IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received April 30, 2020, accepted May 20, 2020, date of publication May 25, 2020, date of current version June 10, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2997335

Recommending Security Requirements for the
Development of Android Applications

Based on Sensitive APIs

YUZHOU LIU““12, LEI LIU“'13, HUAXIAO LIU"“1-3, SHANQUAN GAO 13,

AND GUOHANG SONG!'3

!College of Computer Science and Technology, Jilin University, Changchun 130012, China
2College of Electronic Science and Engineering, Jilin University, Changchun 130012, China

3Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Changchun 130012, China

Corresponding author: Huaxiao Liu (liuhuaxiao @jlu.edu.cn)

This work was supported in part by the National Key Research and Development Program of China under Grant 2017YFB1003103, and in
part by the Natural Science Research Foundation of Jilin Province of China under Grant 20190201193JC.

ABSTRACT App stores allow anyone to sell his products to millions of potential users. However, limited
by the resources and time, some developers often focus on the functionalities of their Apps without well-
rounded considering security problems, which are more and more important for a successful product. In this
paper, we propose an approach to help developers elicit security requirements by recommending related
information gained from existing Apps in the marketplace. Firstly, we construct a feature framework to
summarize functionalities of Apps by mining their descriptions with the method proposed in our previous
work. Then, the sensitive APIs used in these Apps are extracted from their APK files and mapped with
App features. Finally, we establish relationships between permissions and functionalities by taking sensitive
APIs as a bridge, and design a recommendation framework to show information according to developers’
demands from two aspects: the security requirements for the whole App and the ones for the given
functionality. We evaluate our approach with 580 Apps from 5 categories on Google Play. The results confirm
the usefulness of our approach, especially it can help new developers without experience initialize the
security requirements and give mature developers supplementary information to elicit security requirements

completely.

INDEX TERMS
recommendation.

I. INTRODUCTION

Today, the appearance of App (application) stores brings
a new era for the software development, anyone, whether
a big or small company or even an individual developer,
can access these distribution infrastructures to sell the prod-
ucts to millions of potential users [1], [2]. This is a good
phenomenon for promoting the industry of Apps, but also
leading potential risk that some products are developed with-
out well-rounded considering the security problems [3]-[5].
As people trends to do almost everything at their finger-
tips [6], especially sensitive activities such as bank transfers
and e-business, an insecurity App may disclosure private

The associate editor coordinating the review of this manuscript and

approving it for publication was Shuiguang Deng

VOLUME 8, 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Requirements engineering, sensitive permissions, APIs analysis, information

information of users and result in serious consequences.
Thus, developers are required to give not only good function-
alities but also safe Apps [7].

Requirements are the first stage of the software develop-
ment and it is a good time to consider the security problems
of Apps [8]. This is not only for reducing the cost of repairing
the products, but also because once users believe an App inse-
cure they would not trust it again, such opinions are almost
unchangeable. However, eliciting security requirements is not
an easy job for developers because they may not have enough
background knowledge to predict the risks in their products,
especially for the small companies and individuals, and the
competitive App market does not give them enough time
to learn from scratch. Luckily, there always exists products
sharing similar functionalities with the App to be developed

101591


https://orcid.org/0000-0003-2765-4074
https://orcid.org/0000-0001-5217-6129
https://orcid.org/0000-0002-8151-1413
https://orcid.org/0000-0001-7522-9852
https://orcid.org/0000-0001-5015-6095

IEEE Access

Y. Liu et al.: Recommending Security Requirements for the Development of Android Applications Based on Sensitive APls

NEE

@ Description mining

1. Feature extraction
2. Construct feature framewrok

@ API analysis

. I
1. APT extraction ) : w000 al [0 o] |
2. Analyzing relationships between |——» B 000l .. g oooll

APIs and features. ;N oo oo ||

| | APIs App] |_Apis | |
g e SR . - SU

Sensitive Permission 1

|

1/ aeeees

: ensitive Permission 3/

| Sensitive Permission 2
|

|

® Recommendation

1. Frequent security requirements
for the APP.

2. Special security requirements for
the Functionality.

#Functionality (Input) :

|
|
1 12 #3 |
Related Security Security |
Features Requirements|Requirements |
for the App  |for the

Functionality Jl

FIGURE 1. Overview of proposed approach.

in the App stores, and they provide valuable data resource for
solving this problem.

In fact, for one App, if it wants to access to sensitive
resources or private data from smartphones for achieving
some functionalities, it needs to employ the corresponding
sensitive permissions [9]. Considering such security mecha-
nism of smartphones, we could take the security requirements
elicitation of a new App as a process of predicting the permis-
sions it would apply. From this angle, if we can summarize the
relationships between the App functionalities and sensitive
permissions from existing Apps, we could use such reusable
knowledge to recommend the security requirements when
developing a new product with similar functionalities.

Based on the above idea, we propose an approach to
recommend security related information to developers by
mining data in App stores. As Android system is opener than
I0S and Android Apps have more than 60% market share,
we take Android Apps as our research objects in this paper.
Figure 1 shows the process of our approach:

Firstly, we extract features of each App from its descrip-
tion, a common texts data resource for introducing the prod-
ucts in App stores, by using the method given in our previous
work [10], and then summarize the information into a feature
framework to describe the functionalities of Apps in one
domain.

Second, to solve the problem that the permissions of
Apps are stated for the whole product rather than func-
tionalities, we use the Application Programming Interfaces
(APIs) [11] to bridge the gap between features and per-
missions. We extract the APIs used in the Apps from the
APK files, and establish the relationships between them and
the feature framework by calculating two parameters: one is
“term frequency, TF”, aiming at analyzing the APIs often
used by the Apps contain a certain functionality reflected by
one node in the framework; the other is “inverse document

101592

frequency, IDF”’, focusing on analyzing the APIs used espe-
cially for a certain functionality.

Thirdly, combining with the relationships between APIs
and permissions given in PScout [12], we give the infor-
mation of sensitive permissions related to a given func-
tionality for helping developers elicit security requirements
and define a recommendation framework to visualize the
results.

Overall, our major contributions include following
2 points:

1) By taking sensitive APIs as a bridge, we give an
approach to gain relationships between permissions
and functionalities from data resource in App stores,
and use the results to help developers elicit security
requirements from two aspects:

e The permissions may be employed for developing the
Apps having the given functionality as the security
requirements for the whole App;

e The permissions should be considered for achieving
the given functionality as the security requirements
especially for the functionality.

2) We thoroughly evaluate our approach with data
of 580 Apps from 5 categories on Google Play from
two angles:

e On one hand, we evaluate each step of our approach
quantitatively, the results show that our feature frame-
work can summarize the features of Apps reasonably
and we can establish relationships between functional-
ities and APIs accurately.

e On the other hand, we conduct a survey on 60 stu-
dents and 10 developers to evaluate our recommended
information, the responses show that the participants
confirm the usefulness of our approach, especially it
can help new developers without experience (students)
initialize the security requirements quickly and give

VOLUME 8, 2020



Y. Liu et al.: Recommending Security Requirements for the Development of Android Applications Based on Sensitive APIs

IEEE Access

mature developers supplementary information to elicit
more complete security requirements.

The paper is organized as follow. Section 2 presents
the work related to our approach. In section 3, we further
state the problem clearly. Section 4 gives the methods for
summarizing functionalities from the descriptions to con-
struct feature framework; Second 5 introduces the process
for gaining and analyzing the APIs based on the feature
framework; Section 6 presents the method for gaining rec-
ommended security requirements according to a given func-
tionality, and the introduce the recommendation framework.
Finally, the experiments and the conclusion are shown in
Section 7 and 8 respectively.

Il. RELATED WORK

Our approach aims at helping developers gain complete secu-
rity requirements at the early stage of App development, and
it involves two main research fields: requirements elicitation
and security analysis. Thus, we analyze existing work from
these 2 directions.

A. REQUIREMENTS ELICITATION OF APPS

Different from traditional software, the requirements elicita-
tion of Apps has its unique characteristics, and we summa-
rized them from following two points.

(Requirements reuse) As there always exists millions
of products in the marketplaces, the requirements of these
software system can be reused for developing new Apps,
and some methods are proposed to achieve this goal.
Hariri et al. [14] give a method that analyzes online product
listings with data mining techniques to discover common
features, which can be also used in the products in one
domain. Similarly, Ferrari et al. [15] mine not only common-
alities but also variabilities from the brochures of a group
of vendors, and use them to compare existing features in
the market so that developers can give a more competitive
product. Yu et al. [16] gain features from web repositories
and organize them into a hierarchical rEpository of soft-
ware feature (HESA), then recommend relevant and high-
quality features to stakeholders. Davril ef al. [17] provide an
approach to construct feature models from publicly available
product descriptions found in online product repositories and
marketing websites, and the model can be utilized for the
domain analysis of new product. In addition, Lian et al. [18]
present MaRK (Mining Requirements Knowledge) to iden-
tify and retrieve requirement knowledge from the documents
that contain descriptions of functional features, and such
knowledge can be reused for developing a new product. These
researches show that the information of exiting Apps can
be useful for requirements engineering. However, most of
them only focus on functional requirements but ignore non-
functional ones. However, these researches seldom consider
non-functional requirements, especially there is no research
aiming at reusing the security information in requirements
elicitation to our knowledge. In our previous works [10], [13],
we have given a method to mine part of non-functional

VOLUME 8, 2020

features from App descriptions. In this paper, we go one step
forward to gain security-related information from existing
products and reuse them for requirements elicitation.

