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ABSTRACT A series of fractional robust trajectory tracking controls are proposed for the Delta parallel robot
with uncertainty. For the high speed and heavy load, the Delta parallel robot could not ignore the influences
of the high nonlinearity (by the dynamics of the multiple closed-loops mechanism and the nonlinear
joints friction) and the various kinds of uncertainties (i.e., the unknown dynamic parameters and external
disturbances caused by the residual vibration). By formulating themotion equation of theDelta parallel robot,
the nonlinearity is settled by a norm model based control design. The uncertainty considered in the paper
is time-varying but unknown. An online estimation with an exponential type leakage term and dead-zone is
construct to investigate the realtime information of the uncertainty. In virtue of the estimated information,
two fractional robust trajectory tracking controls with the joints friction compensation are designed. Under
the proposed controls, the system performance of the Delta parallel robot can be deterministically guaranteed
(which includes uniform boundedness and uniform ultimate boundedness).

INDEX TERMS Delta parallel robot, fractional robust control, trajectory tracking, online estimation.

I. INTRODUCTION
Parallel robot is a kind of multiple closed-loop mechanism
and widely used in the industrial areas by virtue of the
high rigidity, high accuracy and outstanding weight/load
ratio [1], [2]. The Delta parallel robot with three lightweight
parallelograms, one of the most popular parallel robot,
inherits all the virtues of the traditional parallel robots and
possesses some distinct features such as, the closed form
kinematics (both forward and inverse), the decoupled transla-
tional positions and rotational orientations of themoving plat-
form (which improves the motion accuracy). Motivated by
the above features, the Delta parallel robot has been applied
in many sophisticated fields, e.g., microelectronics [3], [4],
medicine [5], [6], intelligent logistics [7], [8], and
3D printing [9], [10]. In those sophisticated applications,
the high-precision control of Delta parallel robot has become
a critical issue for the researchers.

The associate editor coordinating the review of this manuscript and

approving it for publication was Jun Shen .

In the early works [11]–[13], the kinematic control method
(the control designs based on the kinematic model) is pro-
posed for the Delta parallel robot, which has been widely
used in the present industry. It is easy to realize but may
loose the accuracy in high speed and heavy load conditions.
With the increase of speed and load, there arise some chal-
lenges: the dynamics of the Delta parallel robot, consisting
the high nonlinearity and coupling, could inevitably influ-
ence the system performance; the presence of uncertainties
such as, the residual vibration caused by the effect of the
lightweight parallelogram, the uncertain system parameters
with the random external load and the imperfectly known
inputs, can not be ignored in the control design. Hence, there
emerge a series of dynamic model based control strategies for
the uncertain Delta parallel robot. An adaptive disturbance
rejection control scheme for a 3-DOF Delta parallel robot
is established to compensate a set of uncertainties in [14].
A LQR control strategy based on the pole placement and state
feedback is proposed to diminish the external disturbances
in [15]. In [16], a H∞ controller can ensure the trajectory
accuracy of a 3-DOF Delta parallel robot in the high speed
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operation. Reference [17] combined Type-1 and Type-2 fuzzy
logic controller tomanage different amplitudes of the injected
noise and the inherent uncertainties of Delta parallel robot.
The accuracy and robustness of the most present control
approaches rely on the knowledge of the uncertainty (such
as, [14]–[16]), which depend on the results of the numerous
experiments for the uncertain Delta parallel robot.

In this paper, we devote to develop a new class of robust
control by considering the imperfect knowledge of the uncer-
tainty. The uncertainty considered in this paper includes the
unknown dynamic parameters, the random residual vibra-
tion, and the non-structured portion of the nonlinear joints
friction model, which are bounded but the exact bounds of
those uncertain terms are unknown. Based on the Leitmann
method [18]–[21] (a general deterministic control approach
for the uncertain systems), two novel controllers merging the
fractional robust control design and the online estimation for
uncertainty are proposed to handle the strong nonlinearity of
the uncertain Delta robot with joints friction.

There are three major contributions. First, the motion
equation of the uncertain Delta parallel robot with nonlinear
joints friction (caused by the effects of viscous, Coulomb
and Stribeck friction) is constructed. The typical uncertainties
of the Delta parallel robot in work condition are analyzed.
Especially, the coupling issue of the active joints friction and
the control torques is discussed and modeled as an uncer-
tainty, which is often simplified by the linearization decou-
pling method in many applications. Second, two novel robust
controls with online estimation for the Delta parallel robot
are proposed. Both controls contain a model based friction
compensation and a precise trajectory tracking scheme. The
first control can guarantee the Delta parallel robot the deter-
ministic performance (such as, uniform boundedness and
uniform ultimate boundedness). The second control could
not only ensure the same deterministic performance but also
reduce the control cost by a high-order fractional stabilization
design. Third, a new online estimation mechanismwith expo-
nential leakage term and dead-zone is proposed, which is non-
linear and performance dependent. It could generate a series
of adaptive parameters to estimate the realtime uncertainties.
The dead-zone design can simplify the estimationmechanism
and the leakage term will decrease the control cost with the
reduction of control system error.

II. THE UNCERTAIN DELTA PARALLEL ROBOT WITH
JOINTS FRICTION
A. THE INVERSE KINEMATIC ANALYSIS OF THE DELTA
PARALLEL ROBOT
Consider a typical three DOF Delta parallel robot in Fig. 1.
It is comprised of the fixed platform, the moving platform and
three kinematic chains connected by the end effector fixed on
the moving platform. Each kinematic chain includes an active
arm and a passive arm. The active arms of robot are driven by
the rotational (DC or AC servo) actuators and attached to the
passive arms. With the parallelogram-based structure of the

FIGURE 1. The Delta parallel robot.

FIGURE 2. The parameters of the i -th kinematic chain.

passive arms, the moving platform can generate three purely
translational motions.

Assign a base frame {O} to the fixed platform and a local
frame {o′} to the moving platform in Fig. 2. Denote the
parameters of the Delta parallel robot as follows (i = 1, 2, 3):
αi–angle of the i-th active joint;
mai–mass of the i-th active arm;
mbi–mass of the i-th passive arm;
mo′–mass of the moving platform;
R–radius of the fixed platform;
r–radius of the moving platform;
lai–length of the i-th active arm;
lbi–length of the i-th passive arm.
For the robot control issue, the kinematic model is con-

cerned to obtain the relationship between the motions of the
end effector and the active joints. In order to control the trajec-
tory tracking error of the end effector, the inverse kinematic
problem is proposed to investigate the control algorithms of
the active joints in the following. Notice that there exist three
identical kinematic chains (the closed loop form) for theDelta
parallel robot. The closed loop for the i-th kinematic chain
in Fig. 2 can be expressed as

−−→
BiCi =

−→
Oo′ −

(
−→
OAi +

−−→
AiBi +

−−→
o′Ci

)
, (1)

where Ai, Bi and Ci are the positions of the revolute joints
relative to the base frame {O}, i = 1, 2, 3, and the coordinates
are given by

Ai =
[
R cosϕi,R sinϕi, 0

]T
, (2)
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FIGURE 3. Distributions of Ai in the fixed platform.

