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ABSTRACT This paper presents an improved dense disparity estimating technique for a collection of
multi-baseline stereo (referred to as MBS in the text) images. The flow of the proposed system consists
of two main frameworks: a preliminary cost calculation and initial disparity estimating framework, and an
iterative cost refinement framework. The first framework implements an accurate multi-baseline stereo cost
(referred to as MBSC in the text) calculation method, and a scan line optimization inspired by the Semi
Global Matching (SGM) algorithm. Cost volumes of each two-view camera pair are calculated by fusing
two pixel dissimilarity measures: i) weighted Census transformation and ii) sum of absolute difference
color consistency term (SAD-Census). The initial disparity map between reference and the matching view
with the largest baseline displacement is calculated by summing-and-interpolating SAD-Census costs of
the current and all neighboring camera pairs in-between, and taking the minimum after aggregating for
sixteen directions. The second framework refines the aggregatedMBSCvolume recursively. In each iteration,
individual pair-wise disparity maps are used to warp matching views towards the reference to create binary
masks that resemble overlapping differences.White locations in themask represent incorrect correspondence
matches, thus a penalty is added for costs associated with, adapting a Gaussian modulating function.
This significantly reduces the selection probability of incorrect disparity minima in proceeding iterations.
A Guided filter-based Rolling Guidance filter is applied to further up-vote the probability of pixels with
the lowest costs, which are similar or close enough to ground truth readings. Through experimental results
evaluated on the Middlebury dataset, we show that our method leads to effective and efficient multi-baseline
disparity estimations.

INDEX TERMS Stereo vision, multi-baseline, stereo matching, iterative, refinement, disparity mapping.

I. INTRODUCTION
Computer and machine vision is defined as an interdisci-
plinary scientific field that is concerned with theories and
techniques for developing strategies to help computers to gain
a high-level understanding of real-world situations through
contents of digital images or video sequences. It includes
methods such as image acquisition, processing, analysis, and
understanding [1], [2]. Calculating three-dimensional infor-
mation from, and establishing accurate dense correspondence
matching between; two or multiple image sequences play a
significant role in this field [3]. Making the computers to
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gain an understanding of the world scenery observed through
naked human eyes and graphically restructuring them based
on contents, shapes, illumination variations, color distribu-
tions, however, is still a challenge [4]. Throughout the past
few decades, many algorithms exploiting the implementa-
tions of accurate 3D information calculation and dense corre-
spondence matching have been studied. Some of the applica-
tions benefited include simple to advancedmobile robot navi-
gating systems, sophisticated driverless autonomous systems,
augmented and virtual reality applications, teleconferencing,
view synthesis, and many more [5].

In general, these proposed algorithms can be categorized
into two distinctive groups as active and passive. Active
methods project a light source (e.g., LED, lasers) onto the
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scanning area. 3D information is obtained by either scanning
light spots or line stripes expanded from a spot using a
cylindrical lens, or by projecting light patterns of dots or lines
[6]. Notwithstanding their comprising results, they show less
practicability in situations when modeling distant or fast-
moving objects [7], [8] or behave poorly in outdoor environ-
ments (e.g., structured light) [9].

Passive methods, on the other hand, do not project any
radiation onto the scene, but instead, measure the visible
radiation that already exists on the scene surface (the ambi-
ent light reflected by the target [7]) using cameras. Mod-
ern passive systems have more diversified designs: ranging
from the simplest monocular camera; to two-view; to more
complicated multi-baseline cameras. However, calculating
3D information using a single camera is infeasible as they
fail to determine the true scale factor [9]. Therefore, many
systems – as similar to human stereopsis – use two cameras
with already known relative position information, which in
such the dense correspondence task becomes the well-known
stereo matching problem [10].

Stereo matching denotes the problem of finding pixel
correspondences in image sequences that correlate with
the same 3D point in the world view. This is also known
as disparity estimation, which produces a parallax image
specifying relative displacements between pixels [11]. The
geometry that correlates 3D world objects with their 2D
projections is known as the epipolar geometry [12]. Accord-
ing to the taxonomy of Scharstein and Szeliski in [13],
most stereo matching methods consist of four distinguishable
steps: matching cost computation, cost aggregation, disparity
computation/optimization, and disparity refinement.