(Review mining) Apps highlight user experiences, and
this makes reviews become an important data resource for
eliciting new requirements. There are a lot of researches on
review mining and we simply summarize part of them from
two aspects.

On one hand, as users like to express their sentiments in
reviews, some research paid attention to mine user preference
for guiding the development of Apps. Bin et al. [19] pro-
pose WisCom, a system can help developers identify users’
major concerns and the reasons why they like or dislike
a given app. Guzman and Maalej [20] extract fine-grained
app features from reviews and mine user sentiments on them
to tell developers how do users like this feature. Similarly,
Gu and Kim [21] design a review summarization framework
SUR-Miner, which classifies reviews and extracts aspects
from them to help developers identify what parts of your
Apps are loved by users. Differently from above research,
Khalid et al. [22] focus on the complaints in the reviews and
summarize 12 types of complaints usually given by users,
this gives developers an insight into the user-raised issues.
Similar, Li et al. [23], [24] proposed an approach to analyze
the impact of an app’s release by analyzing the changes of
users’ sentiment from reviews before and after it.

On the other hand, users give their concrete demands or
problems on the Apps in reviews, and there are also many
researches aiming at extracting such information for software
evolution. Villarroel et al. [25] introduce CLAP to categorize
and cluster user reviews based on their contents, then pri-
oritize the clusters of reviews for planning the app release.
Gao et al. [26], [27] design a framework in prioritizing and
discovering emerging App issues for developers by tracing
reviews over versions. More specifically, Palomba et al. [28]
introduce CHANGE ADVISOR to gain requirements by ana-
lyzing the structure, semantics, and sentiments of reviews and
then help developers to identify the set of source code compo-
nents need to be changed. Furthermore, Yu ez al. [29] improve
CHANGE ADVISOR and give a tool ReviewSolver to locate
the problematic code more effectively. Mining reviews is a
hot research question and there are many researches on it [30].

However, for the App to be developed, there is no data
of reviews for it. Although we can collect reviews from
related Apps [31], they contain too many questions special for
their own apps. Thus, the usefulness of reviews is limited at
the early stage of development. Different from these works,
we use the descriptions and APK files of Apps as the data
resource. We not only give a method to mine useful informa-
tion from them, but also define a reasonable structure to inte-
grate and organize the results for supporting the information
recommendation.

B. SECURITY ANALYSIS OF APPS
The importance of security for Apps is undoubted, and
many researchers devote themselves to this research field.

101593



IEEE Access

Y. Liu et al.: Recommending Security Requirements for the Development of Android Applications Based on Sensitive APls

Here, we only summarize parts of their works related to us
from two aspects.

(Description-to-behavior fidelity) Many researches ana-
lyze the security of apps by inspecting whether their behav-
ior is exactly same as they claim. Qu et al. [32] present
a system AutoCog to relate descriptions with permissions
by employing techniques in natural language processing and
learning-based algorithm, and it helps to analyze whether the
description reflects the need for permission. Gorla et al. [33]
give CHABADA check implemented App behavior against
advertised App behavior to discover potential risky prod-
ucts. Motivated by CHABADA, Zhang et al. [34] revisit the
study of checking app behavior against app description in
the context of TPLs, and it can identify more than 50% of
new outliers. User interface can be taken as another kind of
App descriptions, Avdiienko ef al. [35] extract Android APIs
invoked in Apps as well as the text shown on their screen,
and use such association to detect whether user interface
elements do the action they suggested. Zhang et al. [36] apply
sensitivity analysis to assess an app’s privacy risks by check-
ing whether a requested sensitive resource would contribute
to any user-perceivable app features. Considering that only
descriptions or permissions could not declare all sensitive
operations, Yu et al. [37] introduce app’s privacy policy and
its bytecode to enhance the description-to-behavior fidelity,
and develop a new system TAP Verifier for carrying out inves-
tigation of individual software artifacts and conducting the
cross-verification. All these researches show a fact that the
sensitive behavior reflected by permissions or APIs should be
consistent with the functionalities given in the descriptions.
Our work is based on this fact, but on the opposite, we use
APIs as a bridge to mine the mapping between permissions
and App functionalities (behaviors) from existing products,
and use the knowledge to help developers elicit security
requirements related to their functionalities at the early stage
of development.

(Detection of Malicious Apps) Some researches analyze
the security of apps from the angle of detecting whether
they are malicious. Zhou et al. [38] use a system called
DroidRanger to detect malicious apps, it uses a permission-
based behavioral foot printing scheme to detect new samples
of known Android malware families and applies a heuristics-
based filtering scheme to identify certain inherent behav-
iors of unknown malicious families. Arp et al. [39] propose
DREBIN, which performs a broad static analysis, gathering
as many features of an app as possible and embedding them in
a joint vector space, in this way, it can use machine learning
techniques to identify malwares automatically. Considering
Permission control is one of the major Android security
mechanisms, Wang et al. [40] explore the permission-induced
risk in Android apps for malicious detection, and they evalu-
ate the usefulness of risky permissions for mal-app detection
with support vector machine, decision trees, as well as ran-
dom forest. In addition, some researches take the detection
of malicious Apps as a classification problem and solve it

101594

by giving classifier. Tao et al. [41] mine hidden patterns of
malware and extract highly sensitive APIs that are widely
used in Android malware by studying real-world Android
apps, and give a system MalPat to distinguish malicious
and benign Android Apps. Koli [42] gain the features from
random collected samples of goodware and malware apps,
and use them to train the classifiers as a machine learning-
based malware detection system for Android platform.
All above researches could assist Android app marketplaces
to fight against malware, but they could not help developers
to develop a benign product. With different purpose from
these researches, we assume that most of Apps in the market
places are safe, and mine sensitive permissions as well as
APIs employed by their functionalities. This information can
be used as the background knowledge to predict the risk in
the Apps to be developed, and help developer elicit security
requirements efficiently and completely.

Ill. PROBLEM STATEMENT

In the development of a new App, the coding often started
after functional requirements have been identified but the
security requirements are not well elicited yet. This is because
the risks are not obvious and developers may not have enough
background knowledge and time to consider them well,
especially for small companies and individual developers.
However, with the progresses of development, new secu-
rity requirements emerge continually and developers have to
spend extra time to modify the Apps. Even worse, some risks
may be not noticed before the release of the App.

To better illustrate the problem statement, let us consider a
common scenario. Karl and his team want to develop a new
App for social communication, they have had general ideas
of the new App and proposed some requirements. Then, Karl
thinks it is ready to begin coding. However, when realizing
some functionalities, Karl finds that the App needs to get
sensitive data from users and they need to add protection
strategy to keep the product as safe as required by the users.
For example, for the functionality ‘“‘share photo™, it needs
to scan the files in the phone by employing the permissions
related to “STORAGE”, this means the privacy information
could be disclosed to malicious activity, such as deleting
important documents (this is an important problem often
complained by users). Thus, Karl must continually add new
security requirements and modify the corresponding func-
tionalities or even the whole product. The extra time cost is
not the only problem, what worries Karl more is the potential
risks they have not noticed yet.

Our work aims at helping Karl elicit the security require-
ments at the beginning according to the knowledge mined
from existing products in the App stores. To achieve this
goal, we require Karl download the description texts and APK
files of the Apps in the category “Social” to establish the
dataset AppDataset = {App, ...,App,}, and each App can
be specified as a 3-tuple, App;=(Name,Description, APK),
where:

VOLUME 8, 2020



Y. Liu et al.: Recommending Security Requirements for the Development of Android Applications Based on Sensitive APIs

IEEE Access

> Photo

> Video

Social

> Message

> Location

FIGURE 2. An example of feature framework.

« Name is the unique identifier of the App;
o Description is the texts introduced the App;
e APK is the install document of the App.

From the AppDataset, our approach not only can to sum-
marize the features of Apps as we do before [10], [13],
but also gains the permissions employed for them as the
security requirements should be considered in the develop-
ment process. The approach consists of three steps as shown
in Figure 1 and we give the detailed introduction of them in
the subsequent sections.

IV. MINING DESCRIPTIONS OF APPS

App description is the introduction of production provided in
kinds of market platforms. Although the incomplete nature
makes only one App description cannot provide enough infor-
mation for understanding all the functionalities, the ones col-
lected from related (similar) products together can well cover
most features in a particular domain. Thus, we summarize
the App features in descriptions as the basis for developers to
search the information they need.

A. FEATURE EXTRACTION
As the App descriptions are user-oriented and given in natural
language, they contain kinds of information besides App
functionalities. In our previous work [10], we have given a
method to extract App features from descriptions by giving
a set of feature extraction rules. The method achieves good
performance in our experiments so we also use it here and
give a brief introduction.

