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ABSTRACT This paper presents a novel adaptive learning-rate backpropagation neural network (ALR-
BPNN) algorithm based on the minimization of mean-square deviation (MSD) to implement a fast con-
vergence rate and robustness to impulsive noises. The learning rates of the weights in each hidden layer
are derived to minimize the upper bound of the MSD obtained by the analysis, which guarantees a fast
convergence rate in a stable range. Moreover, by adopting the variance of the kind of the measurement
noises in each layer through the variance of the error signals, the proposed scheme provides robustness to
the impulsive noises. The performance of the proposed algorithm is evaluated on various sequential signals
and industrial data including the impulsive noise and compared with conventional ALR-BPNN algorithms.
Simulation results indicate that the proposed algorithm outperforms the existing algorithms.

INDEX TERMS Adaptive learning rate, neural network, mean-square deviation, impulsive noises.

I. INTRODUCTION
Neural networks are widely used to train various models.
Training method of neural network is inundated with
algorithms that focus on the application and real-time imple-
mentation of various problems [1], [2]. This paper is also
concerned with the training algorithm of a multilayered
feedforward neural network. A low steady-state error and
fast convergence rate are important issues in the training
algorithm [3], [4]. Backpropagation (BP) algorithm is a rep-
resentative for training algorithm [5]–[7]. However, the main
drawback of BP algorithm has a slow convergence rate. To
be a fast convergence rate, some heuristic techniques such as
novel BP algorithms with a momentum term and numerical
optimization algorithms with quasi-Newton method were
introduced [8], [9]. The limitation of the quasi-Newton meth-
ods is that the memory must be secured up to the square
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of the network size. The conjugate-gradient and Newton
method have been proposed to be fast convergence rate, but
the algorithms require too much computational complexity
[10]–[12]. Other algorithms such as recursive least-
square [13], Levenberg-Marquardt [14], [15], and extended
Kalman filtering [16] have been also improved to be a fast
convergence, but these improvements deteriorate the simplic-
ity and convenience of implementation of BP algorithm.

Another issue is its robustness to the impulsive noises
[17], [18]. Specifically, the impulsive noises generated in real
world, such as the sound of the door suddenly shutting, is a
major challenge to be solved in training algorithms. To over-
come the challenge, some robust adaptive algorithms have
been developed, such as adaptive learning-rate saturation and
sign algorithms [19], [20], but these algorithms cannot effec-
tively train the nonlinear model. To suppress the impulsive
noises in nonlinear model, various detection techniques of the
impulsive noises using the neural network and other nonlin-
ear filters have been introduced [21]–[23]. These algorithms
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FIGURE 1. Neural networks with N layers.

well detected the impulsive noises in nonlinear model, but
applying these detection techniques to the training algorithms
is another complex process. To mitigate this drawback, func-
tional link neural network (FLNN) architectures have been
proposed [24]–[26]. Specifically, a neural network based on
sparse representations of functional links has been proposed
to be robust in the impulsive noise environments [27]. This
algorithm not only solved the problems of basic FLNN archi-
tectures, such as slow convergence rate and computational
complexity, but also improved the robustness to the impulsive
noises. However, as the algorithm contains the trigonometric
functions and exponential calculations, implementing this
algorithm on a DSP board or memory chip is not easy in real
environment.

In order to address the aforementioned issues like the fast
convergence rate and robustness to the impulsive noises, this
paper proposes a novel adaptive learning-rate backpropaga-
tion neural network (ALR-BPNN) algorithm based on the
minimization of mean-square deviation (MSD). Although
advantages of the training algorithm based on the minimiza-
tion of the MSD are well known in adaptive filtering prob-
lems [28], [29], such as fast convergence rate and low steady-
state error, this algorithm has not been used to train neural
networks as it is not feasible to know exact value of the MSD
of the weights in each hidden layer. To take these advantages
of this algorithm into neural network, the upper bound of
the MSD of the weights in each hidden layer is analyzed
and the learning rates of the weights is set to minimize the
upper bound of the MSD to ensure a fast convergence rate in
a stable range. In addition, the proposed algorithm provides
robustness to the impulsive noises by adopting the variance
of the kind of the measurement noises in each hidden layer
through the variance of the error signals.