Bi =

(R+ la cosαi) cosϕi(R+ la cosαi) sinϕi
−la sinαi

 , (3)

Ci =
[
r cosϕi + x, r sinϕi + y, z

]T
. (4)

Here, [x, y, z]T represents the position of the local frame {o′}
relative to the base frame {O}, ϕi =

(
2
3 i−

1
2

)
π is the angle

between
−→
OAi and X -axis (shown in Fig. 3, i = 1, 2, 3).

Recalling that
∣∣∣−−→BiCi∣∣∣ = lbi, we can rewrite (1) as

[(R− r + lai cosαi) cosϕi − x]2 + [(R− r + lai
× cosαi) sinϕi − y]2 + [lai sinαi + z]2 = l2bi. (5)

For the inverse kinematic problem, αi can be determined by
the explicit solution of the quadratic equation (5), i = 1, 2, 3.
Remark 1: When the position and orientation of the end-

effector are determined, there exist two explicit solutions for
each kinematic chain, which leads to 8 configurations of the
Delta parallel robot. For a better performance, the configura-
tion solution is chosen by ‖αi‖ < π

2 , i = 1, 2, 3.

B. THE MOTION EQUATION OF THE UNCERTAIN DELTA
PARALLEL ROBOT
Suppose α = [α1, α2, α3]T is the generalized coordinate of
the Delta parallel robot. Based on the dynamics constructed
in [22], the motion equation of the Delta parallel robot with
uncertainty can be formulated as

M (α(t), ζ (t), t)α̈(t)+ C(α(t), α̇(t), ζ (t), t)α̇(t)

+G(α(t), ζ (t), t)+ F(α(t), α̇(t), ζ (t), t) = τ (t), (6)

where t ∈ R is the independent time variable,
α̇ ∈ R3 is the velocity, α̈ ∈ R3 is the acceleration,
ζ ∈ 4 ⊂ Rp is the uncertain parameter, τ (t) ∈ R3

is the control input applied by the driven motors. Here,
4 ∈ R3 is compact but unknown (standing for the possible
bound of 4). Furthermore, M (α(t), ζ (t), t) is the inertial
matrix, C(α(t), α̇(t), ζ (t), t) is the Coriolis/centrifugal force,
Ṁ (α(t), ζ (t), t) − 2C(α(t), α̇(t), ζ (t), t) is the skew sym-
metric matrix, G(α(t), ζ (t), t) is the gravitational force and
F(α(t), α̇(t), ζ (t), t) are the impressed force like the external
disturbance. For simplicity, the arguments will be omitted

without ambiguity. The detail expressions of M (·), C(·) and
G(·) are

M =
(
1
3
mal2a +

1
2
mbl2a

)
I + JT

(
mo′ +

3
2
mb

)
J , (7)

C = JT
(
mo′ +

3
2
mb

)
J̇ , (8)

G =
(
1
2
ma +

1
2
mb

)
gla

cosα1cosα2
cosα3


− JT

(
mo′ +

3
2
mb

) 0
0
−g

 , (9)

where I is an identity matrix, J represents the Jacobianmatrix
which is

J = −

sT1sT2
sT3

−1sT1 b1 0 0
0 sT2 b2 0
0 0 sT3 b3

 . (10)

Here,

si =

xy
z

− O
i R

R0
0

+
 lai cosαi

0
−lai sinαi

 ,

O
i R =


cos

(
−
π

6
+

2π
3
i
)
− sin

(
−
π

6
+

2π
3
i
)

0

sin
(
−
π

6
+

2π
3
i
)

cos
(
−
π

6
+

2π
3
i
)

0

0 0 1

 ,

bi = O
i R

lai sinαi0
lai cosαi

 , i = 1, 2, 3.

Remark 2: There may exist several typical uncertainties
of the Delta parallel robot in the high speed and heavy load
condition. Firstly, the passive arms of the Delta parallel robot,
made of lightweight slender rods, could lead to the residual
vibration of the Delta parallel robot by the elastic deforma-
tion. It is considered as a high frequency and random external
disturbance in the paper. Secondly, the mass of the moving
platformwith different loads in the high speed pick-and-place
condition will be regarded as a fast time-varying uncertain
parameter.

Hence, the dimension of the uncertain parameters vector
ζ ∈ 4 ⊂ Rp is determined by the number of the uncertain
terms considered in the Delta parallel robot. Each of them is
compact and bounded.

C. THE MOTION EQUATION OF THE UNCERTAIN DELTA
PARALLEL ROBOT WITH JOINTS FRICTION
For a Delta parallel robot, the driven motors are assembled in
the active joints, which give occasion to the coupling effects
of the active joints friction and the control input torques [23].
Those coupling effects may influence the control accuracy
and are considered as a difficulty in the friction compensation
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FIGURE 4. The Stribeck friction model.

FIGURE 5. The normal force of the i -th active revolute joint.

control. Hence, in this paper, the friction of the active joints
is discussed and modeled for the next control designs.

A Stribeck friction model, which can depict the viscous
friction and the discontinuity from stiction to friction of the
active joints in low-speed motion, is used to model the joints
friction of the Delta parallel robot, see in Fig. 3, and themodel
is given by [24]

Ff =
[
Fc + (Fs − Fc)e

−( vvs )
2]

sgn(v)+ µvv,

Fc = µdFn, Fs = µsFn, (11)

where Ff is the Stribeck friction, Fc is Coulomb friction, Fs is
the stiction friction, v is the relative velocity of the two contact
objects, vs is Stribeck velocity, µv is the coefficient of the
viscous friction, µd is the coefficient of Coulomb friction,
Fn is the normal force, µs is the coefficient of static friction.
By the Stribeck friction model in (11), the frictional

moment of the i-th active joint can be expressed as

Mfi=

[
Fci+(Fsi−Fci)e

−( α̇ivis
)2
]
sgn(α̇i)ra+µvα̇ira,

Fci = µdFni, Fsi = µsFni, (12)

where Fni is the normal force of the i-th active joint shown
in Fig. 4, ra is the friction arm of the active joints. Then the
motion equation of the Delta parallel robot with uncertainty
and joints friction can be deduced as

M (α, ζ, t)α̈ + C(α, α̇, ζ, t)α̇ + G(α, ζ, t)

+F(α, α̇, ζ, t)+Mf (α, α̇, ζ, t) = τ, (13)

where Mf (α, α̇, ζ, t) =
[
Mf 1,Mf 2,Mf 3

]T represents the
joints friction of the Delta parallel robot.
Remark 3: The joints friction in (11) contains two kinds

of uncertain factors. The first kind of uncertainty is the time-
varying friction coefficients, such as the viscous friction coef-
ficient µv which is sensitive to the real-time temperature of

the joints lubrication. The normal force Fn, produced by the
constraints on the joint, is considered as the other uncertainty
in the paper. The analytical form of the normal force, derived
by Newtonian or Lagrangian approaches, is complicated
and coupled with the control torque. In many applications,
the normal force is assumed to be a constant, which may
‘help’ to decouple the normal force and the control input.
While, the simplification could lead to the loss of the accuracy
of the friction compensation control. Therefore, we model
the normal force in the paper as an uncertainty with a certain
bound.