The matching cost measures the similarity and dissimilar-
ity between two locations defined either locally or over a
supportive region [11]. This computation generally exploits
the absolute, squared, or sampling insensitive differences
of intensities of colors [14] to generate a 3D cost volume
known as disparity space image [15]. However, most of
these traditional costs are sensitive to radiometric differences,
such as excessive exposure or global illumination differences.
Therefore, costs based on non-parametric transformations
such as Census or costs combined with image gradients such
as mutual information are adapted. Since the initial matching
cost volume is sensitive and noisy, it is aggregated in a sup-
portive region [16]. This enforces the piece-wise coherency
of a resultant disparity map [10]. In disparity computation,
disparity related to the lowest matching costs are selected
according to the winner takes all concept (WTA) [17]–[19].
Disparity refinement ensures visibility enhances by removing
peaks [20] and occluded regions, consistency improvements
by interpolating gaps [17], [21], and accuracy improvements
based on sub-pixel interpolation [21], [22]. Once the disparity
image is obtained, the depth of individual pixels can be
computed using triangulation [23].

A vast collection of stereo matching algorithms for dis-
parity mapping have been proposed throughout the past
few years. Articles cited in [2] and [24] summarize few of

such algorithms. Notwithstanding most of the state-of-the-
art methods concentrate on two-view stereo, being limited
to a single fixed baseline could cause occlusion problems.
In addition, they suffer from wrong depth estimates caused
by local minima in the matching cost functions [25]. It is
generally recognized that using more than two views has the
potential to improve the quality of depth estimation [26].

Therefore, multiview stereo, also known as multi-baseline
stereo [27] (MBS according to our notation), is originated as
a natural improvement to the state-of-the-art two-view case
[28]. For the past few years, many MBS matching algorithms
with different system configurations have been proposed.
Among them, some have proposed improvements into match-
ing cost volumes, whereas some have proposed improve-
ments into cost aggregation. There are methods that use mul-
tiple arrays of cameras for multiview image acquisition while
exploiting the advantage of silhouettes for dense mapping
and proper surface reconstructions [29]. Some methods use
mono cameras to capture multiview images by moving in-
and-around a scanning area.

The motivation of this research paper is to propose an
easy, yet robust MBS matching algorithm for dense dis-
parity estimation. In this article, we deliberately limit our
discussion to disparity mapping, and do not dive deep into
3D modeling or meshing. We refer the reader to research
works in [30]–[33] for more detailed discussions about some
of the currently available robust 3D modeling and meshing
techniques. Having said that, we try to emphasize how our
proposed method can be extended and be easily adopted into
those researches for accurate dense disparity mappings even
with a less number of images.

The structure of our paper is as follows: In Section II ,
we briefly discuss few of the MBS matching techniques cur-
rently available and try to point-out their advantages as well
as disadvantages. In Section III , we describe the preliminaries
that we require for our proposed disparitymapping technique.
First, we discuss how two-view SGMalgorithm [34], [35] can
be extended intoMBS platform. Thenwe talk about the calcu-
lation of cost volumes by looking into the perspectives of two-
view matching. This includes an in-detailed summary of our
SAD and weighted Census cost calculation, and their fusion.
Section IV presents the core of this paper: our proposedMBS
disparity mapping algorithm. For simplicity, we have divided
the section into two parts. The first part shows how two-
view cost volumes that we described in the previous section
can be extended into multi-baseline platform for an initial
disparity estimation. A qualitative result analysis between the
initial disparity images of ours and originalMBS-SGM is also
included. The second part gives an in-detailed description
to our iterative cost refinement framework. In this, we talk
about how the initial cost volumes can be refined consider-
ing a Gaussian modulating function and applying a rolling-
guidance-based guided filter. We discuss how this approach
improves the quality of disparity results w.r.t previous iter-
ation by asserting a qualitative result analysis. A few of the
post processing techniques we used for disparity refinement,
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such as hole-filling and filtering are also described in simple
point form. Section V summarizes our experimental results.
We performed our experiments using 12 image sets available
in the Middlebury dataset. There, we make some qualitative
analyses by comparing non occlusion results between ours
and the original MBS-SGM algorithm. Some quantitative
analyses done by comparing disparity errors in the Middle-
bury evaluation site are also summarized. Finally, we con-
clude the paper by stating our thoughts and future improve-
ments in Section VI .

II. PREVIOUS WORKS
A series of MBS matching techniques have been proposed
throughout the past few years. An early research onMBSwas
introduced in article [36]. In this work, a linearly arranged
camera setupwith parallel optical axes was designed to exper-
iment for the advantages of using both narrow and wide
baselines. They pointed out that a shorter baseline results
in less precision whereas a wider baseline results in higher
error rates due to ambiguous false matches. A window-based
matching was performed in supportive regions by comput-
ing sum of squared difference values between each two-
view stereo pair, and were summed together into an inverse
distance representation, which they called as the SSSD-
in-inverse-distance (Sum of Sum of Squared Difference-in-
inverse-distance). As of drawbacks, the algorithm showed
some limitations in occlusion modeling.