The rest of this paper are organized as follows.
In Sections II, basic BP algorithm and notations are pre-
sented. Details of the proposed algorithm are described in
Section III. Simulations results are discussed in Section IV
and conclusion is provided in Section V.

II. PRELIMINARY
Consider feedforward neural networks (FNNs) with Ln neu-
rons in the nth layer, for n = 1, 2, . . . ,N . The neural

networks represent based on the following equations:

netN−1j (k) =
LN−2∑
i=1

wN−2,N−1i,j (k)uN−2i (k), (1)

uN−1j (k) = f (netN−1j (k)), (2)

wherewN−2,N−1i,j (k) represents the weight from the ith neuron
at the (N − 2)th layer to the jth neuron at the (N − 1)th layer.
uN−1j (k) represents the output of the jth neuron that belongs
to the (N − 1)th layer. f (·) is a rectified linear unit (ReLU)
activation function and defined as

f (x) =

{
x if x > 0,
0 otherwise.

(3)

The output of the neural network is expressed as

y(k) =
LN−1∑
i=1

wN−1,Ni,1 (k)uN−1i (k). (4)

To derive backpropagation method, cost function J (k) is
defined as

J (k) =
1
2
{d(k)− y(k)}2 =

1
2
e2(k), (5)

where d(k) and e(k) are target signals and error signals. Using
gradient descent method, the update equation of the weight
wn−1,ni,j (k) is expressed as

wn−1,ni,j (k + 1) = wn−1,ni,j (k)− µ
∂J (k)

∂wn−1,ni,j (k)
. (6)

The backpropagation method is summarized in the following
equations [6]

wn−1,ni,j (k + 1) = wn−1,ni,j (k)+ µδnj (k)u
n−1
i (k), (7)

where µ represents the learning rate. For n = N − 1, . . . , 2,
δnj (k) is defined as

If netnj (k) > 0,

δnj (k) =
ln+1∑
q=1

wn,n+1j,q (k)δn+1q (k), (8)

else,

δnj (k) = 0, (9)

end.

At N th layer (output layer), δNj (k) is defined as [30]

δNj (k) = e(k). (10)

The update equation of the weight vector wn−1,n
j (k) from

all neurons at the (n − 1)th layer to the jth neuron at the nth
layer is derived as

wn−1,n
j (k + 1) = wn−1,n

j (k)+ µδnj (k)u
n−1(k), (11)

where wn−1,n
j (k) = [wn−1,n1,j (k) wn−1,n2,j (k) · · ·wn−1,nLn−1,j

(k)]T ∈
RLn−1×1 and un−1(k) = [un−11 (k) un−12 (k) · · · un−1Ln−1

(k)]T ∈
RLn−1×1.
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FIGURE 2. Backpropagation error of the j th neuron at the nth hidden layer.

III. PROPOSED ALR-BPNN ALGORITHM
A. ADAPTIVE LEARNING-RATE EQUATION OF WEIGHT
VECTOR AT HIDDEN LAYER
The update equations of the weights are modified into nor-
malized form to analyze the MSD of each weight. This
normalized update equation has advantages in defining the
stability range of the learning rate over the original update
equation (11).

wn−1,n
j (k+1) = wn−1,n

j (k)+µnj (k)δ
n
j (k)

un−1(k)
||un−1(k)||2

, (12)

where δnj (k) represents the backpropagation error of the jth
neuron at the nth hidden layer [6].
To derive the MSD of the weights vector from all neurons

at the (n− 1)th layer to the jth neuron at the nth hidden layer,
in this paper, δnj (k) is defined in terms of deviation of the
weights vector as follows,

δnj (k)

= un−1,Tt wn−1,n
j,t − un−1(k)Twn−1,n

j (k)+ ηn(k), (13)

= un−1(k)Twn−1,n
j,t − un−1(k)Twn−1,n

j (k)+ rn(k), (14)

= un−1(k)T w̃n−1,n
j (k)+ rn(k), (15)

where ηn(k) is a kind of a measurement noise that is indepen-
dent of un−1(k) and assumed to be stationary and zero-mean.
un−1t and wn−1,n

j,t represent target outputs vector at the (n− 1)
layer and the weights vector, respectively, which are used
to generate the final output signals converged to the target
signals d(k). w̃n−1,n

j (k) = wn−1,n
j,t −wn−1,n

j (k) represents the

deviation of the weights vector wn−1,n
j (k). rn(k) = ηn(k) +

(un−1,Tt −un−1(k)T )wn−1,n
j,t called perturbations means a kind

of the measurement noise at the hidden layer. Fig. 2 graphi-
cally shows that the backpropagation error δnj (k) is defined in

terms of w̃n−1,n
j (k).