III. THE ROBUST CONTROL DESIGN
Assume the planning trajectory of the Delta parallel robot is
αd (t), t ∈ [t0, t1], the desired velocity is α̇d (t) and the desired
acceleration is α̈d (t). Assumeαd (·) : [t0,∞]→ R3 is of class
C2 and αd (t), α̇d (t) and α̈d (t) (uniformly bounded). Let

r(t) = α(t)− αd (t), (14)

and hence ṙ = α̇(t)− α̇d (t), r̈ = α̈(t)− α̈d (t). The trajectory
tracking error can be defined as:

r(t) =
[
rT (t) ṙT (t)

]T
. (15)

Decompose the M , C , G, F and Mf of the Delta parallel
robot (13) as follows:

M (α, ζ, t) = M̄ (α, t)+1M (α, ζ, t), (16)

C(α, α̇, ζ, t) = C̄(α, α̇, t)+1C(α, α̇, ζ, t), (17)

G(α, ζ, t) = Ḡ(α, t)+1G(α, ζ, t), (18)

F(α, α̇, ζ, t) = F̄(α, α̇, t)+1F(α, α̇, ζ, t), (19)

Mf (α, α̇, ζ, t) = M̄f (α, α̇, t)+1Mf (α, α̇, ζ, t). (20)

Here M̄ , C̄ , Ḡ, F̄ and M̄f denote the ‘‘norm’’ portions with
M̄ > 0 which is always practicable by the designer’s deci-
sion, while 1M , 1C , 1G, 1F and 1Mf are the uncer-
tain portions. The functions M̄ (·), 1M (·), C̄(·), 1C(·), Ḡ(·),
1G(·), F̄(·), 1F(·), M̄f (·) 1Mf (·) are all continuous.
Assumption 1: We assume that the inertia matrix

M (α, ζ, t) is uniformly positive definite, that is, there exists
a scalar constant ψ > 0 such that

M (α, ζ, t) > ψI . (21)

Remark 4: In the past, the assumption of the uniformly
positive definiteness of the inertia matrix M (α, ζ, t) is often
believed to be true rather than an assumption. The iner-
tial matrix, however, is not always positive definitive in all
mechanical systems. There are some counter examples listed
in [25].
Assumption 2: For each (α, t) ∈ R3×R, ζ ∈ 4, there exist

constants κj, j = 0, 1, 2, with κ0 > 0, κ1,2 ≥ 0, such that

‖M (α, ζ, t)‖ ≤ κ0 + κ1‖α‖ + κ2‖α‖2. (22)

Remark 5: For any rigid serial type robots with revolute
and slide joints, M (α, ζ, t) is related to the parameters of the
inertia matrix and the positions of the joints, which means
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there exists a set of constants κj such that for all (α, t) ∈
R3 × R, ζ ∈ 4, the euclidean norm of the inertia matrix
satisfies (22).

A. THE ROBUST CONTROL DESIGN I
By the inverse dynamics, we propose a nominal control por-
tion as:

C1 (α(t), α̇(t), t) = M̄ (α, t)
(
α̈d − Dṙ

)
+ C̄(α, α̇, t)

×

(
α̇d − Dr

)
+ Ḡ(α, t)

+ F̄(α, α̇, t)+ M̄f (α, α̇, t), (23)

where D = diag[di]3×3, di > 0, i = 1, 2, 3.
Remark 6: The nominal control portion C1 is designed by

the information of the exact model, that is, one could apply
the control input τ = C1 to drive the Delta parallel robot to
track the desired trajectory when there is no initial condition
deviation and the uncertainty.

Considering the inevitable initial deviation of the Delta
parallel robot, we propose a P.D. control portion C2 as

C2(α(t), α̇(t), t) = −Tpr − Tvṙ, (26)

here, Tp = diag[tpi], tpi > 0, Tv = diag[tvi], tvi > 0,
i = 1, 2, 3.
Assumption 3: (1) For a given D = diag[di]3×3, di > 0,

ds = λmin(D), i = 1, 2, 3, there exists a (possibly unknown)
constant vector ρ ∈ (0,∞)k and a known function 3(·) :
(0,∞)k × R3 × R3 × R → R+ such that for all (α, α̇, t) ∈
R3 × R3 × R, ζ ∈ 4,

‖η(r, ṙ, ζ, t)‖ ≤ 3(ρ, α, α̇, t), (27)

where

η(r, ṙ, ζ, t) = −1M (α, ζ, t)
(
α̈d − Dṙ

)
−1C(α, α̇, ζ, t)

(
α̇d − Dr

)
−1G(α, ζ, t)−1F(α, α̇, ζ, t)

−1Mf (α, α̇, ζ, t). (28)

(2) For each (α, α̇, t) ∈ R3 × R3 × R, the function
3(·, α, α̇, t) is: (i) C1, (ii) a concave function of ρ; that is,
for any ρ1, ρ2,

3(ρ1, α, α̇, t)−0(ρ2, α, α̇, t) ≤
∂3

∂ρ
(ρ2, α, α̇, t)(ρ1−ρ2).

(29)

(3) The function3(·, α, α̇, t) is nondecreasing with respect
to each component of its argument ρ.

Remark 7: The constant vector ρ is unknown since it may
relate to the bounding set 4. The function 3 is treated as the
upper bound of uncertainty. In the special case, when there is
no uncertainty, 3 = 0.

Consider the following adaptive law with leakage term and
dead-zone in (24)-(25), as shown at the bottom of this page.

Here, ρ̂i(t0) > 0 (ρ̂i is the ith component of the vector
ρ̂, i = 1, 2, . . . , k), b1, b2, b3 ∈ Rk×k , each entry of b1, b2
and b3 is non-negative, β ∈ R, β > 0, ε ∈ R, ε > 0.
Remark 8: The adaptive law (24)-(25) is designed to

mimic the bound of uncertainty ρ (ρ̂ represents the estimated
value of ρ), which possesses two types: the leakage term and
the dead-zone. The first term on the right-hand side of (24) is
always nonnegative, and the second term on the is the leakage
term which is designed to make ρ̂ render an exponentially
decaying to zero. Note that if the initial condition ρi(t0) is
chosen to be strictly positive, then ρi(t) > 0 for all t > t0,
i = 1, 2, . . . , k . The dead-zone portion (25) is actually an
option, when it combines with (24), the adaptive law will
simplify the calculation and the algorithm.

By Assumption 3 and the adaptive law (24)-(25), we pro-
pose an adaptive robust control portion C3 as

C3(ρ̂(t), α(t), α̇(t), t) = ϕ(ρ̂, α, α̇, t)ω(ρ̂, α, α̇, t)

×3(ρ̂, α, α̇, t), (30)

where

ϕ(ρ̂, α, α̇, t)=


1

‖ω(ρ̂, α, α̇, t)‖
, ‖ω(ρ̂, α, α̇, t)‖ > ξ ;

1
ξ
, ‖ω(ρ̂, α, α̇, t)‖ ≤ ξ ;

(31)

ω
(
ρ̂, α, α̇, t

)
= (ṙ + Dr)3(ρ̂, α, α̇, t), (32)

here, ξ > 0.
Combined the control portions C1, C2 and C3, we propose

the controller deign I of the Delta parallel robot as

τ (t) = C1(α(t), α̇(t), t)+ C2 (α(t), α̇(t), t)

+C3
(
ρ̂(t), α(t), α̇(t), t

)
. (33)

The system performance under the control design I is ana-
lyzed by the following theorem.
Theorem 1: Let µ =

[
ṙT , rT , (ρ̂ − ρ)T

]T
∈ R6+k . Sub-

ject to Assumptions 1, 2 and 3, the control (33) for the Delta
parallel robot (13) renders µ the following performance:

(i) Uniform boundedness: For any y > 0 with ‖µ(t0)‖ ≤ y,
there exists a d(y) > 0 such that ‖µ(t)‖ ≤ d(y) for all t ≥ t0;

˙̂ρ =


β

[
b1
∂3T

∂ρ
(ρ̂, α, α̇, t) ‖ṙ + Dr‖ −

(
b2e−‖ṙ+Dr‖ + b3

)
ρ̂

]
, ‖ṙ + Dr‖

∥∥∥∥∂3∂ρ (ρ̂, α, α̇, t)

∥∥∥∥ > ε; (24)

−β
(
b2e−‖ṙ+Dr‖ + b3

)
ρ̂. ‖ṙ + Dr‖

∥∥∥∥∂0∂ρ (ρ̂, α, α̇, t)

∥∥∥∥ ≤ ε; (25)
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(ii) Uniform ultimate boundedness: For any y > 0 with
‖µ(t0)‖ ≤ y, there exists a d > 0 such that ‖µ(t)‖ ≤ d̄ for
any d̄ > d as for all t ≥ t0 + T (d̄, y), where T (d̄, y) <∞.

Proof: Let the Lyapunov function candidate as

V =
1
2
(ṙ + Dr)TM (ṙ + Dr)+

1
2
rT (Tp + DTv)r

+
1
2
(ρ̂ − ρ)T (βb1)−1(ρ̂ − ρ). (34)

For a given uncertainty ζ (·) and corresponding trajectory α(·),
α̇(·) and ρ̂(·), the derivative of V is given by

V̇ = (ṙ + Dr)TM (r̈ + Dṙ)+
1
2
(ṙ + Dr)T Ṁ

× (ṙ + Dr)+ rT (Tp + DTv)ṙ

+ (ρ̂ − ρ)T (βb1)−1 ˙̂ρ. (35)

For simplicity, arguments of functions are omitted when no
confusions exists, except for a few critical ones.

Each term of (35) will be analyzed separately. First,

(ṙ + Dr)T M (r̈ + Dṙ)
= (ṙ + Dr)T M

(
α̈ − α̈d + Dṙ

)
= (ṙ + Dr)T

(
τ − C

(
ṙ + α̇d

)
− G− F −Mf

−M α̈d +MDṙ
)

= (ṙ + Dr)T
(
C1 + C2 + C3 −1M

(
α̈d − Dṙ

)
−1C

(
α̇d − Dr

)
−1G−1F −1Mf − Ḡ

− F̄ − M̄f − M̄
(
α̈d − Dṙ

)
− C̄

(
α̇d − Dr

)
−C (ṙ + Dr)) . (36)

Considering the design of C1, we can get

(ṙ + Dr)T
(
C1 − M̄

(
α̈d − Dṙ

)
−C̄

(
α̇d − Dr

)
− Ḡ− F̄ − M̄f

)
= 0. (37)

By the design of C2, we have

(ṙ + Dr)T C2

= − (ṙ + Dr)T
(
−Tpr − Tvṙ

)
= −ṙTTpr − rTDTvṙ − rTDTpr − ṙTTvṙ . (38)

By (32), we have

(ṙ + Dr)T C3

= − (ṙ + Dr)T ϕω3
(
ρ̂, α, α̇, t

)
= − (ṙ + Dr)T ϕ (ṙ + Dr)32 (ρ̂, α, α̇, t)
≤ −ϕ‖ω‖2. (39)

In (35), by Assumption 3, we have

(ṙ + Dr)T
(
−1M

(
α̈d − Dṙ

)
−1C

(
α̇d − Dr

)
−1G−1F −1Mf

)
≤ ‖ṙ + Dr‖

∥∥∥−1M (
α̈d − Dṙ

)

−1C
(
α̇d − Dr

)
−1G−1F −1Mf

∥∥∥
≤ ‖ṙ + Dr‖3(ρ, α, α̇, t). (40)

The derivative of the Lyapunov function is

V̇ = (ṙ + Dr)TM (r̈ + Dṙ)+
1
2
(ṙ + Dr)T Ṁ

× (ṙ + Dr)+ rT (Tp + DTv)ṙ

+ (ρ̂ − ρ)T (βb1)−1 ˙̂ρ

≤ −ṙTTvṙ − rTDTpr + ‖ṙ + Dr‖3(ρ, α, α̇, t)

−ϕ‖ω‖2 + (ρ̂ − ρ)T (βb1)−1 ˙̂ρ

+
1
2
(ṙ + Dr)T


=0︷ ︸︸ ︷

Ṁ − 2C

 (ṙ + Dr)

≤ −λv‖ṙ‖2 − λDp‖r‖2+‖ṙ + Dr‖3(ρ, α, α̇, t)

−ϕ‖ω‖2 + (ρ̂ − ρ)T (βb1)−1 ˙̂ρ, (41)

where λv = λmin(Tv), λDp = λmin(DTp).
Considering the dead-zone conditions of the adaptive law

in (24)-(25) and the robust gain design condition in (31),
we will consider four possible cases.

Caes I: If ‖ṙ + Dr‖
∥∥∥ ∂3∂ρ (ρ̂, α, α̇, t)∥∥∥ > ε and ‖ω(ρ̂,

α, α̇, t)‖ > ξ , we have

V̇ ≤ −λv‖ṙ‖2 − λDp‖r‖2+‖ṙ + Dr‖3(ρ, α, α̇, t)

−
1
‖ω‖
‖ω‖2 + (ρ̂ − ρ)T b−11

[
b1
∂3T

∂ρ
(ρ̂, α, α̇, t)

× ‖ṙ + Dr‖ −
(
b2e−‖ṙ+Dr‖ + b3

)
ρ̂
]

≤ −λv‖ṙ‖2 − λDp‖r‖2+‖ṙ + Dr‖3(ρ, α, α̇, t)

−‖ω‖ + (ρ̂ − ρ)T b−11

[
b1
∂3T

∂ρ
(ρ̂, α, α̇, t)

× ‖ṙ + Dr‖ −
(
b2e−‖ṙ+Dr‖ + b3

)
ρ̂
]

≤ −λv‖ṙ‖2 − λDp‖r‖2+‖ṙ + Dr‖3(ρ, α, α̇, t)

− ‖ṙ + Dr‖3(ρ̂, α, α̇, t)+ (ρ̂ − ρ)T b−11

×

[
b1
∂3T

∂ρ
(ρ̂, α, α̇, t) ‖ṙ + Dr‖

−

(
b2e−‖ṙ+Dr‖ + b3

)
ρ̂
]

≤ −λv‖ṙ‖2 − λDp‖r‖2+‖ṙ+Dr‖
∂3

∂ρ
(ρ̂, α, α̇, t)

× (ρ − ρ̂)+ (ρ̂ − ρ)T
∂3T

∂ρ
(ρ̂, α, α̇, t) ‖ṙ + Dr‖

− (ρ̂ − ρ)T b−11

(
b2e−‖ṙ+Dr‖ + b3

)
ρ̂

≤ −λv‖ṙ‖2 − λDp‖r‖2−(ρ̂ − ρ)T b
−1
1

×

(
b2e−‖ṙ+Dr‖ + b3

)ρ̂ =0︷ ︸︸ ︷
−ρ + ρ


≤ −λv‖ṙ‖2 − λDp‖r‖2−b

−1
1

(
b2e−‖ṙ+Dr‖ + b3

)
×

(
‖ρ̂ − ρ‖2 + ‖ρ̂ − ρ‖‖ρ‖

)
. (42)
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According to the inequality −ab ≤ 1
2