The same SSSD cost volume was used in the work of
Kang et al. [37]. In this work, they paid more concerns
on mitigating occlusion handling problems. A combination
of shiftable windows and a dynamically selected subset of
neighbor images were used to calculate the SSSD matching
cost volume. If a pixel in the reference view was supposed
to be occluded, a minimum matching cost between a subset
of the cameras was selected and used as the respective cost
value. However, since it is difficult for vision-based methods
to reconstruct a 3D model with high accuracy, the approach
is not suitable for 3D modeling of wide area outdoor environ-
ments [38].

A variable multi-baseline, multi-resolution stereo match-
ing technique was presented by Gallup et al. [39]. They
discussed the importance of exploiting both wide and narrow
baselines for far and near range acquisitions while adopt-
ing the fundamentals of plane-sweeping stereo. Though they
managed to illustrate the benefits of fine grain data asso-
ciation strategies in multiview stereo, some argue that the
method cannot be easily generalized into irregularly captured
datasets [32].

Li et al., proposed a long baseline global stereo approach
based upon short baseline estimations [40]. Their main dis-
cussion relied on introducing a novel idea that tends to
improve both efficiency and accuracy in wide baseline global
stereo matching. A relationship between disparities of a cor-
responding point in between different baselines was proposed
by considering quantized error where the disparity search
range under the long baseline was reduced by guidance of

the short baseline for efficiency improvements. However,
the method shows lack of improvements in depth disconti-
nuity handling.

A multiview stereo approach for airborne disparity map-
pingwas described in [41]. They tried to emphasize that dense
image matching algorithms based on SGM are capable of
successfully matching more than 99% of all pixels and of
providing higher matching accuracy rates. In order to solve
the increment in redundancy caused due to using multiple
images, they defined a central image as the base image
and matched it against the surrounding images according
to an overlapping probability. Density drops of disparity
mappings due to outlier filtering are solved by combining
several stereo image pairs for multiple parallax estimation. As
for accuracy analyses, they implemented both point-to-point
and point-to-plane distance estimations, which however, are
much sensitive to blunders and random noise within the dense
matching point clouds. In addition, the quality measures are
less reliable or persuasive if calculated without consideration
of the breaklines in natural scenes (e.g., edges and bumpy
terrain) [42].

An embedded MBS approach for real-time application
using a four narrow MBS camera setup with on-board FPGA
was described in [25]. The advantage of this design is its
light weight, which makes it more appropriate to fit in most
mobile robot systems. However, their census-based local
stereo matching approach has shown limited accuracy levels
compared to most global and/or semi-global approaches.

Poggi et al., introduced a framework aimed at enforcing
a trinocular assumption for training a CNN network in an
unsupervised manner for monocular depth estimations [26].
They named this network as the 3Net. The trinocular assump-
tion they defined mitigates most of the limitations caused
by using binocular stereo images as supervision. The inter-
leaved training protocol outperformed most unsupervised
techniques exist, ensuring its position as a state-of-the-art
method. However, being limited to offline training makes it
bit inconvenient to be used as an online adaptation to unseen
environments.

III. RESEARCH PRELIMINARIES
In this section, we try to draw the attention of the reader
toward the two-view SGM algorithm, how this method can
be extended into multiview matching, along with some math-
ematical description to our proposed cost volume calculation.
This we did tomitigate any possible confusions that could rise
when discussing MBSC fusion in proceeding sections.

A. SGM FOR MBS MATCHING
According to the taxonomy of stereo matching, the base of
any matching algorithm contains a matching cost volume –
a measurement of the similarity and dissimilarity of corre-
sponding locations between two or multiple images – which
is aggregated to remove matching ambiguities. The stereo
version of SGM uses a pixel-wise Mutual Information (MI)
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FIGURE 1. Conventional SGM-based MBS disparity mapping. Individual disparity pairs are weighted summed
according to their baseline ratios to generate the raw/unfiltered disparity result.

that is calculated in a hierarchical manner to generate their
matching cost volume.

A global energy term is approximated which is solved
as a one-dimensional minimization problem along several
1D independent paths [43], where in each path, pixel costs
are aggregated considering neighboring pixels and additional
smoothing penalties.

The process is easily extended into MBS matching,
of which pair-wise matching between the reference and each
adjoining view are performed individually. Instead of cal-
culating a combined pixel-wise cost volume between refer-
ence and matching views, separate disparity results of each
two-view pair are weighted summed considering individual
scalings. However, scaling parameters should be linear to the
length of baselines between cameras and all images must
project onto a common plane that has the same distance to all
optical centers (see multibaseline matching in [35]). Dispar-
ities with lowest aggregated costs are then used to create the
disparity image. Fig.1 summarizes the process of computing
a left disparity result for aMBS configurationwith five views.
View1 is considered as the reference, followed by Views2, 3, 4
and View5, which is considered as the matching view with
the largest baseline displacement with the reference.

