —— x 100 ©)
TP + FP
FP + FN
Er (%) = ——— x 100 ®)
TP + FP + FN
2 x Se x PPR
F1(%) = —(———— )
Se + PPR

where TP is true positive and TN is true negative. The
standard grace period of 150 ms is used for beat-by-beat
comparison [24].

Three kinds of model evaluation strategies are used
on NSTDB, MITDB and QTDB. At first we performed
cross-database testing, which means the model is trained first
on CPSCDB and then tested on other databases. Secondly
we performed 5-fold cross-validation for MITDB and QTDB.
Since the data in NSTDB are basically mixture of two records
from MITDB with electrode motion (EM) artifact and some
other noise, 5-fold cross-validation will lead to data leakage.
We referred to Jia et al’s method [6] to make a training set
by adding the unused part of EM noise in NSTDB to the
last 20 records in MITDB and then tested the models on
the whole NSTDB. Lastly we performed fine-tuning, which
means the model is trained first on CPSCDB and then eval-
uated on MITDB and QTDB with 5-fold cross-validation
strategy or the specific method mentioned above for NSTDB.
When 5-fold cross-validation is used, the recordings of a
database are randomly split into 5 folds. The data in each
unique fold used for testing is kept in an unsegmented state,
whereas the recordings in the remaining folds are cutinto 10 s
segments, which are fed into the model during the training
process.

IV. RESULTS

Two examples of using the proposed method for QRS
detection are showed in Figure 4. The upper figure shows
our CNN model identifies QRS complexes on an excerpt
of arrhythmic ECG with drifted baseline. The lower figure
shows that dynamic threshold for duration of clustering pos-
itive samples in our decision stage avoids a missed paced
heartbeat detection.

A. CPSCDB

To optimize the deep learning architecture for QRS detection,
different dilated CNN blocks or SENet of our proposed
models were removed. Their performance was evaluated
using 5-fold cross-validation (Table 2). The CNN model
showed good predictive ability. Its QRS;cc, HRyce, Se, PPV,
ER and F1 were 91.23%, 94.67%, 99.26%, 99.31%, 1.42%
and 0.9929 respectively. When one of the dilated blocks was
removed from the proposed CNN model, the performance
on all these metrics decreased. Among these three blocks,
block 3 was more important, and the performance fell most
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TABLE 2. QRS detection performance of different architectures on CPSCDB.

hitect trainable QRSacc HRacc Se PPV Er F1
arentieciure params (%) (%) (%) (%) (%)
CNN 218,969 91.23 94.67 99.26 99.31 1.42 0.9929
CNN - Block1 147,065 90.82 94.76 99.21 99.31 1.46 0.9926
CNN - Block2 147,065 91.00 94.21 99.21 99.33 1.45 0.9927
CNN - Block3 147,065 89.80 93.49 99.13 99.13 1.73 0.9913
CNN - Block1&2 73,097 89.12 93.55 99.02 99.16 1.80 0.9909
CNN- Block1&3 73,097 88.85 93.65 98.88 99.25 1.85 0.9906
CNN - Block2&3 73,097 77.81 86.53 96.65 98.72 4.55 0.9768
CNN - SENet 209,537 89.89 93.98 98.96 99.37 1.66 0.9916
CRNN 2,708,417 92.62 96.63 99.32 99.61 1.06 0.9947
Ensemble 2,927,386 92.93 96.15 99.70 99.83 0.47 0.9976
(a) TABLE 3. Model performance on CPSCDB test sets.
204V v v v v vV v v \
E Rank  Code No. Team QRSacc HRacc
2 0] 1 CPSC0416  Caietal 9214  94.89
5 0.0 2  CPSC0433 Qiu et al. 91.55  94.29
~ 3 CPSC0413  Zhuetal. 9149  94.31
-1.0 _
- v v oV v v vV Vv v J 4 CPSC0436 Qi et al. 90.79 93.77
= 40 5  CPSC0430  Wang et al. 90.04  94.21
= Pan-Tompkins
)
8 0.5 algorithm 35.42 55.97
o
0.0 -
0 1 2 3 4 5 stacked LSTM layers than the CNN model and it significantly
Time (s) improved QRS detection performance, especially QRSgcore
) and HRgcore. Ensemble model of CNN and CRNN, which
v v v v v v