For each Description of App in AppDataset, we extract the
information of App features by following four steps:

Preprocess. We remove the non-English and non-texts
parts (such as special characters, e-mail address) from the
Description, and spilt it into a sequence of sentences.

Syntax analysis. We analyze the syntax of each sentence
in Description in turn with Stanford Parser, and gain a set of
parsing trees.

Parsing Tree analysis. For each parsing tree, it is ana-
lyzed in a top-down traversal strategy and matched with the
tree transform rules we pre-defined. The useless structures

VOLUME 8, 2020

TR

App: Instagram
Description: edit
video with filters
and creative
tools

App: Wechat
Description:
share your
location with
friends

(such as the structure only for representing the tense of sen-
tences) are cut from the tree and the pronouns are replaced
with their anaphors according to their context.

Phases extraction. Each node in the parsing tree is further
matched with the information extraction rules we pre-defined
by summering the relationships between structures of sen-
tences and features (for example, verb-object phrase is the
most common structure to express functional features of the
App). If one node satisfies the rules, the phases describing
the features are gained from the descendant nodes. We define
the description of a feature f contains two parts: the verb part

f.Des"™ and the noun part f .Des™*".

B. FEATURE SUMMARIZATION

After extracting features from the descriptions of Apps in
AppDataset, we need to further summarize them for two
reasons: on one hand, there are many features describe similar
functionalities of Apps, and we need to group them together
for using easily; on the other hand, there is much detailed
and scattered information, and we need to integrate them into
high-level for improving the understandability.

Traditionally, the features are usually summarized with the
methods of topic modeling [33], [43], [44], such as LDA
[33], [45], but the meanings of topics are often unclear. Thus,
we define a three-level framework according to the struc-
ture of phases describing the features for summarizing them.
Figure 2 is part of the feature framework summarized from
the features of Apps in the category of “Social” on Google-
Play, we use it as an example to illustrate the construction
method briefly.

The First Level Is Root: There is only one root node and it
gives the category of Apps in the market places.

The Second Level Is Noun Level: The nodes in this level
are summarized from the noun parts of features and they
describe the functionalities in a high-level. For example,
the node “Photo” represents the functionalities related to the
photo, including ‘““post photo”, “‘search photo” and so on.
As one feature may be described by different nouns, such as
“picture” is similar as ““photo”, we cluster them and take one
cluster as one node. Here, we use a gradual clustering process

101595



IEEE Access

Y. Liu et al.: Recommending Security Requirements for the Development of Android Applications Based on Sensitive APls

TABLE 1. Summarization of mapping between sensitive permissions and APIs.

Permission API | Permission API | Permission API | Permission API
WRITE_EXTERNAL STORAGE 160 CALL PHONE 32 READ CALENDAR 948 READ PHONE STATE 3734
ACCESS _COARSE _LOCATION 3369 READ _SMS 848 SEND_SMS 1853 RECORD_AUDIO 526
ACCESS _FINE_LOCATION 1580 GET_ACCOUNTS 2770 WRITE_CONTACTS 2693 READ _CONTACTS 3024
PROCESS OUTGOING CALLS 312 WRITE_CALENDAR 732 RECEIVE _SMS 495 CAMERA 440
READ EXTERNAL STORAGE 26 WRITE CALL LOG 59 READ CALL LOG 241 USE _SIP 90
RECEIVE_WAP_PUSH 30 RECEIVE_MMS 25 Total (Sensitive APIS): 23987

rather than classical K-means because the K-value is difficult
to determine:

1) We firstly collect the nouns in all features to establish
a set Set™*" and sort them according their appearance
frequency, then the top-k nouns are used as the initial
cluster centers, here we require the similarity between
the centers need to be smaller than the threshold «,
otherwise they are merger together.

Secondly, all the nous in SetV°*" are compared with
each center in turn. Suppose that one noun W has the
biggest similarity with the center C, if this value is
larger than o, W is clustered with C, otherwise, W is
defined as a new cluster center.

In this process, the similarity between two words is calculated
by word2Vec, and the node is presented by the center word
of a cluster.

The Third Level Is Verb Level: The nodes in this level
are summarized from the verb parts of features and they
with their parent nodes together can describe concrete func-
tionalities, such as the node ‘““‘Share” with its parent node
“Location” presents a common functionality. After gener-
ating the noun nodes, we group the features with nouns in
one cluster together, and further cluster their verb parts in the
same way as the noun parts to generate the child verb nodes.
In addition, the information of the App containing the feature
represented by the node as well as related sentence in the
descriptions are reserved, for example, from the node “Edit”
under the node ‘“Video” in Figure 2, we can see that the
App “Instagram” has this functionality from its description
sentence “‘edit video with filters and creative tools” .

The feature framework organizes the functionalities of
Apps from different abstract levels, and it can be used as an
effective index for developers to search the information they
need.

2)

V. API ANALYSIS

Our goal is to help developers elicit security requirements
in the early stage by identifying the sensitive permissions
they need to employ according to the functionalities, and we
use APIs as the bridge to establish the relationships between
functionalities and permissions. Thus, we firstly analyze the
sensitive APIs based on feature framework to identify their
relationships with App functionalities.

A. INITIALIZING RELATIONSHIPS BETWEEN FEATURE
FRAMEWORK AND SENSITIVE APIs

PScout [11] has established mapping relationships between
permissions and APIs, this provides us a basis to identify

101596

the APIs need to be extracted. In the website of PScout,
there are 10 different versions. To better cover APIs used in
the existing Apps, we collect all the 10 versions and sum-
marize the relationships between sensitive permissions and
APIs. As shown in Table 1, a sensitive permission is mapped
with more than one API, for example, there are 160 dif-
ferent APIs require the permission “WRITE_EXTERNAL_
STORAGE” . Totally, we identify 23987 sensitive APIs as the
objects to be analyzed.

For one App in AppDataset, we decompile its APK file
by using apktool, a popular tool for analyzing the codes
of Android App, and then examine the sensitive APIs used
in the custom code. In this way, we can establish the
relationship between one App and sensitive APIs it uses,
that is for each App € AppDataset, we have a mapping
App— {SenApiy, ... ,SenApi,}, where SenApi is the API
related to sensitive permissions summarized from PScout.

Meanwhile, we have the mapping between nodes in
the feature formwork and Apps in AppDataset: for an
App € AppDataset and a noun node N, in the second level
of feature formwork, if there exists a feature f extracted
from App.Des and the noun part of f belongs to the cluster
of Nyuoun, we have the relationships between the App and
Nnouns Nnoun — {App}; furthermore, N, must have a
child node N,,_,.», Which is a verb node in the third level
of feature framework, and the verb part of f belongs to
the cluster of N,_,.p, We have the relationships between
the App and Ny—yerbs Nu—verv — {App}. These mappings
can be established easily when constructing the feature
framework.

Based on the above analysis, we can initialize the rela-
tionships between the feature framework and sensitive APIs:
for each node N in the framework, we have N — Set

app
{App1, .. .Appn}, Setfl\;,p is the set of Apps having the func-

tionality reflected by N, and Appi—>Set21;’;i= {SenApiy, .. .,
SenApin}, Setﬁl;f;i is the set of sensitive APIs used in the App;.

Note that, the noun node in the framework gives the func-
tionality in a high-level and it can be broken down to a set of
concrete functionalities represented by the verb nodes, so the
Apps related to the brother verb nodes together are the set of
Apps related to their parent noun node. Suppose that a noun
node Nyu, and the set of its children are Nyerp, s - . . . Nyerp,,»
we have:

i=n
SetZ;’,‘;“” = U Setapp

i=1

VOLUME 8, 2020



Y. Liu et al.: Recommending Security Requirements for the Development of Android Applications Based on Sensitive APIs

IEEE Access

Meanwhile, different nodes in the framework can
share same Apps because one product can have diverse
functionalities.

B. RELATIONSHIPS ANALYSIS

By analyzing the sensitive APIs used in Apps and the features
of these Apps, we identify the relationships between APIs
and functionalities initially, the sensitive APIs related to the
node N is the summarization of APIs used in the Apps related
to N, that is:

I=n
N _ Appi
N—Setyp; = USetAP,.
i=1

However, this is not enough for eliciting security require-
ments because such relationships are too abstract to use.
Thus, we further distinguish the roles of these APIs and
introduce two parameters often used in NLP to quantify
their values for the subsequent recommendation, suppose that
there is a node N and a sensitive API SenApi.

o TF(N, SenApi) : term frequency, the frequency of
SenApi appearing in the Apps that have the functionality
represented by N, and it is calculated by the following
formula,

TF (N, SenApi)

. Appi
| {APPi |App; € Set%,p N SenApieSet'hy } |

|N—>Setypp|

o TF — IDF(V, SenApi), inverse document frequency,
it reflects whether the SenApi is used for achieving the
functionality represented by N rather than other func-
tionalities of Apps,

TF — IDF (N, SenApi)
= TF (N, SenApi) x IDF (N, SenApi) ,

where,

IDF (N, SenApi)

Parent(N)
|Setapp |

|{Appi|App,'ESetl;;a,;;em(N)ﬂSenApi € Setﬁl;{;i] |

Here, Parent(N) represents the parent node of N. As the
feature framework organizes the functionalities of Apps
in a level structure, the child nodes are analyzed in the
range of products related to their parent node.