(
a2 + b2

)
, we have

−

(
‖ρ̂ − ρ‖2 + ‖ρ̂ − ρ‖‖ρ‖

)
≤ −‖ρ̂ − ρ‖2 +

1
2

(
‖ρ‖2 + ‖ρ̂ − ρ‖2

)
≤ −

1
2
‖ρ̂ − ρ‖2 +

1
2
‖ρ‖2, (43)

then the third part of the equation (42) can be simplified as

−b−11

(
b2e−‖ṙ+Dr‖+b3

) (
‖ρ̂ − ρ‖2+‖ρ̂ − ρ‖‖ρ‖

)
≤ b−11

(
b2e−‖ṙ+Dr‖ + b3

)(
−
1
2
‖ρ̂ − ρ‖2 +

1
2
‖ρ‖2

)
≤ −

1
2
b−11

(
b2e−‖ṙ+Dr‖ + b3

)
‖ρ̂ − ρ‖2

+
1
2
b−11

(
b2e−‖ṙ+Dr‖ + b3

)
‖ρ‖2. (44)

Recalling that ‖µ‖2 = ‖ṙ‖2 + ‖r‖2 + ‖ρ̂ − ρ‖2, we can
get

V̇ ≤ −λv‖ṙ‖2 − λDp‖r‖2−b
−1
1

(
b2e−‖ṙ+Dr‖ + b3

)
×

(
‖ρ̂ − ρ‖2 + ‖ρ̂ − ρ‖‖ρ‖

)
≤ −λv‖ṙ‖2 − λDp‖r‖2−

1
2
b−11

(
b2e−‖ṙ+Dr‖+b3

)
‖ρ̂ − ρ‖2 +

1
2
b−11

(
b2e−‖ṙ+Dr‖ + b3

)
‖ρ‖2

≤ −λv‖ṙ‖2 − λDp‖r‖2−
1
2
b−11 (b2 + b3) ‖ρ̂ − ρ‖2

+
1
2
b−11 (b2 + b3) ‖ρ‖2

≤ −γ1‖µ‖
2
+ γ3, (45)

where γ1 = min
{
λv, λDp,

1
2b
−1
1 (b2 + b3)

}
, γ3 =

1
2b
−1
1 (b2 + b3) ‖ρ‖2.

Case II: If ‖ṙ + Dr‖
∥∥∥ ∂3∂ρ (ρ̂, α, α̇, t)∥∥∥ > ε and

‖ω(ρ̂, α, α̇, t)‖ ≤ ξ , we can get

V̇ ≤ −λv‖ṙ‖2 − λDp‖r‖2+‖ṙ + Dr‖3(ρ, α, α̇, t)

−
1
ξ
‖ω‖2 + (ρ̂ − ρ)T (b1)−1

[
b1
∂3T

∂ρ
(ρ̂, α, α̇, t)

× ‖ṙ + Dr‖ −
(
b2e−‖ṙ+Dr‖ + b3

)
ρ̂
]

≤ −λv‖ṙ‖2 − λDp‖r‖2+‖ṙ + Dr‖3(ρ, α, α̇, t)
=0︷ ︸︸ ︷

−‖ṙ+Dr‖3(ρ̂, α, α̇, t)+‖ṙ+Dr‖3(ρ̂, α, α̇, t)

−
1
ξ
‖ω‖2 + (ρ̂ − ρ)T (b1)−1

[
b1
∂3T

∂ρ
(ρ̂, α, α̇, t)

× ‖ṙ + Dr‖ −
(
b2e−‖ṙ+Dr‖ + b3

)
ρ̂
]

≤ −λv‖ṙ‖2 − λDp‖r‖2+‖ṙ+Dr‖
∂3

∂ρ
(ρ̂, α, α̇, t)

× (ρ − ρ̂)+ ‖ṙ + Dr‖3(ρ̂, α, α̇, t)

−
1
ξ
‖ω‖2 + (ρ̂ − ρ)T

∂3T

∂ρ
(ρ̂, α, α̇, t) ‖ṙ + Dr‖

− (ρ̂ − ρ)T b−11

(
b2e−‖ṙ+Dr‖ + b3

)
ρ̂

≤ −λv‖ṙ‖2 − λDp‖r‖2+‖ṙ + Dr‖3(ρ̂, α, α̇, t)

−
1
ξ
‖ω‖2 − (ρ̂ − ρ)T b−11

(
b2e−‖ṙ+Dr‖ + b3

)
ρ̂

≤ −λv‖ṙ‖2 − λDp‖r‖2+
ξ

4
− (ρ̂ − ρ)T b−11

×

(
b2e−‖ṙ+Dr‖ + b3

)ρ̂ =0︷ ︸︸ ︷
−ρ + ρ


≤ −λv‖ṙ‖2 − λDp‖r‖2−

1
2
b−11 (b2 + b3) ‖ρ̂ − ρ‖2

+
ξ

4
+

1
2
b−11 (b2 + b3) ‖ρ‖2

≤ −γ1‖µ‖
2
+ γ4, (46)

where γ1 = min
{
λv, λDp,

1
2b
−1
1 (b2 + b3)

}
, γ4 =

ξ
4 +

1
2b
−1
1 (b2 + b3) ‖ρ‖2.

Case III: If ‖ṙ + Dr‖
∥∥∥ ∂3∂ρ (ρ̂, α, α̇, t)∥∥∥ ≤ ε and

‖ω(ρ̂, α, α̇, t)‖ > ξ , we can rewrite as

V̇ ≤ −λv‖ṙ‖2 − λDp‖r‖2+‖ṙ + Dr‖3(ρ, α, α̇, t)

−‖ω‖ − (ρ̂ − ρ)T b−11

(
b2e−‖ṙ+Dr‖ + b3

)
ρ̂

≤ −λv‖ṙ‖2 − λDp‖r‖2+‖ṙ+Dr‖
∂3

∂ρ
(ρ̂, α, α̇, t)

× (ρ − ρ̂)− (ρ̂ − ρ)T b−11

(
b2e−‖ṙ+Dr‖ + b3

)
ρ̂

≤ −λv‖ṙ‖2 − λDp‖r‖2+ε‖ρ − ρ̂‖

− (ρ̂−ρ)T b−11

(
b2e−‖ṙ+Dr‖+b3

)ρ̂ =0︷ ︸︸ ︷
−ρ + ρ


≤ −λv‖ṙ‖2 − λDp‖r‖2−

1
2
b−11 (b2 + b3) ‖ρ̂ − ρ‖2

+ ε‖ρ − ρ̂‖ +
1
2
b−11 (b2 + b3) ‖ρ‖2

≤ −γ1‖µ‖
2
+ γ2‖µ‖ + γ3, (47)

where γ2 = ε.
Case IV: If ‖ṙ + Dr‖

∥∥∥ ∂3∂ρ (ρ̂, α, α̇, t)∥∥∥ ≤ ε and
‖ω(ρ̂, α, α̇, t)‖ ≤ ξ , we have

V̇ ≤ −λv‖ṙ‖2 − λDp‖r‖2+‖ṙ + Dr‖3(ρ, α, α̇, t)