B. TWO-VIEW SAD, CENSUS COST VOLUME CALCULATION
AND FUSION
As mentioned, the original SGM algorithm considers a hier-
archical MI cost volume for its disparity estimation. Notwith-
standing their comprising results, using MI to calculate
matching costs between multiple views in this similar hier-
archical fashion could cause computational complexities and
lead into run-time limitations. This led us to the idea of fusing
two cost terms that required comparatively less computation

power, but capable of providing high reliable correspondence
matches. Instead of using MI, in this research; we define a
SAD-Census cost volume by fusing two pixel dissimilarity
measures: a sum of absolute difference-based color consis-
tency cost (CSAD) and a Hamming distance-based weighted
color Census cost (CCensus).

Multiple exploitation of color information based on
regional matches have proved to provide better performance
trade-offs between computation complexities and to increase
matching reliabilities by reducing ambiguities in areas where
depth discontinuities exist. In a general two-view framework,
the color consistency term can be defined as a regional sum
of averaged absolute intensity difference of RGB channels
between two compared pixel locations in the reference view
and its adjoining matching view. For any given pixel P(x,y) in
the reference view with a maximum disparity level of d, and I
representing the pixel intensity which is propagated through
a regional squared window W, its color consistency cost can
be summarized as it is shown in (1).

CSAD(p, d)=

∑
W (
∑

i=R,G,B

∣∣∣I refi (Px,y)−Imatchi (Px−d,y)
∣∣∣)

3
(1)

Census transformation cost, on the other hand, encodes
local structures with relative orderings of pixel intensities
[44]. It limits the noise and effects of radiometric differences
such as excessive exposure and global illumination variances.
Also it provides high reliable matching capabilities asMI, but
only requires substantially less computation power [43]. In a
general two-view framework, the transformation cost can be
defined as the Hamming distance between two concatenated
bit strings that represent intensity changes of pixels in the
reference view and its matching view respectively. This is
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FIGURE 2. An example of how Census transformation between two
images is calculated using a simple 3 × 3 window. Bit strings of each
channel are calculated by comparing intensity changes between the
center pixel and its neighborhood. Hamming distances between each
respective bit string are estimated according to an XOR operation and a
pop count of 1s.

exemplified in Fig.2. P(x,y) and Pn(x,y) represent the reference
pixel and its neighborhood inW, with Q(x,y) and Qn(x,y) being
the matching view pixel and its neighborhood, respectively.

The first step of computing the Census cost is to generate
individual Census transformation terms between views. Each
pixel’s intensity values are compared against their neighbor-
hood values and are assigned binary bits of 0s and 1s accord-
ingly. The assigned bits are concatenated and encoded into bit
strings; which are next compared using an XOR operation to
calculate respective Hamming distances. Equations (2) and
(3) denote the general way of calculating this term for the
reference view.

CensusP = ⊗
Pn(x,y)∈W

ξ (Px,y,Pn(x,y)), (2)

where

ξ (Px,y,Pn(x,y)) =

{
0, Px,y ≥ Pn(x,y)
1, otherwise

(3)

However, in this paper, we changed this original transforma-
tion term into a weighted bit string by multiplying individ-
ual elements with an additional weight vector. We asserted
the values of this vector by computing Euclidean distances
between pixels of the neighborhood w.r.t their center pixel.
As we realized that pixels which lie much closer to the center
pixel have high correspondence reliability than of the pixels
lie further, we assigned higher weight values for the nearby
pixels and comparatively lower weight values for the pixels

FIGURE 3. Multiplying bit strings with the weights vector. The weights are
selected according to the Euclidean distance of pixels in the
neighborhood with the center pixel in the window. Nearby pixels are
given higher weights and far pixels are given lower weights.

in the boundary. This modified Census transformation for the
blue channel is shown in Fig.3, whereas the calculation of the
weight vector is defined in (4) withα representing an arbitrary
constant parameter used to normalize the range into [0,1]. The
Euclidean distance is defined as in (5).

V(P;Pn) = 1− α · 4euc(P;Pn) (4)

4Euc(P;Pn) =
√
(Pn(y) − Py)2 + (Pn(x) − Px)2 (5)

By combining (2) with (4) for both reference and matching
views separately, we can compute the Census cost volume:
CCensus as shown in (6).