1.0+

©
o
1

Possibility  Voltage (mV) &
o

-2.0
v v v v v v
1.0
0.5+
0.0 - T T T T
0 1 2 3 4 5

Time (s)

FIGURE 4. Two examples of using the proposed method for QRS
detection. For each figure, the upper part is the raw ECG signal and the
lower part is the model’s output. Red inverted triangles indicate reference
annotations. Black inverted triangles indicate predicted QRS locations.
Red circle shows where dynamic threshold for duration of clustering
positive samples is used in the decision stage. (a) is from recording 956 in
CPSCDB and (b) is from recording 104 in MITDB.

significantly after it was removed. The lack of block 2 had
the least impact on the overall performance. When two of
the blocks were removed, the model performance further
decreased. Retaining block 3 performed slightly better than
retaining any other blocks. SENet could help the model get
better overall performance. The CRNN model has two more
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averages CNN output and CRNN output, showed best in all
metrics except HRy.c.. And it was used to participate in the
CPSC2019 and won the first place. As shown in Table 3,
our final QRS,.c and HR,.. reached 92.14% and 94.89%
which were 0.59% and 0.60% higher respectively than that
of the second place.

B. NSTDB

The Se and PPV of different training strategies on NST
database are shown in Table 4. In all four different cases,
signals with high SNR were all well identified, whereas
the performance differed significantly in signals with low
SNR. The overall performance comparison of our methods
with others’ is shown in Table 5. Our cross-database testing
performance of both models is comparable to most published
results. The CNN model trained from scratch showed bet-
ter results and the fine-tuned CNN model further improved
its performance. The state-of-the-art result was got by the
fine-tuned CRNN model which was pre-trained on CPSCDB
and retrained on NSTDB.

C. MITDB

The performance of our models and some recent published
results on MITDB is reported in Table 6. Cross-database
testing showed the CNN model had better recognition of
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TABLE 4. Model performance on NSTDB.

CNN cross-database testing

CNN cross-validation

CNN fine-tuned CRNN fine-tuned

SNR

SE(%) PPV(%) SE(%) PPV(%) SE(%) PPV(%) SE(%)  PPV(%)
24 100.00 99.93 100.00 99.95  100.00  99.95 100.00 99.98
18 99.95 99.65 100.00 99.79  100.00  99.95 100.00 99.98
12 99.48 97.41 100.00 99.44  100.00  99.74 100.00 99.95
6 97.80 93.00 100.00 98.43 99.95  99.12 99.98 99.86
0 93.29 88.21 99.62 96.04 99.51 97.88 99.70 99.25
-6 82.77 80.01 96.51 91.51 96.37  94.66 98.34 97.42

TABLE 5. Comparison of the overall QRS detection performance on
NSTDB.

Methods Se(%) PPV(%) ER(%) F1
CNNcross-database o555 9293 1092  0.9422
testing
CNN cross-validation 99.36 ~ 97.47 3.4  0.9840
CNN fine-tuned 9930 9854 214  0.9892
CRNN cross- 9518 9262 1153 0.9388
database testing
CRNN finetuned ~ 99.67  99.40 092  0.9953
Pan-Tompkins 9499 8183 2156 0.8792
algorithm
Jia et al.[6] 9925 9631 455 09776
Nayak et al.[5] 9523 9441 1041 0.9482
Merah et al.[25] 9530 9398 1081 0.9464
Lee et al.[26] 9408 9345 1257 0.9376

QRS complexes than the CRNN model. Its Se, PPV, ER and
F1 are 99.91%, 99.90%, 0.19% and 0.9991 respectively.
Cross-validation results of the CNN model showed similar
results. The fine-tuned CNN model outperformed other pub-
lished methods in terms of all four types of metrics. The
fine-tuned CRNN model got the best overall performance
with Se of 99.94%, PPV of 99.97%, ER of 0.09% and F1 of
0.9995.