−
1
ξ
‖ω‖2 − (ρ̂ − ρ)T b−11

(
b2e−‖ṙ+Dr‖ + b3

)
ρ̂

≤ −λv‖ṙ‖2 − λDp‖r‖2+‖ṙ+Dr‖
∂3

∂ρ
(ρ̂, α, α̇, t)

× (ρ − ρ̂)+ ‖ṙ + Dr‖3(ρ̂, α, α̇, t)

−
1
ξ
‖ω‖2 − (ρ̂ − ρ)T b−11

(
b2e−‖ṙ+Dr‖ + b3

)
ρ̂

≤ −λv‖ṙ‖2 − λDp‖r‖2+ε‖ρ − ρ̂‖ +
ξ

4

− b−11

(
b2e−‖ṙ+Dr‖ + b3

)ρ̂ =0︷ ︸︸ ︷
−ρ + ρ


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≤ −λv‖ṙ‖2 − λDp‖r‖2−
1
2
b−11 (b2 + b3) ‖ρ̂ − ρ‖2

+ ε‖ρ − ρ̂‖ +
ξ

4
+

1
2
b−11 (b2 + b3) ‖ρ‖2

≤ −γ1‖µ‖
2
+ γ2‖µ‖ + γ4. (48)

From the above results in (45), (46), (47) and (48), we for-
mulate a general form of the inequation of the derivation of
Lyapunov function as

V̇ ≤ −σ1‖µ‖2 + σ2‖µ‖ + σ3, (49)

where σ1 = γ1, σ2 = max{γ2, 0} and σ3 = max{γ3, γ4}.
Upon invoking the standard arguments as in [26], we can

conclude the uniform boundedness and the uniform ultimate
boundedness with

d(y) =


√
82

81
Y , if y ≤ Y ;√

82

81
y, if y > Y ,

(50)

Y =
1
2σ1

(σ2 +
√
σ 2
2 + 4σ1σ3), (51)

d =

√
82

81
Y , (52)

and

T (d, y)=



0, y ≤ d

√
82

81
;

82y2 − (
82

1

82
)d

2

σ1d
2
(
81

82
)− σ2d(

81

82
)− σ3

, y > d

√
82

81
;

(53)

where 81 = min
{
λmin(M ), (βb1)−1

}
,

82 = max
{
λmax(M ), (βb1)−1

}
.

B. THE ROBUST CONTROL DESIGN II
Next, we introduce an alternative control design II as

τ (t) = C1 (α(t), α̇(t), t)+ C2 (α(t), α̇(t), t)

+C4
(
ρ̂(t), α(t), α̇(t), t

)
, (54)

where

C4(ρ̂(t), α(t), α̇(t), t)

= ϕ(ρ̂, α, α̇, t)ω(ρ̂, α, α̇, t)

×3(ρ̂, α, α̇, t), (55)

ϕ
(
ρ̂, α, α̇, t

)
=

‖ω
(
ρ̂, α, α̇, t

)
‖

‖ω
(
ρ̂, α, α̇, t

)
‖2 + ‖ω

(
ρ̂, α, α̇, t

)
‖ξ + ξ2

, (56)

ω
(
ρ̂, α, α̇, t

)
= (ṙ + Dr)3

(
ρ̂, α, α̇, t

)
. (57)

Remark 9: The robust gain ϕ(·) in (31) and (56) are frac-
tional type. The robust gain ϕ(·) in (56) is intentionally pro-
posed to reduce the control cost by the high order polynomial

design. We can easily deduce that the robust gain ϕ(·) in (56)
is always smaller than it in (31) for all (ρ̂, α, α̇, t). It means
that the control design II will have a lower control cost.While,
as a trade-off, the control design II with the relatively complex
robust gain design will consume more computation time.
Then, in the future applications, the engineers could make a
choice in the two control designs by the actual requirements
of the robots.
Theorem 2: Let µ =

[
ṙT , rT , (ρ̂ − ρ)T

]T
∈ R6+k . Sub-

ject to Assumptions 1, 2 and 3, the control (54) renders δ the
following performance:

(i) Uniform boundedness: For any y > 0 with ‖µ(t0)‖ ≤ y,
there exists a d(y) > 0 such that ‖µ(t)‖ ≤ d(y) for all t ≥ t0;

(ii) Uniform ultimate boundedness: For any y > 0 with
‖µ(t0)‖ ≤ y, there exists a d > 0 such that ‖µ(t)‖ ≤ d̄ for
any d̄ > d as for all t ≥ t0 + T (d̄, y), where T (d̄, y) <∞.

Proof: Let

V =
1
2
(ṙ + Dr)TM (ṙ + Dr)+

1
2
rT (Tp + DTv)r

+
1
2
(ρ̂ − ρ)T (βb1)−1(ρ̂ − ρ). (58)

be the Lyapunov function candidate again. Then the deriva-
tive of V is given by

V̇ = (ṙ+Dr)TM (r̈+Dṙ)+
1
2
(ṙ+Dr)T Ṁ (ṙ+Dr)

+ rT (Tp + DTv)ṙ + (ρ̂ − ρ)T (βb1)−1 ˙̂ρ

≤ −λv‖ṙ‖2 − λDp‖r‖2+‖ṙ + Dr‖3(ρ, α, α̇, t)

−ϕ‖ω‖2 + (ρ̂ − ρ)T (βb1)−1 ˙̂ρ. (59)

Considering the dead-zone conditions of the adaptive law
in (24)-(25) and the robust gain design condition in (56),
we will develop (59) under the two combinations of the
inequalities.

If ‖ṙ + Dr‖
∥∥∥ ∂3∂ρ (ρ̂, α, α̇, t)∥∥∥ > ε, we have

V̇ ≤ −λv‖ṙ‖2 − λDp‖r‖2+‖ṙ + Dr‖3(ρ, α, α̇, t)

−
‖ω‖

‖ω‖2 + ‖ω‖ξ + ξ2
‖ω‖2 + (ρ̂ − ρ)T b−11

×

[
b1
∂3T

∂ρ
(ρ̂, α, α̇, t) ‖ṙ + Dr‖

−

(
b2e−‖ṙ+Dr‖ + b3

)
ρ̂
]

≤ −λv‖ṙ‖2 − λDp‖r‖2+‖ṙ + Dr‖3(ρ, α, α̇, t)

−‖ω‖ + (ρ̂ − ρ)T b−11

[
b1
∂3T

∂ρ
(ρ̂, α, α̇, t)

× ‖ṙ + Dr‖ −
(
b2e−‖ṙ+Dr‖ + b3

)
ρ̂
]

≤ −λv‖ṙ‖2 − λDp‖r‖2+‖ṙ + Dr‖
∂3

∂ρ
(ρ̂, α, α̇, t)

× (ρ − ρ̂)+ (ρ̂ − ρ)T
∂3T

∂ρ
(ρ̂, α, α̇, t) ‖ṙ + Dr‖

− (ρ̂ − ρ)T b−11

(
b2e−‖ṙ+Dr‖ + b3

)
ρ̂
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≤ −λv‖ṙ‖2 − λDp‖r‖2−b
−1
1