CCensus(P, d) =
∑

i=R,G,B

‖Ham(Censusrefi (Px,y)−

Censusmatchi (Px−d,y))‖

(6)

Finally, the SAD-Census cost C(P,d) is computed as (7):

C(P, d) = 1− exp
(
−
CSAD(P, d)
λSAD

)
+ 1− exp

(
−
CCensus(P, d)
λCensus

)
, (7)

where λSAD and λCensus are arbitrary threshold parameters
used to remove noise and matching errors. Furthermore,
the exponential function maps the two costs to the range of
[0,1] before combining, so that Cp,d will not be dominated by
only one cost value.

IV. ITERATIVE MBS MATCHING
Our proposed MBS matching technique is explained in this
section. We have divided this into two sub sections. In the
first sub section, we describe how we can compute a MBSC
volume utilizing the cost volumes that we calculated based
on the perspectives of two-view stereo, and how this can be
used to generate an initial disparity result. Further, we make
a qualitative result comparison between ours and the original
SGM algorithm. The second sub section describes how we
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FIGURE 4. Our approach to generate the initial MBS disparity image. Left most image is kept as the reference and pair-wise
SAD and Census costs are calculated between this reference and all other views. Costs1,2,3 are interpolated into the size of
Cost4, combined and summed for 16 directions to generate multi model aggregated cost volume. The unfiltered initial
disparity map is generated by taking the minimum of the aggregated cost.

FIGURE 5. Qualitative result analysis between ours and original SGM for Cones
dataset. Yellow boxes depict the improvements of our approach in discontinued
regions. left: reference, middle: original SGM result, right: our result.

can refine the initial SAD-Census cost volume between each
two-view for more accurate disparity estimation considering
a Gaussian modulating function and a rolling guidance filter
recursively. Similarly, we make a qualitative result compar-
ison between the output of each iteration, and also with the
original SGM result.

A. MBSC VOLUME FUSION AND INITIAL DISPARITY
ESTIMATION
The first framework of our proposed MBS matching tech-
nique consists of computing an initial disparity image
between the reference view and the matching view that has
the largest baseline displacement. We are going to exploit the
two-view cost calculation method that we discussed earlier to
compute a complete MBSC volume in between these views.
To simplify this discussion, let us refer Fig.4. This depicts the
overall process of our initial phase.

To begin with, we first calculate pair-wise SAD andCensus
costs between the reference and each matching view using (1)
and (6), and then combine them into fused cost volumes using
(7), individually. To exemplify this, if k being the number

of view we have including the reference (k = 5 in accor-
dance with Fig.4), and i representing any arbitrary reference-
matchview pair, let us define thatCSADi andCCensusi represent
the pair-wise SAD and Census cost volumes calculated with
the reference where {i ∈ k : 1 ≤ i ≤ k − 1}, and Ci as their
fusions, respectively.

One assumption that we make; and is worth noting that;
though these costs are of different sizes, but they are linearly
proportional to their corresponding baselines. This literally
makes an intuition that as the displacement between the refer-
ence and each matching view increases sequentially, the sizes
of the cost volumes also increase accordingly. Therefore, it is
necessary for scaling all the costs with different sizes to a
common size, hence we interpolate all the C lowest

i volumes to
the size of C largest

i volume that has the largest baseline dis-
placement. As per our multiview system, C1, C2, C3 denote
the C lowest

i volumes and their interpolation is shown in (8).

C int
i({i∈k:1≤i≤k−1}) = (a ∗ Ci[bαc + 1])

+ (−Ci[bαc] ∗ a+ Ci[bαc]) , (8)
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where C[] represents the value of the volume to be
interpolated at element index α which is incremented by
sizeof(C lowest

i /C largest
i ) range, and a representing (α-bαc),

respectively.
We combine all the C int

i volumes with C largest
i volume and

recursively optimize for 16 1D-directions according to (9);

Lr (P, d) = C(P, d)multi + min(Lr (P− r, d),

Lr (P− r, d ± 1)+ Pen1,

min
i
Lr (P− r, i)+ Pen2)

−min
i
Lr (P− r, k) (9)

where r denotes the direction, Pen1,2 denote additional
smoothness constraints, and C(P, d)multi denotes the full
MBSC volume calculated as:

C(P, d)multi =
∑

i=1,2,3
C int
i + C4 (10)

Finally, the path-wise costs are summed together in (11)
to compute an aggregated MBSC volume S(P,d)aggre, from
which the final disparity for each pixel is selected based on the
WTA to generate the initial MBS left disparity map D(P)initL
as defined in (12).

S(P, d)aggreL =

∑
r=16

Lr (P, d) (11)

D(P)initL = min
d
S(P, d)aggre (12)

A qualitative result comparison between ours and the orig-
inal MBS-SGM on the Cones dataset is summarized in Fig.5.
Regions marked in yellow boxes depict the improvements
of our approach in areas where depth discontinuities appear.
Similarly, we can follow the same steps to generate a right
disparity image D(P)initR by considering view5 as the refer-
ence. This we did to perform left-right-consistency check
(LR-Check) in the proceeding refinement approach.