The two parameters can be used to evaluate the relation-
ships between APIs and functionalities, analyze whether they
are related directly (the API is used for the functionality)
or indirectly (the API is used for the App). This provides us
the basis for prioritizing the information recommended from
different angles.

VOLUME 8, 2020

VI. INFORMATION RECOMMENDATION

Having the relationships between functionalities and APIs,
we can identify permissions they required based on the
mapping between APIs and permissions given by PScout.
However, the large-scale information summarized from Apps
in one domain is not easy to use directly, so we extend
the recommendation framework designed in our previous
work [13], which aims at recommending functional require-
ments, to help developers get security requirements according
to their functionality demands, meanwhile, and the two-kind
information can be combined together for better supporting
the development process.

A. RETRIEVE INFORMATION

At the early stage of development process, the developers
often only have a general idea or some key points on the
functionalities of the App, and we use them to retrieve infor-
mation from the feature framework. Suppose that developers
give a functionality in natural language, this process consists
of three main steps.

Firstly, extracting the keywords from the developers’
demands. Similar as the descriptions of Apps, we also ana-
lyzed the syntax of the sentence given by the developers and
used the pre-defined rules to extract the words expressing the
feature f contained in it. The keywords are separated into two
sets according to their POS: the set of nouns Set,oun and the
set of verbs Setyerp.

Cluster 1

Cluster 1

on®
center
Of

center

Situation (1) Situation (2)

FIGURE 3. Two situations for retrieving nodes in feature framework.

Secondly, retrieving the related nodes in the feature frame-
work based on the keywords. The feature framework is ana-
lyzed in a top-down strategy. Firstly, the nodes in the noun
level (the second level) are compared with the keywords in
Setnoun, and there are two situations as shown in Figure 3:

e if the Set,oun Of f is in the cluster of one node, that is the
similarity between the center word of the cluster and the
word in Setyoun is larger than the threshold o, the node
is identified as the one related to f, denoted by N/ ;

e otherwise, if f is out of the range of all the clusters,
we further to find the cluster nearest to f as the related
node N/ by calculating the similarity between each word
in the cluster and Setyoun.

After identifying N{Dun, we further retrieve the related
verb node N{erb from its child nodes in the verb level
(the third level), the process is the same as before but if f

101597



IEEE Access

Y. Liu et al.: Recommending Security Requirements for the Development of Android Applications Based on Sensitive APls

# Functionality (Input):
The App can find|erb) the shortest WaY(noun) to the destination A
#2 Forthe A C #3 For the Functionality D
#1 Related Features or (.E PP . or .e une !onaly
B (Security requirements) (Security requirements)
Map READ_PHONE_STATE ACCESS_COARSE_LOCATION
Download map Aop ‘android.teIephony.TelephonyManager‘ ‘ android.location.LocationManager ‘
View map App APl ‘ requestLocationUpdates ‘ APl
API ‘getLastKnownLocation ‘ AP
Traffic CAMERA ‘isProviderEnabIed ‘ API
. ‘ removeUpdates ‘ AP
Avoid traffic Ao ‘andrmd.hardware.Camera ‘
ACCESS_FINE_LOCATION
Navigation WRITE_EXTERNAL_STORAGE - -
android.hardware.location.
Photo \ android.app.DownloadManager \ IGeofenceHardware ‘
Route ACCESS_COARSE_LOCATION ‘android.webkit.GeoIocationService ‘

FIGURE 4. Examples of recommended information.

is a high-level feature and Setyei,= ¥, there would not exit
related N{erb.

Thirdly, gaining related APIs as well as permissions. For
each node N in the feature framework, we have gained its
related sensitive APIs,N—)SetXH: {SenApiy, ... ,SenApi,},
in which each API has two evaluation parameters
TF(N, SenApi) and TF — IDF(N, SenApi). So we also have
the related APIs to f according to Nﬁm and N‘C - Mean-
while, we could also have the permissions related to f accord-
ing to PScout, if there exists a mapping between SenApi and
a Permission and SenApi is related to Ny, or N we have

o ) verb’
the Permission is related to f.

B. THE RECOMMENDATION FRAMEWORK

In order to help developers understand the security-related
information clearly, we design a recommendation framework
to represent the retrieving results. Figure 4 gives an example
that recommends the information summarized from 40 Apps
in the “Social” according to one functionality demand,
we use it to introduce each part of the framework.

PART A (Functionality): In the part A of the framework,
developers can input a functionality of the App to be devel-
oped, and our method gains its keywords for the recommen-
dation. For example, the functionality f consisting of the noun
“way” and the verb “find” is extracted from the sentence
“The App can find the shortest way to the destination™ .

PART B (Related Features): Part B gives the features that
often appear together with the given functionality in existing
Apps. The information can be gained with the method pro-
posed in our previous work [13] and it is helpful for the devel-
opers to understand the Apps having the given functionality,
so that they can better understand the recommended security
requirements of the new App. According to the structure of
feature framework gained from the dataset, the information

101598

in this part has two levels: the first level is the high-level
features represented by the noun nodes in the feature frame-
work, and developers can overall know the related features,
such as “Map” shows that the operations on the “map” are
also needed for realizing the functionality “find way’’; then,
the word in the first level can be further unfolded into concrete
features represented by the verb nodes, such as “Download
map”’, so that the developers can understand the information
clearly. In addition, an example App is given behind each
related feature to show it intuitively, and developers can go
to its homepage to further gain more detailed information.

We sort the information in this part based on their recom-
mendation values calculated by the evaluation method given
in our previous work [13].

PART C (Security Requirements for the App): Part C rec-
ommends the security requirements often applied by the Apps
contain the functionality f by giving the permissions they
usually employ. From the feature framework, we retrieve
the node N related to f, and gain the related sensitive APIs
Setgpl= {SenApiy, ... ,SenApi,, we sort these APIs accord-
ing to TF (N, SenApi)}, which represents their frequency in
the existing Apps, then the permissions related to the top-k
SenApi are recommended in this part. Although these per-
missions may be not employed for achieving the f, they are
often employed by existing Apps so the developers should
also consider them for developing the new App.

The recommended permissions are sorted according to
TF (N, SenApi) of their related APIs. Suppose that the
APIs related to one Permission are {SenApiy, ... ,SenApi},
we quantify the priority of the Permission as Zij TF
(N, SenApi). Furthermore, for each recommended permis-
sion, we also represent its related APIs and organize them
by using their classes and methods. These APIs not only
can help developers better understand why the permission

VOLUME 8, 2020



Y. Liu et al.: Recommending Security Requirements for the Development of Android Applications Based on Sensitive APIs

IEEE Access

TABLE 2. Detailed information of our dataset.

DataSetl DataSet2
Category Navigation Photograph Music Travel Social
Number of Apps 45 45 45 45 400
Number of Sentences 795 1035 682 834 6983
TABLE 3. Participants of the experiments.

Numbers Age Major Development Skills

Doctors 3 25~30 Requirements engineering More than 1 year

Students 60 20~23 Computer science and technology Null
Developers 10 28~40 Software Engineering More than 5 years

is needed but also can be used in the new App. For exam-
ple, the sensitive permission “READ_PHONE_STATE” is
important for the Apps in the ‘“‘social” and it is recom-
mended firstly, then it can be unfolded into the class API
“android.telephony.TelephonyManager” with two concrete
methods “getDeviceld” and “listen”, which are the APIs
used frequently. Meanwhile, we also give the link of the
introduction on each API so that developers can gain more
information if needed.

PART D (Security Requirements for the Functional-
ity): Part D recommends the security requirements applied
for realizing the functionality f according to TF — IDF
(N, SenApi), which reflects the specificity of the API for f.
The recommended sensitive permissions as well as their
related APIs are organized in the same way as Part C but
sorted by TF — IDF (N, SenApi). The information is more
specific to the functionality f, and it reflects the poten-
tial security risk should be paid attention to when devel-
oping f. Note that, the information in Part C could also
appear in this part, because the permission would be impor-
tant for both the App and f, especially when f is the
core functionality of the App. For example, the permis-
sion “ACCESS_COARSE_LOCATION are required by the
functionality “find way”, meanwhile, it is common for the
Apps in “social” to get users’ location information.

In Figure 4, the functionality given by the developers is
a concrete functionality and expressed by verbs and nouns,
so the recommended information is gained from the third-
level (verb node) of the feature work. However, there is
another situation that the input f is a high-level functionality,
that is its verb part Setyer, # @, we gain the recommended
information from the second-level of the feature framework.
In this way, we can give more targeted information according
to developers’ different kinds of demands.