Using the Eq. (12), the deviation of wn−1,n
j (k) can be

rewritten as

w̃n−1,n
j (k + 1)

= w̃n−1,n
j (k)− µnj (k)δ

n
j (k)

un−1(k)
||un−1(k)||2

, (16)

= w̃n−1,n
j (k)− µnj (k)

×{un−1(k)T w̃n−1,n
j (k)+ rn(k)}

un−1(k)
||un−1(k)||2

, (17)

=

[
I − µnj (k)

un−1(k)un−1(k)T

||un−1(k)||2

]
w̃n−1,n
n (k)

−µnn(k)rn(k)
un−1(k)
||un−1(k)||2

, (18)

= Fn−1,nj (k)w̃n−1,n
j (k)

−µnj (k)rn(k)
un−1(k)
||un−1(k)||2

, (19)

where Fn−1,nj (k) =
[
I − µnj (k)

un−1(k)un−1(k)T

||un−1(k)||2

]
represents a

transition matrix of wn−1,n
j (k). The MSD of wn−1,n

j (k) is
defined as

MSD(k)wn−1,nj
= E[w̃n−1,n

j (k)T w̃n−1,n
j (k)|Un−1(k)],

= Tr{Pn−1,nj (k)}, (20)

where E(·) and Tr(·) represent expectation and trace, respec-
tively. Pn−1,nj (k) = E[w̃n−1,n

j (k)w̃n−1,n
j (k)T |Un−1(k)], and

Un−1(k) = {un−1(i)|0 ≤ i < k}. Using the Eq. (19) and
the assumption that w̃n−1,n

j (k) and rn(k) are uncorrelated,

the recursive equation of Pn−1,nj (k) is derived as

Pn−1,nj (k + 1) = Fn−1,nj (k)Pn−1,nj (k)Fn−1,nj (k)T

+{µnj (k)}
2σ 2

rn (k)
un−1(k)un−1(k)T

||un−1(k)||4
, (21)

Pn−1,nj (0) = E[w̃n−1,n
j (0)w̃n−1,n

j (0)T |Un−1(0)], (22)
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Algorithm 1 Adaptive Learning-Rate Backpropagation Neural Network
Parameters: N = number of layer, Ln = number of neuron in nth hidden layer, λ = 0.99, αn, βn, ε : predefined
Initialization: wn−1,n

j (1) = ε, Tr{Pn−1,nj (1)} = 10, σ 2
e (0) = 0, n = N ,N − 1, . . . , 2, j = 1, 2, . . . ,Ln

1) For k = 1 : end
2) e(k) = d(k)− y(k)
3) σ 2

e (k) = (1− λ)σ 2
e (k − 1)+ λe2(k)

4) For n = N : 2
5) σ 2

rn (k) = βnσ
2
e (k)

6) For j = 1 : Ln

7) µnj (k) =
Tr{Pn−1,nj (k)}/(αn−1Ln−1)

Tr{Pn−1,nj (k)}/(αn−1Ln−1)+σ 2rn (k)/(||u
n−1(k)||2+ε)

8) Tr{Pn−1,nj (k + 1)} =
[
1−

2µnj (k)−µ
n
j (k)

2

αn−1Ln−1

]
Tr{Pn−1,nj (k)} +

{µnj (k)}
2σ 2rn (k)

||un−1(k)||2+ε

9) wn−1,n
j (k + 1) = wn−1,n

j (k)+ µnj (k)δ
n
j (k)

un−1(k)
||un−1(k)||2

10) end
11) end
12) end

where σ 2
rn represents the variance of the perturbations. The

recursive equation of the MSD of wn−1,n
j (k) is defined as

Tr{Pn−1,nj (k + 1)} = Tr{Fn−1,nj (k)TFn−1,nj (k)Pn−1,nj (k)}

+
{µnj (k)}

2σ 2
rn (k)

||un−1(k)||2
. (23)

Using Lemma 1. in [31], Tr{Fn−1,nj (k)TFn−1,nj (k)Pn−1,nj (k)}
can be bounded as

Tr{Fn−1,nj (k)TFn−1,nj (k)Pn−1,nj (k)}

= Tr
[
Pn−1,nj (k)+ [−2µnj (k)+ {µ

n
j (k)}

2]

×
un−1(k)un−1(k)T

||un−1(k)||2
Pn−1,nj (k)

]
,

≤ Tr{Pn−1,nj (k)} + [−2µnj (k)+ {µ
n
j (k)}

2]λmin{P
n−1,n
j (k)}.