B. ITERATIVE MATCHING COST REFINEMENT
In this sub section, we compute a new multiview aggregated
cost volume by refining pair-wise cost volumes recursively.
The initial disparity image that we created in our previous
sub section shows comparatively good results. However, our
main concern is that it still consists of outliers including holes,
and mismatched regions. The main reason for these outliers
to exist is that pairwise SAD and Census calculations contain
erroneous matches and they are not refined properly at the
aggregation step.

A simple solution for treating outliers is refining the aggre-
gated cost volume using an edge preserving filter, such as a
guided filter [45] or a bilateral filter [51] at each disparity
level. This approach has been researched in many algorithms,
particularly for two-view configurations [48]–[50]. Consid-
ering these concepts, we also propose an easy cost refine-
ment approach, however, not solely being limited to edge
preserving filters. Our main intention was to find a way that
could reduce the selection probability of disparities related
to the costs of erroneous matches at the WTA step. For this,

we must increase their costs by a larger penalty value, such
that only, they will be disregarded when choosing for the cost
minima. However, the problem still remaining is that how we
can identify which pixel we should give this penalty for? One
approach is to compare the initial disparity result with sparse
depth information collected from an external source, such as
a LiDAR sensor, and increasing the costs of pixel indexes
that deviate by a larger margin. However, integrating LiDAR
sensors could be bit expensive.

Therefore, we tackle this problem by looking at it from
a different perspective. Instead of integrating any additional
sensors to get sparse depth data, we suggest to create 2D
binary mask images that can replace them and be used to
identify erroneous matches. The easiest way of creating a
binary mask is calculating the absolute difference between
two images. But first, either one of the images must be
warped/shifted toward the view perspective of the other.

In most stereo matching techniques, the most easiest way
of warping an image towards another is using an initial
disparity image and shifting the pixels considering a simple
lookup strategy. If the disparity result is accurate, then the
warped image can be considered as a look-alike as the image
that it is warped to. In general, the most common practice is
warping the matching view towards the reference view. If the
binary image contains more black pixels than white pixels,
this emphasizes that the matching view overlaps with the
reference with a few mismatches, and consequently, the dis-
parity result is much closer to its ground truth.

Once these mismatches are properly identified, the cost
values of the correlating pixel indexes can be increased by
adding the penalty considering a Gaussian modulating func-
tion. However, in practice, it is difficult to obtain good results
using a bad initial disparity estimation at a single iteration.
Thus the process must be performed recursively, in such that
the cost volume gets refined in each iteration. The disparity
result of each iteration can be used as the input initial disparity
to warp the matching view.

After the first phase of our proposed architecture, we have
access to a reasonably good initial disparity result, which cor-
responds to what we believe as a reasonably good aggregated
MBSC volume. Therefore, performing this cost refinement
is straightforward. This iterative cost up-voting and down-
voting approach is shown in Fig.6.

First, we warp the matching view5 towards the view per-
spective of the reference using the initial LR-Check disparity
image D(P)initL that we created. If we consider the function
epiref :match(P,d) defines the epipolar line in the matching view
for the reference pixel P with d being the line parameter,
we can simply implement this warping as a general lookup in
view5 with epiref :match(P,D(P)init ) for all the pixels P. Taking
viewwarp5 to resemble the warped matching image, it can be
mathematically summarized as in (13).

viewwarp5 = lookup[epiref :match(P,D(P)initL )] (13)

Next, we compute the absolute difference between the
reference and viewwarp5 and create the binary mask image to
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FIGURE 6. The proposed cost refinement approach considering reference and matching view5. The initial disparity
result is used to warp the matching view towards the reference, a binary mask is created to identify all the
erroneously matched pixels. A higher penalty is given for the cost locations where errors appear, and the aggregated
MBSC volume is further refined by adopting a rolling guidance-based guided filter.

FIGURE 7. The proposed cost refinement approach considering all the pair-wise matching views. Each matching view is
paired with the reference and processed by stereo SGM to create individual initial disparity results, which are used to
create binary masks. The term ’iterate recursively’ denotes the method described in Fig.6. Some post processing are
applied on image space to fine-tune final disparity result.

identify all the alleged correspondences. The pixels repre-
sented in white denote the erroneous matches, thus, we add
the higher penalty with these costs as a convolution of a
Gaussian modulating function⊗G(P,d); which is centered on

the erroneous pixel. This way the convolution score corre-
sponding to the cost S(P,d)aggre is multiplied by the peak of
the function, while other elements are progressively lowered.
If we take S(P,d)aggre to represent the refined aggregated
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FIGURE 8. Results after proposed iterative aggregated MBSC refinement.
(a): binary mask images for the first, second, and third iteration, (b):
warped view5 image towards the reference, (c): fine-tuned left disparity
results.