VIl. EXPERIMENTS
To evaluate our approach, we conducted a series of
experiments and surveys to answer the following two
questions:
o RQI1: Whether our approach can summarize and orga-
nize the information from data of Apps reasonably?

VOLUME 8, 2020

e RQ2: Whether the recommended information by our
approach is useful for eliciting the security requirements
at the early stage of the development?

Specially, RQ1 focused on inspecting the performance of
each step of our approach to ensure the information can be
mined efficiently. RQ2 aims at analyzing the usefulness of
our approach in practice.

A. DATASET AND PARTICIPANTS

We chose Apps from 5 categories as the subjects of our
experiments and collected their data, including descriptions
as well as APK files, from Google Play. Two datasets are
created as shown in Table 2:

DataSet1 was for RQ1 and it consists of 180 Apps covering
4 categories (“Navigation”, “Photograph™, “Music”’, and
“Travel”), so that it can better check the effectiveness of our
approach in different kinds of products.

DataSet2 was for RQ1l and it included 400 Apps in
“Social”, which provides us a relevant large-scale resource
to gain the recommended information for evaluating the use-
fulness of our approach.

The participants of our experiments and surveys are from
the university and software companies. The detailed informa-
tion is shown in Table 3:

1) 3 doctors, majoring in software engineering, especially
requirements engineering. All of them have more than
one year industrial experience in App development.

2) 60 students, they came from computer science and
technology in Jilin University. All of them had taken
course on software engineering, so we take them as new
developers without much experience.

3) 10 App developers, they were from 5 different compa-
nies and have more than 5 years software development
experience, so we treated them as mature developers to
evaluate the recommended information.

B. EXPERIMENTS FOR RQ1

As the approach is based on our previous work [10], [13],
the performance of some steps had been evaluated, includ-
ing extracting App features from descriptions and clustering
features. Meanwhile, we also use some existing methods in

101599



IEEE Access

Y. Liu et al.: Recommending Security Requirements for the Development of Android Applications Based on Sensitive APls

TABLE 4. Comparison between feature framework and LDA.

Understandability Representation

Students Developers Student Developer

FAM LDA P-V FAM LDA P-V FAM LDA P-V FAM 1LDA P-V
Navigation 4.04 3.24 0.001 | 4.60 3.20 0.010 | 3.80 3.84 0.743 | 3.10 3.20 0.792
Photograph 3.87 3.02 0.001 | 4.30 3.30 0.015 | 4.13 3.89 0.132 | 3.60 3.50 0.739
Music 4.00 3.74 0.07 4.50 4.10 0.157 | 441 4.07 0.012 | 3.90 3.70 0.608
Travel 3.85 2.87 0.001 | 3.90 3.20 0.020 | 3.72 3.83 0429 | 3.10 3.10 1.000

our approach, such as PScout, apktool, and they are widely
used and we do not inspect them either. Thus, we answer
RQ1 by evaluating the rest two main steps with two sub-
questions as follow:

e Sub-Questionl: Whether the feature framework can
summarize the features gained from App descriptions
reasonably?

o Sub-Question2: Whether our approach can estab-
lish relationships between functionalities and APIs
effectively?

1) COMPARISON BETWEEN FEATURE

FRAMEWORK AND LDA

LDA [45] is a classical topic modelling method and often
used to summarize the App descriptions to gain high-level
functionalities, its reasonability has been illustrated. Thus, we
take LDA as the baseline to evaluate our feature framework
for summarizing features and answer Sub-Questionl.

a: EXPERIMENT DESIGN

We firstly extracted features from descriptions of Apps in one
category, then summarized them by the proposed method and
LDA separately, the results, including a feature framework
and set of topics, are taken as the materials in the experiment.
For the feature framework, we sort the nodes in each level
according to the number of words in the corresponding clus-
ters, and choose the top-10 noun nodes and their top-10 child
verb nodes to construct a simplified model to be evaluated.
For the topics generated by LDA, their number is adjusted
from 5-15 and we choose the best results manually as the
object to be compared.

In the experiment, we gave the participants (60 students
and 10 developers) both the feature framework and the topics,
and asked them to evaluate the summarization results from
two aspects separately: (understandability)whether the result
is easy to be understood; and (representation) whether the
result can well represent the functionalities of Apps in one
category. The responses were given on scale 1 to 5, where
“1” indicates “‘absolutely not” and 5 “totally yes”.

Two-tailed statistical tests were used for comparisons in the
four categories of Apps because of the non-directionality of
the hypotheses. The null hypothesis HO: there is no difference
between the feature framework and topics generated by LDA.
The probability of 5% was accepted as the threshold to reject
the null hypothesis [46]. In addition, as not all the students

101600

took the job seriously, we filter the responses of the students
who gave same scores to all questions to reduce the bias.
On the opposite, we reserved all the responses from devel-
opers because we thought they were more responsible.

b: RESULTS

We finally gained 46 pairs of effective responses from stu-
dents and 10 pairs from developers. The responses from
students are analyzed by Student’s t test by assuming they
were distributed normally, while Wilcoxon signed ranks test
was adopted to analyze the responses from developers [46].

The results of comparisons from two aspects are shown
in Table 4, where FAM represents the feature framework and
column P-V is the p-value. We can get two main observations
as follow:

Firstly, the participants recognize that our feature frame-
work is easy to be understood, the responses are from
3.85 to 4.04 for students and from 3.90 to 4.60 for developers.
Meanwhile, it can be seen that the understandability of the
feature framework is higher than the topics generated by
LDA, and such differences are significant in all the categories
(P-value <0.001) except “Music”.

Secondly, with respect to the representation, the responses
from students are also high, from 3.72 to 4.13, while the ones
from developers declined a little but still higher than 3.0.
It indicates that our feature framework can well represent
the functionalities of Apps in one category to some extent.
However, the differences between the feature framework and
LDA are not significant (P-value >0.05) except one condition
the P-value <0.05 for the responses given by students to the
category “Music”.

According to above observations, we can see that the
results for the category “Music” are different from others,
so we further analyze it to better understanding the perfor-
mance of our approach. We had discussions with a part of
students and developers and found that: as the functionalities
of Apps in “Music” is relevantly simpler than the Apps in
other categories, the words in such condition are easier to
be understood, whether in the feature framework or topics
gained by LDA. In addition, we think it is good for our feature
framework to have similar performance as LDA on repre-
sentation because we only used a simplified model extracted
from the whole framework in the experiment.

In summarize, the hypothesis HO can be rejected, and we
conclude that our feature framework is better than LDA,

VOLUME 8, 2020



Y. Liu et al.: Recommending Security Requirements for the Development of Android Applications Based on Sensitive APIs

IEEE Access

TABLE 5. The performance of our method for mapping functionalities with APIs.

For the APP (TF) For the functionality (TF-IDF)
Noun nodes Verb nodes Noun nodes Verb nodes
Navigation 0.82 0.76 0.53 0.49
Photograph 0.70 0.69 0.63 0.51
Music 0.66 0.65 0.68 0.50
Travel 0.75 0.71 0.55 0.51
Average 73.25% 70.25% 59.75% 50.25%

especially when the functionalities of Apps are complex, and
it can summarize the features gained from App descriptions
reasonably.

2) MAPPING FUNCTIONALITIES WITH APIs

In our approach, we use APIs as a bridge to establish the
relationships between functionalities and sensitive permis-
sions, so a key step is mapping functionalities with APIs,
and we give an experiment to evaluate its performance
(Sub-Question2).

a: EXPERIMENT DESIGN

We use the simplified feature frameworks (including top-10
noun nodes and their child top-10 verb nodes) generated in the
experiment for Sub-Question1 as the materials for answering
Sub-Question2. As our approach distinguishes two kinds of
relationships between functionalities and APIs, we also eval-
uate the performance from two aspects: on one hand, whether
the API SenApi related to the functionality N according to the
TF (N, SenApi) is frequently used in the Apps having the N;
on the other hand, whether the API SenApi related to the
functionality N according to the TF — IDF (N, SenApi) is
useful for the Apps achieving the functionality N. Answering
the two questions requires professional knowledge, so we
only ask the 10 developers participant in the experiment.

In the experiment, we give the noun nodes as well as its one
random verb nodes in one simplified feature framework to the
developers and confirm that they understood the functional-
ities representing by the nodes, from high-level to concrete-
level. Then, top-10 related APIs identified according to TF
and TF-IDF are given to the developers separately, and we
asked them to evaluate whether the APIs are adapted to their
relationships with the nodes. The response could be positive
“YES”, negative “NO” or “I do not know™.

We collected the responses from each developer. For an
API related to a node N, only when all the developers
responded “YES” to the relationship between the API and
N, we confirmed the relationship is right. According to the
responses to the 10 APIs related to N for one kind relation-
ship, we define the precision of the mapping as:

Num(YES)
Num (YES) + Num(NO)’

Precision =

where Num(YES) is the number of APIs that the relation-
ship between them and the corresponding node is right.
For example, suppose that we have a noun node “Photo”, and

VOLUME 8, 2020

8 of its top-10 related APIs identified according to TF are con-
firmed as usually used in the Apps having the functionalities
for handling “photo”, the precision of the mapping is 80%.

b: RESULTS

As there are two kinds of relationships, we also analyze the
responses from two aspects: relationships for the whole App,
and the relationships for the functionalities. In addition, our
feature framework has two main levels, noun nodes give the
functionalities in high-level, and verb nodes give concrete
functionalities, so we analyzed the responses to nodes in dif-
ferent levels separately for each aspect. Table 5 summarizes
the results, which show the average precision of nodes in each
category.