(24)

Using λmin{P
n−1,n
j (k)} ≈

Tr{Pn−1,nj (k)}
αn−1Ln−1

, the Eq. (23) is
bounded as

Tr{Pn−1,nj (k + 1)}

≤ Tr{Pn−1,nj (k)} +
[
−2µnj (k)+ {µ

n
j (k)}

2
]

×
Tr{Pn−1,nj (k)}

αn−1Ln−1
+
{µnj (k)}

2σ 2
rn (k)

||un−1(k)||2
, (25)

= Tr{Pn−1,nj (k)} +1(µnj (k)), (26)

where αn−1 ≥ 1 and 1(µnj (k)) , [−2µnj (k) +

{µnj (k)}
2]
Tr{Pn−1,nj (k)}
αn−1Ln−1

+
{µnj (k)}

2σ 2rn (k)

||un−1(k)||2 . By setting the par-
tial differential of 1(µnj (k)), the proposed learning-rate
of the weights vector from all neurons at the (n − 1)th
layer to the jth neuron at the nth layer, µnj (k) is obtained as

follows

µnj (k)

=
Tr{Pn−1,nj (k)}/(αn−1Ln−1)

Tr{Pn−1,nj (k)}/(αn−1Ln−1)+ σ 2
rn (k)/(||u

n−1(k)||2 + ε)
,

(27)

Tr{Pn−1,nj (k + 1)}

=

[
1−

2µnj (k)− {µ
n
j (k)}

2

αn−1Ln−1

]
Tr{Pn−1,nj (k)}

+
{µnj (k)}

2σ 2
rn (k)

||un−1(k)||2 + ε
, (28)

where ε is set to small value to prevent the denominator
from becoming zero. A specific algorithm is shown in Algo-
rithm (1).

B. STABILITY ANALYSIS
To guarantee the stability of the proposed ALR-BPNN algo-
rithm, a posteriori backpropagation error δnj,post is defined as

δnj,post = un−1,Tt wn−1,n
j,t − un−1(k)Twn−1,n

j (k + 1)+ rn(k).

(29)

From the Eqs. (12) and (14), δnj,post can be rewritten as

δnj,post =

(
1− µnj (k)

||un−1(k)||2

||un−1(k)||2

)
δnj (k). (30)

As δnj,post represents the backpropagation error obtained
through the new updated weights and it should be less than
δnj (k), µ

n
j (k) should be satisfied as following,

|1− µnj (k)| < 1. (31)
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FIGURE 3. Feedforward neural networks using the proposed ALR-BPNN algorithm.

Using the Eq. (27) and (31), the stability condition of the
proposed ALR-BPNN can be derived as∣∣∣∣∣ σ 2

rn (k)/(||u
n−1(k)||2+ε)

Tr{Pn−1,nj (k)}/(αn−1Ln−1)+σ 2
rn (k)/(||u

n−1(k)||2 + ε)

∣∣∣∣∣<1.

(32)

From above equation, it can be seen that the proposed ALR-
BPNN algorithm always satisfies the stability condition if
Tr{Pn−1,nj (k)} > 0, which can be easily confirmed by the
Eq. (28).

C. PRACTICAL CONSIDERATIONS
1) ESTIMATION OF σ2

RN
(k)

As the variance of the perturbation σ 2
rn (k) is not measurable

value in the Eqs. (27) and (28), it is adopted by the variance
of the error signals which are also obtained using a moving
average method as follows

σ 2
e (k) = (1− λ)σ 2

e (k − 1)+ λe2(k), (33)

σ 2
rn (k) = βnσ

2
e (k), (34)

where λ and βn were set to 0.99 and [0.01 0.5]. By choosing
the variance of the perturbation in each hidden layer through
the variance of the error signals, the proposed algorithm can
be robustly updated even when the impulsive noises are sud-
denly generated. Specifically, the variance of the perturbation
is rapidly increased by the error signals with the impulsive
noises, which makes the learning rate small and prevents
erroneous updates of the weights.