TABLE 1. Values of the parameters used.

cost volume and Pen3 as the given penalty value, it can be
mathematically represented as in (14).

S(P, d)aggre = 1− ([S(P, d)aggre + Pen3]⊗G(P, d)) (14)

In addition, we apply a guided filter [45] running on a
rolling guidance [46] filtering approach to S(P,d)aggre volume
to refine costs even further. We apply this filter at each
disparity level, while choosing the reference view as the guide
as:

S(P, d)aggre =
max∑
i=min

 (S(P, di)aggre : Iref ) (15)

with  representing the guided filter on rolling guidance, and
Iref representing that the reference view is being used as the
guide. The final processed aggregated MBSC volume is used
to compute a fine-tuned raw disparity image.

We repeat this whole process for three multiple iterations.
In each iteration, the disparity result computed at the previous
step is used towarp thematching view5 towards the reference.
In our experiments, we noticed that repeating this optimiza-
tion for three iterations is sufficient enough for accurate
disparity estimation.

As we have evaluated our experiment results, we have
witnessed that adding the penalty on erroneous pixel locations
increases theirmatching cost values significantly, whereas the

TABLE 2. Quantitative evaluation of the proposed method compared
with few of the algorithms on the Middlebury website for threshold 1.0.

edge preserving filter further refines it, consequently reduc-
ing the overall selection probability of incorrect disparities
related to the lowest matching costs in the WTA concept.
However, the result still contains a few mismatches. The
reason which causes these to exist is that we considered
the aggregated MBSC volume directly, without separately
refining individual pair-wise cost fusions used to create it.

Therefore, we suggest to refine each pair-wise SAD-
Census cost volume separately, just as same as we refined
our aggregated cost volume. This is shown in Fig.7. As we
have already calculated individual cost volumes between the
reference and each matching view (as in Fig.4), the only thing
we require in this modified cost refinement is respective ini-
tial disparity results. We consider each reference-matchview
pair as a separate stereo configuration, and apply the original
stereo SGM algorithm to generate initial two-view disparity
results. Next, we warp each of the matching views towards
the reference to create binary masks, which then are used to
identify cost indexes corresponding to erroneousmatches that
we need to increase. We add the same penalty that we used
before, followed by the edge preserving filter.

Similarly, we repeat this cost refinement for each image
pair for three iterations. Then we interpolate all the small
baseline cost volumes to the size of the largest baseline vol-
ume according to (8), add them together as in (10), and aggre-
gate using line refinement strategy in (9). This way, we create
a more robust aggregated MBSC volume: S(P,d)aggre, which
is finally used to generate a more accurate MBS disparity
result. The binary mask image, the warped matching view,
and the refined disparity result after each recursive step for
the Cones dataset is summarized in Fig.8(a), (b), and (c).

Additionally, we apply a few post processing techniques
to fine-tune our final disparity results in the image space.
We first apply a simple hole filling to identify occlusions
that are identified after performing an LR-consistency check.
For each pixel P in D(P)initL and its corresponding matching
view point Q in D(P)initR , we check whether the condition
dist|dP−dQ| ≤ 1. Iff it is satisfied,P is chosen as a valid pixel,
and invalidated as an outlier; otherwise. We fill these outliers
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FIGURE 9. Non Occlusion mask comparison results for threshold 1.0. left:
ground truth non occlusion mask, middle: original SGM non occlusion
mask, right: our non occlusion mask.

by choosing the lowest disparity value of the spatially closest
non-occluded pixels (inlier) that lie to the left and right on
the same scanline. In order to remove the horizontal streaking
effect after filling holes, we apply a simple weighted median
filter.

Next, we apply a sub-pixel interpolation method as a
quadratic polynomial is applied to increase the accuracy of
disparity results. For each pixel P in the disparity image, its
interpolated disparity dint is calculated by considering two
adjacent disparity values from left and right as in (16) shown
at the bottom of this page, where dbefore and dnext denote
previous and next disparity indexes, respectively.

Finally, we apply a Weighted Least Squares filter in the
form of a fast global smoother [47] on our disparity results to
further refine them and to make them as much as closer to the
ground truth images.

V. EXPERIMENT RESULTS
In this section, we summarize a collection of experimental
analyses we did to evaluate the accuracy of our proposed
disparity mapping technique. We used 12 of the Middlebury
datasets for our experiments, having the assumption of that
images are properly rectified. We perform all these experi-
ments offline using a general purpose 64 bit windows10 desk-
top with an Intel(R) Core(TM) i7-7700 CPU at 3.60GHz, and
16GB RAM.