With respect to the APIs for the App, the precision is above
70% on average, both for the noun nodes and verb nouns
in different categories, that is more than 70% of APIs given
by our approach are confirmed having right relationships
with the node, and they are commonly used in the Apps
having corresponding functionalities. In fact, almost all the
given APIs had received “YES” as responses, but not all
participants think all of them are not necessary for developing
the Apps and give answer “No”’, so the precision is declined
as we use very strict standard.

With respect to the APIs for the functionality, it can be seen
that the precision is much lower, just above 50%. We think
such performance is reasonable because mapping function-
alities and their APIs is a difficult task, and our approach
is based on statistical analysis without deeply mining the
semantic meaning of the APIs and functionalities, so it could
not finish the task accurately. However, the purpose of our
approach is to recommend sensitive permissions required
by the functionalities as the security requirements, as one
permission is mapped with many APIs, the influence of inac-
curate APIs would be alleviated when recommending high-
level requirement information.

Based on the analysis above, we believe the performance of
our approach is acceptable and it can establish relationships
between functionalities and APIs effectively, especially for
finding the APIs often used by the Apps sharing one certain
functionality.

C. SURVEY FOR RQ2

It is difficult to evaluate the usefulness of the recommended
information as it is subjective. Thus, we conducted a survey
for answering RQ?2.

101601



IEEE Access

Y. Liu et al.: Recommending Security Requirements for the Development of Android Applications Based on Sensitive APls

TABLE 6. Summarization of responses in the survey.

uestionnaire Strongly Disagree Neither Agree Strongly Total
Section Q Participant Disagree Agree

S1 Students 0 0 11 21 14 46
Developers 0 0 2 7 1 10
S2 3 Students 1 2 5 22 16 46
Developers 0 1 2 5 2 10
2 Students 2 2 9 29 46
Developers 1 1 4 4 0 10
Students 1 5 8 19 13 46
2 Developers 0 2 3 4 1 10
S3 3 Students 2 5 8 20 11 46
Developers 0 2 1 6 1 10
2 Students 3 5 11 18 9 46
Developers 1 1 2 5 1 10

1) DESIGN OF THE SURVEY

The survey consisted of two parts: one is a questionnaire and
the other is an open discussion. We mined the DataSet2 auto-
matically with our approach as the basis of the survey. Then,
we randomly chose 5 nouns and 5 related verbs from the
feature framework to gain 6 recommendation instances, and
use them as the materials, and designed a questionnaire to
evaluate each part of information in our recommendation
framework (as shown in Figure 4) respectively.

The first section (S1) of the questionnaire evaluates the
information shown in Part B. The information is gained by the
approach given in our previous work and has been evaluated,
so we only give one simple question: whether the information
is useful for generally understanding the Apps having the
given functionality.

The second section (S2) of the questionnaire evaluates
the information given in Part C, and it consists of three
main questions: 1) whether the recommended permissions
can reflect the security requirements needed to be consid-
ered; 2) whether the APIs are useful for understanding the
related permissions; 3) whether the information can help you
elicit a more complete security requirements for developing a
new App.

The third section (S3) of the questionnaire focuses on Part
D and it gives questions from the angle of the functional-
ity: 1) whether the recommended information is useful for
understanding the potential risk that may be caused by the
given functionality; 2) whether the recommended informa-
tion is useful for adding the security requirements of the
functionality.

For each question, we gave the participants five options,
from 1 to 5 represent strongly disagree to strongly agree.
In addition, an open discussion can be given behind each
question and the participants can give any comments to our
approach freely.

101602

2) FEEDBACK OF THE SURVEY

This survey was conducted after the experiment for com-
paring between feature framework and LDA, so that the
participants already had a general understanding about our
work. The students participated in the survey at class, while
the developers could give responses with e-mail according to
their own schedules. Meanwhile, the feedback of 14 students
was identified invalid, because their responses were filtered
in the experiment for evaluating our feature framework.
Thus, we totally got 46 valid questionnaires from students
and 10 from developers, Table 6 summarizes the responses
from the participants and Figure 5 is the boxplot of the
results.

With respect to the information presented in Part B of
our recommendation framework, most of participants agreed
that these features are helpful for them to generally under-
stand the Apps. 35 in all 46 students (76.09%) and 8 in all
10 developers (80%) gave positive responses for the question
in Section 1. The results are consistent with the experiments
in our previous work, so we believe this Part of framework is
useful and bridge the functional requirements and the security
requirements at the early stage of App development.

The Part C of the recommendation framework gives the
security-related information for the whole App, and the
Section 2 of the questionnaire not only aims at evaluating
the usefulness of the information (question 3) in this part
but also checking the effectiveness of the organization of the
information (question 1 and 2):

« From the responses of question 1) in S2, it can be seen
that both students and developers believe the sensitive
permissions can reflect the security requirements to
some extent, while only 2 students and 1 developer gave
negative feedback. It indicates that the sensitive permis-
sions are useful information for security requirements
elicitation.

VOLUME 8, 2020



Y. Liu et al.: Recommending Security Requirements for the Development of Android Applications Based on Sensitive APIs

IEEE Access

6

5 ®

4 X

2 ®

1 o ®

s 1) 2)
S1 S2

[Istudent I¥Developer
@ @ —
3) 1) 2)
S3

FIGURE 5. Boxplots of the distributions of the responds in the survey.

o For the question 2), we want to know whether giv-
ing APIs under permissions is a good organization.
The responses of students and developers are quite
different: 71.74% of students believed the APIs are use-
ful for understanding the permission while only 40% of
developers gave positive responses and none of them
gave “‘strongly agree”. According to the open feed-
back of the question, we found the main reason for
such difference is that: students have less background
knowledge and more related information can help them
understand meaning of the permission; on the opposite,
developers have known the permissions well and they
do not need APIs as supplementation, but they said
such information may be more useful for the stage of
coding.

« For the question 3), 32 students and 5 developers thought
the recommended information is helpful for eliciting
a more complete security requirement for developing
a new App. The reasons for students and developers
giving negative feedback are different: for the students,
the limitation is that they had little knowledge on per-
missions and did not know the meaning of the rec-
ommended information; but for the developers, they
think the recommended permissions are common for
the whole App are simple and they had already known,
so the effectiveness for enriching the security require-
ments is limited.

The Part D of the recommendation framework gives the
permissions may need to be considered when developing the
demanded functionality. As the information is organized in
the same way as Part C, the questions in S3 only evaluate the
usefulness of the information.

o From the responses for question 1), 67.37% of stu-
dents and 70% developers agreed that the informa-
tion is useful for understanding the potential risk
of the given functionality, and only 7 students and
2 developers gave negative feedback while 8 students
and 1 developer hold neutral opinion. It indicates
that the information is related to the demanded func-
tionality and reflects security requirements to some
extent.

VOLUME 8, 2020

« For the question 2), the responses are a little lower than
the ones for the question 1), but there are still 27 students
and 6 developers think such information can be used
to supplement the security requirements. The reasons
of the negative feedback are similar as the ones for the
question 3) in S2. Thus, we believe that the participants
had accepted the usefulness of the recommended infor-
mation in Part D, and only seldom of them rejected such
conclusion.

Besides the questionnaire, we tried our best to have a
discussion with the participants to gain their opinions on our
approaches. In general, the opinions often include usefulness
and limitations of the recommended information.

As the representative of new developers without much
experience, students express that the recommended informa-
tion gives them an easy way to understand the permissions
required by the App or the functionality, and this helps them
to initialize the elicitation of security requirements and enrich
them gradually. As one student said:

“When I get the functionality, I totally have no idea where
to start eliciting the security requirements, but from the given
information on permissions as well as APIs, I know about the
potential risks and can give corresponding requirements’.

At the same time, some students indicate that the back-
ground knowledge is the most important hinder for them to
use the recommended information: ““I really do not know the
meaning of these sensitive permissions, it costs much time to
ready their introductions to understand them firstly.”

The concerns of mature developers are different from stu-
dents, they show great interest in the information that can
inspire them with the security requirements “not easy to be
though but indeed exit”, and they said that the recommended
information could remind them some important points they
had ignored. “Although most of the given information is
common and I have known it, there always exists unexpected
one and I really need to consider them for developing a
safe App”, a developer said. In addition, the developers paid
unexpectedly attention to the information of recommended
APIs on their usefulness for developing the Apps rather than
for understanding corresponding permissions, they said “it
would be good to give a more precise relationships between

101603



IEEE Access

Y. Liu et al.: Recommending Security Requirements for the Development of Android Applications Based on Sensitive APls

the functionality and APIs and I can use them for the coding”,
and we think it is a good research direction for our future
work.