(
b2e−‖ṙ+Dr‖ + b3

)
×

(
‖ρ̂ − ρ‖2 + ‖ρ̂ − ρ‖‖ρ‖

)
≤ −λv‖ṙ‖2 − λDp‖r‖2−

1
2
b−11 (b2 + b3) ‖ρ̂ − ρ‖2

+
1
2
b−11 (b2 + b3) ‖ρ‖2

≤ −γ1‖µ‖
2
+ γ3. (60)

If ‖ṙ + Dr‖
∥∥∥ ∂3∂ρ (ρ̂, α, α̇, t)∥∥∥ < ε, we have

V̇ ≤ −λv‖ṙ‖2 − λDp‖r‖2+‖ṙ + Dr‖3(ρ, α, α̇, t)

−
‖ω‖

‖ω‖2 + ‖ω‖ξ + ξ2
‖ω‖2

− (ρ̂ − ρ)T b−11

(
b2e−‖ṙ+Dr‖ + b3

)
ρ̂

≤ −λv‖ṙ‖2 − λDp‖r‖2+‖ṙ + Dr‖3(ρ, α, α̇, t)

−‖ω‖ − (ρ̂ − ρ)T b−11

(
b2e−‖ṙ+Dr‖ + b3

)
ρ̂

≤ −λv‖ṙ‖2−λDp‖r‖2+‖ṙ+Dr‖
∂3

∂ρ
(ρ̂, α, α̇, t)

× (ρ − ρ̂)−(ρ̂ − ρ)T b−11

(
b2e−‖ṙ+Dr‖ + b3

)
ρ̂

≤ −λv‖ṙ‖2 − λDp‖r‖2+ε‖ρ − ρ̂‖

− (ρ̂ − ρ)T b−11 β
(
b2e−‖ṙ+Dr‖ + b3

)
ρ̂

≤ −λv‖ṙ‖2 − λDp‖r‖2+ε‖ρ − ρ̂‖

−
1
2
b−11 (b2 + b3) ‖ρ̂ − ρ‖2

+
1
2
b−11 (b2 + b3) ‖ρ‖2

≤ −γ1‖µ‖
2
+ γ2‖δ‖ + γ3. (61)

From the above results in (60) and (61), the inequation of
the derivation of Lyapunov function can also be formulate
by (49). Upon invoking the standard arguments as in [26],
we conclude the uniform boundedness with

d(y)=


√
82

81
Y , if y ≤ Y ;√

82

81
y, if y > Y ,

(62)

Y =
1
2γ1

(γ2 +
√
γ 2
2 + 4γ1γ3). (63)

Furthermore, uniform ultimate boundedness also follows
with

d =

√
82

81
Y , (64)

T (d, y)=



0, y ≤ d

√
82

81
;

82y2 − (
82

1

82
)d

2

γ1d
2
(
81

82
)− γ2d(

81

82
)− γ3

, y > d

√
82

81
;

(65)

TABLE 1. Parameters of the Delta parallel robot.

where 81 = min
{
λmin(M ), (βb1)−1

}
, 82 = max{λmax(M ),

(βb1)−1}.

IV. CONTROL DESIGN PROCEDURE
The control design procedure of the Delta parallel robot with
uncertainty and joints friction can be summarized as follows:
Step 1: By (13), construct the motion equation of the uncer-

tain Delta parallel robot with joints friction and
decompose the motion equation into two parts: the
nominal terms M̄ , C̄ , Ḡ, F̄ and M̄f ; the uncertain
terms 1M , 1C , 1G, 1F and 1Mf ;

Step 2: Check the Assumptions 1 and 2 for the Delta parallel
robot and formulate the nominal control portion C1
by (23); Choose the control parameter D by D > 0.

Step 3: Deduce the trajectory tracking error and establish
the P.D. control portion C2 by (26); Choose the pro-
portional control parameter Tp > 0 and differential
control parameter Tv > 0.

Step 4: Derive the function 3(·) by Assumption 3 and
obtain the adaptive law in (24)-(25); Choose the
online estimation sensitivity parameter b1 > 0,
dead-zone parameter ε > 0, leakage term param-
eters b2 > 0 and b3 > 0.

Step 5: According to the actual demands of the control
system, formulate the corresponding robust control
portion C3 or C4 by (30) or (55); Choose the robust
gain β > 0 and dead-zone parameter ξ > 0.

Step 6: Construct the robust control design as τ = C1 +

C2 +C3 or τ = C1 +C2 +C4 by the priority to the
system performance or the efficiency of the control
algorithm.

V. NUMERICAL SIMULATIONS
In this section, we consider a high speed 3-DOF Delta par-
allel robot with joints friction which is applied in intelligent
logistics. The dynamic parameters of the Delta parallel robot
in (13) are displayed in Table 1 according to [14].
In the working process, there are several typical uncer-

tainties of the Delta parallel robot considered in the
simulation: the changing mass of the moving platform
mo′ in the pick and place cycles; the time-varying nor-
mal force Fn of the joints friction; the external distur-
bance F caused by the vibration of the lightweight arms.
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FIGURE 6. The trajectory tracking error under control design I.

Those uncertainties can be expressed as: mo′ = m̄o′ +
1mo′ (t), Fn = F̄n + 1Fn(t) = [F̄n1, F̄n2, F̄n3]T +
[1Fn1(t),1Fn2(t),1Fn3(t)]T , and F = F̄ + 1F(t) =
[F̄1, F̄2, F̄3]T + [1F1(t),1F2(t),1F3(t)]T . m̄o′ , F̄n, and F̄
are the nominal portions which are selected to be strictly
positive, 1mo′ (t), 1Fn(t), and 1F(t) are the time-varying
uncertain portions. Then the uncertain parameter is chosen
as ζ = [1mo′ ,1Fn1,1Fn2,1Fn3,1F1,1F2,1F3]T .
Let [x, y, z]T stand for the coordinates of the end-effector

of the Delta parallel robot. Suppose the desired trajectory
(path type I) of robot bexd (t)yd (t)

zd (t)

 =
0.05t/15 cos(2π t)0.05t/15 sin(2π t)
−0.35+ 0.01t

 . (66)

Assumptions 1 and 2 are verified by the chosen M̄ . Note
that the terms in M , C , and G are either constant, linear in
positions, or quadratic in velocities, Assumption 3 can be met
by choosing

3(ρ, α, α̇, t)= ρ1‖α̈d − Dṙ‖+ρ2‖α̇d − Dr‖+ρ3

≤ ρ
(
‖α̈d − Dṙ‖+ρ2‖α̇d − Dr‖+1

)
, (67)

where ρ = max{ρ1, ρ2, ρ3}.
For the simulation of the Delta parallel robot in

MATLAB, the nominal values of the uncertain parameters
are: m̄o′ = 0.3kg, F̄ni = 15N, F̄1 = 2N, F̄2 = 4N and
F̄3 = 6N, i = 1, 2, 3. Suppose the uncertain parameters
are: 1mo′ = 1mm̄o′ sin(π t), 1Fni = 1fcF̄ni sin(π t), and
1Fi = 1f F̄i cos(2π t), where 1m = maxt ‖1mo′ (t)‖/m̄o′ ,
1fc = maxt ‖1Fni(t)‖/F̄ni, and 1f = maxt 1Fi(t)/F̄i,
i = 1, 2, 3. 1m, 1fc, and 1f indicate the magnitude of the
uncertainty which are all 0.3. Let the initial conditions are
α0 = [0.3322, 0.3322, 0.3322]T , α̇0 = [0, 0, 0]T , α̈0 =
[0, 0, 0]T , ρ̂0 = 2. Considering the system performance and
the control cost, we choose the control parameters: Tv =
diag[9, 9, 9], Tp = diag[3, 3, 3], D = diag[9, 9, 9],
β = 0.1 and ξ = 0.001. With a high sensitivity for the uncer-
tainty, the online estimation parameters are chosen as follows:
ε = 0.05, b1 = 10, b2 = 2 and b3 = 0.3. The simulation
results are shown in Fig. 6-Fig. 22.