2) SET OF αN
To choose an appropriate αn in the proposed algorithm,
the normalized mean-square error (NMSE) curves according
to α1 and α2 were compared for two types of input. As can be
seen Figs. 4 and 5, when using multi-tonal sinusoidal signals
as input signals, α1 closer to the input layer had a greater
effect on performance than α2. In that, it should be always
adjusted larger than 1. However, this tendency depends on

FIGURE 4. NMSE of the proposed algorithm according to αn (uncorrelated
multi-tonal signals).

FIGURE 5. NMSE of the proposed algorithm according to αn (correlated
multi-tonal signals by G(z)).

the characteristics of the inputs. For example, when using
a highly correlated data features such as exchange rates by
country, SHANGHAI index, and etc. as input data, α2 closer
to the output layer had a greater effect on performance than
α1 as can be seen Figs. 6 and 7. In this paper, simulations were
performed by setting α1 and α2 based on this analysis.

IV. SIMULATION
In order to evaluate the performance of the proposed algo-
rithm, two simulation scenarios were performed in this paper.
In the first case, multi-tonal sinusoidal signals dependent on
various frequencies were sequentially used as input signals.
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TABLE 1. Number of multiplication (No. of. mul.) operations per one update (◦ represents an element-wise).

FIGURE 6. NMSE of the proposed algorithm according to αn (Highly
correlated input data).

Target signals were set by passing the input signals through a
specific nonlinear model. This simulation was performed to
confirm how quickly and robustly the output signals gener-
ated by the proposed algorithm can converge the target signals
in impulsive noise environments.

The second simulation was conducted to predict the
NASDAQ index. Target and input data were set to NASDAQ
index data and 18 data features for about 10 years. This
simulation also evaluated how robustly the proposed algo-
rithm trains the neural network in the environment where bad
training target data is randomly generated.

A. CASE 1
Sinusoidal wave was used as the original signals s(k) and
defined as

s(k) =
√
2 sin(

2π fk
Fs

), (35)

where f and Fs are center frequency and sampling frequency
of the original signal, respectively. A multi-tonal signal was
generated through the sum of the sinusoidal waves s(k) hav-
ing the center frequencies of 200, 400, . . . , 1200Hz and
sampling frequency of 2000Hz. Correlated input signals x(k)

FIGURE 7. NMSE of the proposed algorithm according to αn (Highly
correlated input data with 10% bad data).

FIGURE 8. µn
j curve of the proposed algorithm without the impulsive

noises in case 1.

were obtained from passing the multi-tonal signals through
the succeeding filters as

G(z) =
1

1− 0.9z−1
. (36)

Nonlinear target signals to be estimated were set as

d(k) = x(k − 1)+ 0.8x(k − 1)2 − 0.6x(k − 1)3

+ 0.4x(k − 2)2 − 0.1x(k − 3)2. (37)

VOLUME 8, 2020 98023
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FIGURE 9. µn
j curve of the proposed algorithm with the impulsive noises

in case 1.

FIGURE 10. Normalized error curve without the impulsive noise
(uncorrelated multi-tonal signals, α1 = 10, α2 = 1).

The impulsive noises ψ(k) were generated as
ψ(k) = ω(k)G(k), where ω(k) is Bernoulli process with
Pr(ω(k) = 1) = p and p is set to 0.005 in this paper. G(k)
is zero-mean Gaussian with power σ 2

G = 1000σ 2
y . Basic

BPNN algorithms based on the sigmoid and ReLU activa-
tion functions, Adagrad-BPNN [32], Adam-BPNN [33], and
proposed ALR-BPNN algorithms are simulated to compare
the performance. The parameters, β1 and β2 used in the
Adam-BPNN algorithm were set to 0.99. Number of layers,
including to input and output layer, was set to 3 and number
of neurons at the input and 2th layers in all algorithms were
set to 20, respectively. All simulation results were presented
by averaging 50 independent simulations.