For simplicity, we used the quarter-resolution images.
Both qualitative and quantitative result comparisons are per-

formed. The parameters we used when calculating SAD-
Census volumes are summarized in Tab.1.

We performed the quantitative analyses by calculating the
percentage of bad pixel error using the ground truth non
occlusion masks for the Teddy, Cones and Venus datasets
available in the Middlebury evaluation-v2 page. We addi-
tionally compared the results with few of the other state-of-
the-art algorithms available in the evaluation page. For all
these three datasets, we witnessed that the errors were all
lower compared to the original SGM approach. However,
one important fact worth noting is that we did not use the
Tsukuba dataset for our evaluations. The reason was that all
ground truth images including non occlusion mask available
in the Middlebury evaluation site are given considering the
middle image as the reference view out of five images. This
violates the sequential increment constraint of baselines that
we considered in our proposed method. The pixel errors for
the Cones, Teddy, and Vensus datasets using the threshold
value of 1.0 are summarized in Tab.2. Non occlusion masks
between ours and original SGM are summarized in Fig.9.

The qualitative analyses are done comparing results
between ours and the original MBS-SGM algorithm for all
12 datasets. These include Aloe, Baby1, Books, Bowling1,
Cones, Dolls, Flowerpots, Lampshade1, Monopoly, Saw-
tooth, Teddy, and Venus, and are summarized in Fig.10 and
Fig.11.

VI. CONCLUSIONS
In this paper, we presented an iterative dense disparity esti-
mating technique for a collection of multi-baseline stereo
images with sequentially increasing baselines. The flow of
the method consist of two individual steps: an initial multi-
baseline matching cost calculation and disparity estimat-
ing step, and an iterative cost refinement step. In our first
step, we employed a modified SAD-Census cost calcula-
tion method to compute all the pair-wise costs between the
reference view and all the neighboring views. We interpo-
lated the costs into the size of the cost associated with the
largest disparity range and summed them to generate a multi-
baseline matching cost volume. We exploited the scan line
optimization method of the well-known SGM algorithm to
aggregate this multi-baseline matching cost volume in six-
teen directions and computed an initial disparity result using
WTA approach. In the second step, we proposed to refine
the aggregated matching cost volume by adapting a Gaussian
modulating function and an edge preserving filter: rolling
guidance-based guided filter. As we had already calculated
pair-wise SAD-Census cost volumes between the reference
and all its neighboring views in the first step, we suggested
to compute individual stereo disparity maps between each
view-pair, separately. Then we warped each matching view

d int = d − [
S(P, dnext )aggre − S(P, dprev)aggre

2(S(P, dnext )aggre − S(P, dprev)aggre − 2S(P, d)aggre)
] (16)
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FIGURE 10. Disparity results for the MBS Middlebury dataset. (left): reference, (left-middle): ground truth, (middle): disparity from original
MBS-SGM, (right-middle): disparity from proposed method, (right): after applying WLS filter on result from proposed method.

towards the view perspective of the reference to create binary
mask images, which can be used to identify erroneously
matched pixel locations. As white indexes depict incorrect
correspondence matches, we added a high penalty value to
the costs associated with these indexes in each pairwise cost
volume to increase their values, such that their influence

at disparity estimation would be minimized. Additionally,
we applied the guided filter as a rolling guidance approach
to further up-vote cost values as much as closer to ground
truth data. We summed all the refined pair-wise costs again to
generate a new multi-baseline SAD-Census cost volume and
aggregated as in the first step. This we preformed recursively.
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FIGURE 11. Disparity results for the MBS Middlebury dataset. (left): reference, (left-middle): ground truth, (middle): disparity from original
MBS-SGM, (right-middle): disparity from proposed method, (right): after applying WLS filter on result from proposed method.

The final disparity map was filtered using an LR-consistency
check, hole filling, sub-pixel interpolation, and WLS filter.
We performed both qualitative and quantitative experiments
to evaluate the accuracy of our proposed method. For this
we used 12 Middlebury datasets. Through qualitative result
analyses, we witnessed that our proposed method provided

effective and efficient disparity results. Through quantitative
analyses done for three of the datasets (Teddy, Cones, and
Venus) available in the evaluation-v2 page, we witnessed that
our method showed a comparatively low average bad pixel
value (2.0384 pixels) for the threshold of 1.0. As of future
works, we are planning to extend our studies into image sets
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that are not pre-rectified, such as light field datasets, and to
implement parallel programming for real-time or near real-
time disparity estimations.
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