D. QTDB
The performance comparison of our methods with others’
is shown in Table 7. Cross-database testing results of the
CRNN model were only better than Pan-Tompkins algorithm
while the results of the CNN model were comparable to
other reported results. In other situations our CNN model and
CRNN model reached the new high evaluation score with
F1 of 0.9998. They were superior to known published results
from various methods.

V. DISCUSSION

In this report, we introduced two novel deep learning models
that could perform accurate, robust and noise-resistant QRS
complex detection. Unlike many algorithms whose per-
formance decreased significantly when tested on different
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TABLE 6. Comparison of the QRS detection performance on MITDB.

Methods Se(%) PPV(%) ER(%) F1
CNN cross-database g9 91 9990 019  0.9991
testing
CNN cross-validation  99.93  99.89  0.18  0.9991
CNN fine-tuned 99.95 99.94  0.11  0.9994
CRNN cross- 99.83  99.87 030  0.9985
database testing
CRNN fine-tuned ~ 99.94  99.97  0.09  0.9995
Pan-Tompkins 9919 9941 139  0.9930
algorithm
Jia et al.[6] 99.89  99.90 021  0.9989
Chin et al.[21] 99.85 99.85 029  0.9985
Sharma et al.[7] 99.89 99.83 029  0.9986
Hossainetal[10]  99.96  99.89 015  0.9992

TABLE 7. Comparison of the QRS detection performance on QTDB.

Methods Se(%) PPV(%) ER(%) F1(%)
CNNcross-database  gq497  g9gp 011  0.9995
testing
CNN cross-validation 99.98 99.97 0.05 0.9998
CNN fine-tuned 9097  99.99  0.04 0.9998
CRNN cross- 99.93  99.84 023  0.9989
database testing
CRNN fine-tuned ~ 99.97  99.99  0.04  0.9998
Pan-Tompkins 9957 9834 208  0.9895
algorithm
Nayak et al.[5] 99.98  99.96 007  0.9997
Hossainetal[10]  99.97  99.93  0.11  0.9994
Chin et al.[21] 99.96  99.94  0.10  0.9995
Lee et al. [26] 9996  99.96 008  0.9996

databases [13], our methods were validated on a challenge
database and three commonly used database and showed
good generalization. Deep learning models normally get bet-
ter results when they were trained with more data. However,
the model’s generalization capacity does not increase by sim-
ply adding more similar ECG samples [18]. That’s because
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ECG is composed of many repeated patterns and when the
model has already learned them, more similar data won’t
help improve the model’s performance. But a diverse range
of subjects are useful [18] because they have many new
patterns and help improve the model’s robustness. Since
CPSCDB has noisier data and the recordings are abundant
with various arrhythmic patterns, it’s quite different from
other databases. So the model’s performance can be further
improved when the model is trained on a new database
together with CPSCDB. And we believe with more dynamic
arrhythmic ECG data, our models can achieve even better
performance in QRS complex detection.

Besides the data, deep learning algorithm is critical for
output results. The key part of our algorithm is the three
parallel dilated CNN blocks. They share the same parameters
except the dilation rates which affect the receptive field of
an output neuron. A small receptive field makes the cor-
respondence between output and input data more accurate,
while a large receptive field makes the output result represent
more original data. Table 3 shows that combination of three
different receptive fields has optimal results. Removal of a
medium-sized receptive field has less effect on the model
performance than removal of a small or large receptive field.
This is because the model can still take into account both
local features and enough nearby information simultaneously
when block 2 is removed. If only one block is left in the
model, larger receptive field size is better because the iden-
tification of QRS waves in noisy ECG cannot be directly
recognized from the local morphology, but requires a long
period of data for comprehensive consideration. So models
with three parallel convolutional blocks showed robust and
outstanding performance in various ECG databases. SENet,
which was introduced in ILSVRC 2017 classification chal-
lenge and won the first place [27], can further improve the end
results. It introduces channel-wise attention mechanism to
the output features of convolutional blocks and improves the
models’ performance at minimal additional computational
cost.