In this simulation, the proposed ALR-BPNN algorithm
performed very well for not only the uncorrelated inputs but
also the correlated inputs. As the proposed algorithm has
larger learning rate by the MSD analysis compared to other
algorithms in the beginning, the initial normalized error was
larger than other algorithms. However, it is intended to ensure
that the proposed algorithm has a fast convergence rate in a
stable range, so it does not negatively affect the overall perfor-
mance. As can be seen in Figs 10 and 11, the proposed ALR-
BPNN algorithm had a fast convergence rate over the com-
pared algorithms even in environments where the impulse
noises are not generated. The value of the proposed algorithm
is much more exerted in environments where the impulse
noises are generated. As can be seen in Figs 12 and 13,
regardless of whether the inputs are the uncorrelated or

FIGURE 11. Normalized error curve without the impulsive noise
(correlated multi-tonal signals by G(z), α1 = 25, α2 = 2).

FIGURE 12. Normalized error curve with the impulsive noises
(uncorrelated multi-tonal signals, α1 = 10, α2 = 1).

FIGURE 13. Normalized error curve with the impulsive noises (correlated
multi-tonal signals by G(z), α1 = 30, α2 = 2).

correlated signals, other comparison algorithms have failed
to maintain a low steady-state errors in the impulse noise
environments. On the other hand, the proposed algorithm
showed a good performance even for all inputsmixedwith the
impulsive noises as the learning rate automatically decreases
when the error signals rapidly increases due to the impulsive
noises.

B. CASE 2
2000 training data and 500 test data were used to train the
FNNs predicting the NASDAQ index. Number of the input
features, including exchange rates by country, SHANGHAI
index, Goldman index, etc., were 18. 5 simulations were
performed according to the ratio of bad data among the
training target data and the ratio of bad data was divided from
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FIGURE 14. Training target data with 1% bad training data.

FIGURE 15. Test outputs of the algorithms without bad training data
(α1 = 5, α2 = 15).

FIGURE 16. Test outputs of the algorithms with 10% bad training data
(α1 = 5, α2 = 15).

0 to 40%. As can be seen Fig. 14, bad data was randomly
set to 2 to 6 times larger or smaller than the original training
target data. The prediction accuracy of the algorithm was
calculated by root-mean-square error (RMSE) using test data.
Number of layers was also set to 3, and number of neurons at
the input and 2th layers was set to 18 and 20. Comparison
algorithms were set to Adagrad-BPNN and Adam-BPNN
algorithms. The parameters, β1 and β2 used in the Adam-
BPNN algorithm were also set to 0.99. All simulation results
were presented by averaging 30 independent simulations.

In this simulation case, the proposed algorithm showed
good prediction accuracy regardless of the ratio of bad data
among the training data. As can be seen Fig. 15, 16, and 17,
the proposed ALR-BPNN algorithm not only provided good
prediction accuracy even in the absence of bad data, but
also maintained good accuracy in the presence of bad data.

FIGURE 17. Test outputs of the algorithms with 20% bad training data
(α1 = 5, α2 = 15).

TABLE 2. RMSE of comparison algorithms for the ratio of bad training
data.

This prediction accuracy is specifically shown in TABLE 2.
While the comparison algorithms had less accurate as the
ratio of bad data increases, the proposed algorithm main-
tained good accuracy regardless of the ratio of bad data.
Moreover, TABLE 1 showing number of multiplication of
Adagrad-BPNN, Adam-BPNN, and proposed ALR-BPNN
algorithms indicates that the proposed algorithm does not
increase the computational complexity compared to the Ada-
grad and Adam algorithms commonly used in adaptive
learning-rate method.

V. CONCLUSION
This paper proposed a novel ALR-BPNN algorithm updating
the learning rate in the direction of minimizing MSD at each
hidden layer and showed for the first time that minimiz-
ing the MSD can effectively reduce the overall error of the
neural network. The problem that exact value of the MSD
at each hidden layer is not feasible was solved by setting
the upper bound of the MSD. In addition, to be robustness
to the impulsive noises, the proposed algorithm adopted the
variance of the perturbation at each hidden layer through the
variance of the error signals. The results of the two sim-
ulations, estimating nonlinear model target signals through
the sequential input signals and estimating the actual NAS-
DAQ data, showed how robust and excellent the proposed
ALR-BPNN algorithm was even in the case of the impulsive
noise. The proposed BPNN algorithm based on the MSD
analysis will be utilized in various BPNN algorithms in the
future.
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