Summary: The participants confirm the usefulness of our
approach in practice but from different aspects: it is helpful
for new developers to overall construct knowledge structure
on the security requirements of the App and break them down
into details; and it gives mature developers supplementary
information to search missing risk, so that they can elicit more
complete security requirements.

D. THREATS TO VALIDITY

Although the results of the experiments and the responses
of the survey were relatively good, the validity of our work
suffers several threats, we analyze them from the following
two aspects.

Threats to the validity of methods in our approach.
There are three main threats in this aspect focusing on the
limitations of methods themselves in our approach.

Firstly, our approach gets mapping between APIs and
permissions from PScout. Although PScout launches new
versions continually, it could not provide complete relation-
ships, especially when new APIs appear frequently. However,
establishing such relationships is another research question
and not easy to be solved, so we did not give new method in
this paper.

Secondly, our approach utilizes statistical analysis to iden-
tify the APIs related to a given functionality, so it could not
give the relationship precisely. However, as the functional-
ity of API is often fine-grained while the functionality in
requirements is coarse-grained, it is difficult to map them
with semantic analysis. In the future, we consider to use the
introductions of APIs into our approach as a new resource and
wish to solve this problem.

Thirdly, according to the response of the survey, an impor-
tant limitation for new developers using our recommendation
information is that they could not understand the meaning
of permissions well without enough background knowledge.
In our method, we have given each permission with the link
of their home page, and this can alleviate the limitation to
some extent but may be not enough. So, we plan to extract
core information from the introduction of the permission and
add a brief illustration after the recommendation information,
so that users can understand them easily.

Threats to the validity of experiments. The threats from
this aspect concern the factors affecting the validity of our
experiments, especially the survey.

The first threat stems from the participants of our experi-
ments, their knowledge and skills would impact the results.
Hence, we choose two kinds of participants to evaluate our
approach. One kind is students with similar background, they
are from the same major and same grade; the other kind
is developers come from different companies, so that our
approach can be analyzed from different angles. Furthermore,
we had conducted an open discussion with the participants to
better understand their opinions.

101604

Secondly, another threat of our experiments depends on the
subjective opinions of participants, either students or devel-
opers. It is because there are no objective criteria for eval-
uating our approach and we could not get an oracle for the
experiments. Meanwhile, we do not have conditions to use
the approach in practice at present. We wish to cooperate with
companies to further evaluate our approach.

VIil. CONCLUSION AND FUTURE WORK

Today, the security becomes more and more important for
the success of Apps, and it is deserved to be well considered
at the stage of requirements for reducing the cost of soft-
ware development. In this paper, we propose an approach to
help developers elicit security requirements. In our approach,
we construct a feature framework by mining App descriptions
to express the functionalities of Apps in the marketplaces,
and then extract sensitive APIs used in these Apps as the
bridge to establish relationships between functionalities and
sensitive permissions. We define a recommendation frame-
work for developers getting useful information according to
their demands from two aspects: security requirements for
the whole App and the ones for the given functionality. Our
evaluation experiments show that the feature framework can
summarize features in a reasonable way and our method
can map functionalities and APIs in an acceptable accuracy.
Furthermore, the survey on students and developers also
confirms the usefulness of the recommended information in
practice.

In the future, we will consider introducing semantic analy-
sis for establishing relationships between APIs and function-
alities more accurately, and add the illustration of permissions
to the recommendation framework so that new developers
can understand them more easily. Also, we wish to use our
approach in large-scale cases to further evaluate it.

REFERENCES

[1] W. Martin, F. Sarro, Y. Jia, Y. Zhang, and M. Harman, “A survey of app
store analysis for software engineering,” IEEE Trans. Softw. Eng., vol. 43,
no. 9, pp. 817-847, Sep. 2017.

[2] S. Mcllroy, N. Ali, and A. E. Hassan, “Fresh apps: An empirical study
of frequently-updated mobile apps in the Google play store,” Empirical
Softw. Eng., vol. 21, no. 3, pp. 1346-1370, Jun. 2016.

[3] Y.Zhou and X. Jiang, “Dissecting Android malware: Characterization and
evolution,” in Proc. IEEE Symp. Secur. Privacy, May 2012, pp. 95-109.

[4] H.Wang, H.Li, L. Li, Y. Guo, and G. Xu, “Why are Android apps removed
from Google play?: A large-scale empirical study,” in Proc. 15th Int. Conf.
Mining Softw. Repositories (MSR), 2018, pp. 231-242.

[5] E.Knauss et al., “Supporting requirements engineers in recognising secu-

rity issues,” in Proc. Requirements Eng., Found. Softw. Qual. Work. Conf.

Berlin, Germany: Springer-Verlag, 2011.

S. Chen, T. Su, L. Fan, G. Meng, M. Xue, Y. Liu, and L. Xu, “Are mobile

banking apps secure? What can be improved?” in Proc. ESEC/SIGSOFT

FSE, Oct. 2018, pp. 797-802.

[7] Z. Fang, W. Han, and Y. Li, “Permission based Android security: Issues

and countermeasures,” Comput. Secur., vol. 43, pp. 205-218, Jun. 2014.

B. Nuseibeh and S. M. Easterbrook, ‘Requirements engineering:

A roadmap,” in Proc. Int. Conf. Softw. Eng., 2000, pp. 35—46.

[9]1 A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner,
“Android permissions: User attention, comprehension, and behavior,” in
Proc. SOUPS, 2012, pp. 1-14.

[10] Y.Liu, L. Liu, H. Liu, X. Wang, and H. Yang, ““Mining domain knowledge

from app descriptions,” J. Syst. Softw., vol. 133, pp. 126-144, Nov. 2017.

[6

—

8

—

VOLUME 8, 2020



Y. Liu et al.: Recommending Security Requirements for the Development of Android Applications Based on Sensitive APIs

IEEE Access

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

R. Robbes, M. Lungu, and A. Janes, “API fluency,” in Proc. IEEE/ACM
41st Int. Conf. Softw. Eng., New Ideas Emerg. Results (ICSE-NIER),
May 2019, pp. 97-100.

K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “PScout: Analyzing the
Android permission specification,” in Proc. Acm Conf. Comput. Commun.
Secur., 2012, pp. 217-228.

Y. Liu, L. Liu, H. Liu, and S. Li, “Information recommendation based
on domain knowledge in app descriptions for improving the quality of
requirements,” IEEE Access, vol. 7, pp. 9501-9514, 2019.

N. Hariri, C. Castro-Herrera, M. Mirakhorli, J. Cleland-Huang, and
B. Mobasher, ‘““‘Supporting domain analysis through mining and recom-
mending features from online product listings,” IEEE Trans. Softw. Eng.,
vol. 39, no. 12, pp. 1736-1752, Dec. 2013.

A. Ferrari, G. O. Spagnolo, and F. Dell’Orletta, ““Mining commonalities
and variabilities from natural language documents,” in Proc. 17th Int.
Softw. Product Line Conf. (SPLC), Aug. 2013, pp. 116-120.

Y. Yu, H. Wang, G. Yin, and B. Liu, “Mining and recommending software
features across multiple Web repositories,” in Proc. 5th Asia—Pacific Symp.
Internetware (Internetware), Oct. 2013, pp. 1-9.

J.-M. Davril, E. Delfosse, N. Hariri, M. Acher, J. Cleland-Huang, and
P. Heymans, “Feature model extraction from large collections of informal
product descriptions,” in Proc. 9th Joint Meeting Found. Softw. Eng.
(ESEC/FSE), Aug. 2013, pp. 290-300.

X. Lian, M. Rahimi, J. Cleland-Huang, L. Zhang, R. Ferrai, and M. Smith,
“Mining requirements knowledge from collections of domain docu-
ments,” in Proc. IEEE 24th Int. Requirements Eng. Conf. (RE), Beijing,
China, Sep. 2016, pp. 156-165.

B. Fu, J. Lin, L. Li, C. Faloutsos, J. Hong, and N. Sadeh, “Why people
hate your app: Making sense of user feedback in a mobile app store,”
in Proc. 19th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining
(KDD), 2013, pp. 1276-1284.

E. Guzman and W. Maalej, ““‘How do users like this feature? A fine grained
sentiment analysis of app reviews,” in Proc. IEEE 22nd Int. Requirements
Eng. Conf. (RE), Aug. 2014, pp. 153-162.

X. Gu and S. Kim, ““What parts of your apps are loved by users?’(T),” in
Proc. 30th IEEE/ACM Int. Conf. Automated Softw. Eng. (ASE), Nov. 2015,
pp. 760-770.

H. Khalid, E. Shihab, and A. E. Hassan, “What do mobile app users
complain about? A study on free iOS apps,” IEEE Softw., vol. 32, no. 3,
pp. 70-77, May/Jun. 2015.

X. Li, Z. Zhang, and K. Stefanidis, ‘““Mobile app evolution analysis based
on user reviews,” in Proc. SOMET. 2018, pp. 773-786.