The fine-tuned CRNN model showed powerful ability
in identifying QRS complexes in different ECG databases.
It increased F1 value by 0.62% in NSTDB and by 0.18%
in CPSCDB compared with the fine-tuned CNN model.
However, it improved performance just a little bit in MITDB
and QTDB. The reason is probably related to the noise
level existed in the ECG database. NSTDB has the noisiest
recordings and CPSCDB contains many low signal quality
recordings, while MITDB and QTDB have relatively clean
ECG data. For hard ECG excerpts, it’s difficult to identify
QRS complexes just from their morphology. Instead, the loca-
tion of the QRS complexes can be inferred from adjacent
heartbeats or farther signals with high quality. The stacked
LSTM layers in CRNN model are good at dealing with long
sequential data because an LSTM unit has memories of pre-
vious data by controlling the information flow through three
gates which are an input gate, a forget gate and an output
gate [28]. Whereas, convolutional layers can only extract
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TABLE 8. Comparison of models’ inference speed.

CNN CRNN
Database
Wall time CPU time Wall time CPU time
CPSCDB 1.4 15.7 29.6 250.0
MITDB 0.7 7.5 28.6 239.4
QTDB 0.6 7.3 27.9 235.6

The unit of models’ inference speed is ms/one second sample.

local morphology features and lack of information from far-
ther signals. So the CRNN model is superior to CNN model in
identifying QRS complexes of noisy ECG data. However, the
cross-database testing showed that the generalization of the
CRNN model was not as good as the CNN model. It implies
that the CRNN model is more prone to overfitting when
trained in a single database. Another disadvantage of the
CRNN model is that it has 12 times more trainable parameters
than the CNN model. That leads to slow model training and
slow inference. Table 8 shows the models’ average inference
time for one second ECG sample. The wall time indicated
the real time consumption and was influenced greatly by
the numbers of CPUs and threads that participated in the
program running. The CPU time indicated the total amount
of time that used by all CPU cores for running the program.
The CNN model took 15.7 ms of CPU time to process a
one-second sample in CPSCDB, and it took less than half of
the CPU time for samples in MITDB and QTDB. Whereas,
the time consumed by the CRNN model is 17-32 times that
of the CNN model. The wall time of processing a 30-min
MITDB ECG recording by the CNN model is around 1.26 s
and it’s comparable with some conventional algorithms [29].
The CNN model can be implemented for real-time heartbeats
monitoring and ECG analysis, while the CRNN model is
suitable to be deployed on a workstation for static ECG
analysis.

There are several limitations of our method. First, the
predicted QRS locations are only approximate to the R-peak.
That is because the size of the model output is only one
eighth of the model input size and the final QRS locations
are obtained by multiplying the peak positions in the output
by eight. Second, our models can’t recognize ventricular
flutter. We just excluded the flutter segments of MITDB when
testing our models. Third, the threshold of models’ output
confidence is arbitrarily set at 0.5 in the decision stage. Other
values or dynamic threshold may further improve model’s
performace.

VI. CONCLUSION

In this paper, we proposed two models with multi-dilated
convolutional blocks and tested them on various ECG
databases. The CNN model runs fast, achieves high per-
formance and generalizes well. The CRNN model makes
new state-of-the-art performance on several databases but it’s
computationally expensive. Both models show the powerful
potential of artificial intelligence in ECG analysis.
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