X. Li, Z. Zhang, and K. Stefanidis, “Sentiment-aware analysis of mobile
apps user reviews regarding particular updates,” in Proc. ICSEA, 2018,
p. 109.

L. Villarroel, G. Bavota, B. Russo, R. Oliveto, and M. Di Penta, “Release
planning of mobile apps based on user reviews,” in Proc. 38th Int. Conf.
Softw. Eng. (ICSE), May 2016, pp. 14-24.

C. Gao, B. Wang, P. He, J. Zhu, Y. Zhou, and M. R. Lyu, “PAID: Prioritiz-
ing app issues for developers by tracking user reviews over versions,” in
Proc. IEEE 26th Int. Symp. Softw. Rel. Eng. (ISSRE), Nov. 2015, pp. 35-45.
C. Gao, J. Zeng, M. R. Lyu, and I. King, “Online app review analysis
for identifying emerging issues,” in Proc. 40th Int. Conf. Softw. Eng.,
May 2018, pp. 48-58.

F. Palomba, P. Salza, A. Ciurumelea, S. Panichella, H. Gall, F. Ferrucci, and
A. De Lucia, “Recommending and localizing change requests for mobile
apps based on user reviews,” in Proc. IEEE/ACM 39th Int. Conf. Softw.
Eng. (ICSE), May 2017, pp. 106-117.

L. Yu,J. Chen, H. Zhou, X. Luo, and K. Liu, “Localizing function errors in
mobile apps with user reviews,” in Proc. 48th Annu. IEEE/IFIP Int. Conf.
Dependable Syst. Netw. (DSN), Jun. 2018, pp. 418-429.

N. Genc-Nayebi and A. Abran, “A systematic literature review: Opin-
ion mining studies from mobile app store user reviews,” J. Syst. Softw.,
vol. 125, pp. 207-219, Mar. 2017.

N. H. Bakar, Z. M. Kasirun, N. Salleh, and H. A. Jalab, “Extracting
features from online software reviews to aid requirements reuse,” Appl.
Soft Comput., vol. 49, pp. 1297-1315, Dec. 2016.

Z. Qu, V. Rastogi, X. Zhang, Y. Chen, T. Zhu, and Z. Chen, “AutoCog:
Measuring the Description-to-permission fidelity in Android applica-
tions,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur. (CCS),
2014, pp. 1354-1365.

A. Gorla, I. Tavecchia, F. Gross, and A. Zeller, “Checking app behavior
against app descriptions,” in Proc. 36th Int. Conf. Softw. Eng. (ICSE), 2014,
pp. 1025-1035.

VOLUME 8, 2020

(34]

(35]

(36]

(37]

(38]

(39]

(40]

[41]

[42]

[43]

[44]

[45]

[46]

C. Zhang, H. Wang, R. Wang, Y. Guo, and G. Xu ‘“‘Re-checking app
behavior against app description in the context of third-party libraries,”
in Proc. SEKE, 2018, pp. 664—665.

V. Avdiienko, K. Kuznetsov, I. Rommelfanger, A. Rau, A. Gorla, and
A. Zeller, “Detecting behavior anomalies in graphical user interfaces,”
in Proc. IEEE/ACM 39th Int. Conf. Softw. Eng. Companion (ICSE-C),
May 2017, pp. 201-203.

L. L. Zhang, C.-J.-M. Liang, Z. L. Li, Y. Liu, F. Zhao, and E.-H. Chen,
“Characterizing privacy risks of mobile apps with sensitivity analysis,”
IEEE Trans. Mobile Comput., vol. 17, no. 2, pp. 279-292, Feb. 2018.

L. Yu, X. Luo, C. Qian, S. Wang, and H. K. N. Leung, “Enhancing
the description-to-behavior fidelity in Android apps with privacy policy,”
IEEE Trans. Softw. Eng., vol. 44, no. 9, pp. 834-854, Sep. 2018.

Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “‘Hey, you, get off of my market:
Detecting malicious apps in official and alternative Android markets,” in
Proc. NDSS, 2012, pp. 50-52.

D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and
C.E.R.T. Siemens, “Drebin: Effective and explainable detection of
Android malware in your pocket,” in Proc. NDSS, 2014, pp. 23-26.

W. Wang, X. Wang, D. Feng, J. Liu, Z. Han, and X. Zhang, “Explor-
ing permission-induced risk in Android applications for malicious appli-
cation detection,” IEEE Trans. Inf. Forensics Security, vol. 9, no. 11,
pp. 1869-1882, Nov. 2014.

G. Tao, Z. Zheng, Z. Guo, and M. R. Lyu, “MalPat: Mining patterns of
malicious and benign Android apps via permission-related APIs,” IEEE
Trans. Rel., vol. 67, no. 1, pp. 355-369, Mar. 2018.

J. D. Koli, “RanDroid: Android malware detection using random machine
learning classifiers,” in Proc. Technol. Smart-City Energy Secur. Power
(ICSESP), Mar. 2018, pp. 1-16.

J. Lin, K. Sugiyama, M.-Y. Kan, and T.-S. Chua, “New and improved:
Modeling versions to improve app recommendation,” in Proc. 37th Int.
ACM SIGIR Conf. Res. Develop. Inf. Retr. (SIGIR), 2014, pp. 647-656.

S. Vakulenko, O. Miiller, and J. V. Brocke, “Enriching iTunes App Store
categories via topic modeling,” in Proc. Int. Conf. Inf. Syst. (ICIS), 2014,
pp. 1-11.

D. M. Blei, A. Y. Ng, and M. L. Jordan, “Latent Dirichlet allocation,”
J. Mach. Learn. Res., vol. 3, pp. 993-1022, Mar. 2003.

C. Wohlin, P. Runeson, M. Host, and M. C. Ohlsson, Experimentation in
Software Engineerin. Berlin, Germany: Springer-Verlag, 2012.

YUZHOU LIU received the bachelor’s degree in
optical information science and technology from
the Beijing Institute of Technology, in 2010, and
the Ph.D. degree in computer science and technol-
ogy from Jilin University, China, in 2019. Then, he
worked as a Software Engineer at China Unicom,
until 2014. During the period of work, he is mainly
engaged in data extraction and data analysis. He is
currently a Teacher with the College of Computer
Science and Technology, Jilin University. His cur-

rent research concerns on requirements engineering, data mining, and natural
language process.

LEI LIU received the master’s degree in computer
science from Jilin University, China, in 1985. He is
currently a Doctoral Supervisor with the College
of Computer Science and Technology, Jilin Uni-
versity. The central themes of his research are
programming language and its realization tech-
nology, software security and cloud computing,
the semantic web and ontology engineering, and
knowledge representation and reasoning. At Jilin
University, he has held responsibilities for more

/0\/

than 30 projects as a lead person in the area of computer science. He has
authored numerous articles and technical reports on various international
journals and conferences.

101605



IEEE Access

Y. Liu et al.: Recommending Security Requirements for the Development of Android Applications Based on Sensitive APls

101606

HUAXIAO LIU received the Ph.D. degree in com-
puter science from Jilin University, China, in 2013.
He is currently an Assistant Professor with the Col-
lege of Computer Science and Technology, Jilin
University. The central theme of his research is
improving software quality, and his recent research
concerns the software requirements engineering,
software cybernetics, and formal methods of soft-
ware development. More specifically, he develops
techniques to verify aspect-oriented requirements
model based on ontology.

SHANQUAN GAO received the master’s degree
in software engineering from Jilin University,
China, in 2018, where he is currently pursuing
the Ph.D. degree with the College of Computer
Science and Technology. His current research
concerns on requirements engineering and data
mining.

GUOHANG SONG received the master’s degree
in computer science from Jilin University, China,
in 2013, where he is currently pursuing the Ph.D.
degree with the College of Computer Science and
Technology. He is mainly engaged in data mining
and data analysis. His current research concerns on
recommendation system.

VOLUME 8, 2020



	INTRODUCTION
	RELATED WORK
	REQUIREMENTS ELICITATION OF APPS
	SECURITY ANALYSIS OF APPS

	PROBLEM STATEMENT
	MINING DESCRIPTIONS OF APPS
	FEATURE EXTRACTION
	FEATURE SUMMARIZATION

	API ANALYSIS
	INITIALIZING RELATIONSHIPS BETWEEN FEATURE FRAMEWORK AND SENSITIVE APIs
	RELATIONSHIPS ANALYSIS

	INFORMATION RECOMMENDATION
	RETRIEVE INFORMATION
	THE RECOMMENDATION FRAMEWORK

	EXPERIMENTS
	DATASET AND PARTICIPANTS
	EXPERIMENTS FOR RQ1
	COMPARISON BETWEEN FEATURE FRAMEWORK AND LDA
	MAPPING FUNCTIONALITIES WITH APIs

	SURVEY FOR RQ2
	DESIGN OF THE SURVEY
	FEEDBACK OF THE SURVEY

	THREATS TO VALIDITY

	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	YUZHOU LIU
	LEI LIU
	HUAXIAO LIU
	SHANQUAN GAO
	GUOHANG SONG