First, the simulation results under the adaptive robust con-
trol design I are shown in Fig. 6-Fig. 11. The trajectory

FIGURE 7. The time history of adaptive parameter ρ̂ under control
design I.

FIGURE 8. The time histories of the control inputs under control design I.

FIGURE 9. Maximum of ρ̂max with respect to 1m and 1f under control
design I.

FIGURE 10. Maximum of ρ̂max with respect to 1f and 1fc under control
design I.

tracking errors ‖r‖ and ‖ṙ‖ under control design I are shown
in Fig. 6. The trajectory tracking error ‖r‖ goes into a narrow
zone around 0 after 0.3s and remains in it after, the error ‖ṙ‖
increases at first and then approximately close to 0 after 3s.
Fig. 7 shows the time history of the adaptive parameter ρ̂.
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FIGURE 11. Maximum of ρ̂max with respect to 1m and 1fc under control
design I.

FIGURE 12. The trajectory tracking error under control design II.

FIGURE 13. The time history of adaptive parameter ρ̂ under control
design II.

It increases quickly from the initial value ρ̂0 = 0.02 to the
maximal value ρ̂max = 0.7, and decreases with the reduction
of the trajectory tracking error. Fig. 8 demonstrates the time
histories of the control torques τ1, τ2 and τ3 of driven motors.
Let ρ̂max = maxt ‖ρ̂‖. Fig. 9-Fig. 11 demonstrate the effects
of the uncertainty bounds 1m, 1fc and 1f on ρ̂max.
Second, with the same simulation conditions, the adaptive

robust control design II is researched in the following sim-
ulations. The simulation results are given in Fig. 12-Fig. 17.
Fig. 12 shows the trajectory tracking errors ‖r‖ and ‖ṙ‖ under
control design II. The trajectory tracking error ‖r‖ quickly
enters to a small zone around 0 in less than 0.2 seconds. The
trajectory tracking error ‖ṙ‖ is uniform bounded for all t > 0
and uniform ultimate bounded for t ≤ 2s. Fig. 13 is the
time history of the adaptive parameter ρ̂. As the existence
of the leakage term, ρ̂ shows tendency to ascend before 2s,
then descends to almost 0.5. Fig. 14 shows the time histo-
ries of the control torques τ1, τ2 and τ3 of driven motors.

FIGURE 14. The time histories of the control inputs under control
design II.

FIGURE 15. Maximum of ρ̂max with respect to 1m and 1f under control
design II.

FIGURE 16. Maximum of ρ̂max with respect to 1f and 1fc under control
design II.

FIGURE 17. Maximum of ρ̂max with respect to 1m and 1fc under control
design II.

Fig. 15-Fig. 17 demonstrate the effects of the uncertainty
bounds 1m, 1fc and 1f on ρ̂max.
Third, for comparison of the two control designs, the accu-

mulative control torques S (that is the area enclosed by ‖τ (t)‖
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FIGURE 18. The comparison of the accumulative system control torques
under two control designs.

FIGURE 19. The comparison of the runtime under two control designs.

FIGURE 20. The comparison of the end-effector trajectories under
different controls for path type I.

and t) is described as:

S =
∫ Tt

0
‖τ (t)‖ dt, (68)

where Tt is the simulation time. In Fig. 18, the accumulative
control torques S under the first robust controller design
is 62262, on the other hand S under the second robust
controller design has a smaller value 62197. Meanwhile,
the actual runtimes of the two control designs are calculated
in Fig. 19. The runtime of the first robust controller design
is 12.8683s and the runtime of the second robust controller
design is 13.8027s. Those simulation results indicate that
the choice of the first robust controller design or the second
robust controller design are decided by the priority of the
control cost or the computation speed.

Fourth, for comparison, we adopt a LQR (Linear Quadratic
Regulator) controller to carry out a series of simulations.
To validate the generality of the proposed control designs, one
more desired trajectory (path type II) is chosenxd (t)yd (t)

zd (t)

 =
 0.1 sin(π t)

0.1 cos(π t)
−0.4+ 0.02t/π ]

 . (69)

FIGURE 21. The comparison of the end-effector trajectories under
different controls for path type II.

FIGURE 22. The comparison of the trajectory tracking errors ‖r‖ under
different controls for path type I.

FIGURE 23. The comparison of the trajectory tracking errors ‖ṙ‖ under
different controls for path type I.

FIGURE 24. The comparison of the trajectory tracking errors ‖r‖ under
different controls for path type II.

Fig. 20-21 demonstrate the end-effector trajectories under the
different controls for the two type paths. Comparing with
LQR control, the trajectories of the proposed controls are
closest to the desired trajectory paths. In Fig. 22-25, the tra-
jectory tracking errors ‖r‖ and ‖ṙ‖ with LQR control are
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FIGURE 25. The comparison of the trajectory tracking errors ‖ṙ‖ under
different controls for path type I.

FIGURE 26. The comparison of the integral absolute errors under
different controls for path type I.

FIGURE 27. The comparison of the integral absolute errors under
different controls for path type II.

FIGURE 28. The comparison of the integral square errors under different
controls for path type I.

bounded but not convergent for both types of paths, no matter
how long one waits. While, the errors ‖r‖ and ‖ṙ‖ with the
proposed control design I and design II increase at first and

FIGURE 29. The comparison of the integral square errors under different
controls for path type II.

then approximately close to 0 after 2s for path type I, and
quickly settle to a very small zone around 0 in less than 0.25 s
for path type II. The IAE (integral absolute errors) indices
of different controls for two types paths are illustrated by
Fig. 26-27. From the results in Fig. 20-27, we conclude that
the proposed two robust control designs have far superior
performance with respect to LQR control.

Finally, in order to observe the influence of the joints fric-
tion on the Delta robot, we implement the simulations without
the friction compensation control for the two types of paths.
In Fig. 28-29, for both types of paths, the ISE (integral square
errors) indices of the proposed control designs without fric-
tion compensation control are higher than the controls with
the friction compensation control. Hence, the influence of the
joints friction should be considered in the Delta robot control
design (especially in some sophisticated applications).

VI. CONCLUSION
Based on the online estimation approach, we have proposed
a class of novel robust controls for the Delta parallel robot
with nonlinearity and uncertainty. To improve the dynamic
performance of the Delta parallel robot under the high speed
and heavy load condition, we formulate the precise and
explicit motion equation of the robot with joints friction.
By the constructed motion equation, a nominal control por-
tion containing an active friction compensation is derived via
the inverse dynamics. The uncertainty of the Delta parallel
robot in the paper includes the unknown dynamic parameters
of robot, the vibration of the robot arms, the external distur-
bances of the end-effector and the time-varying normal forces
of the joints friction (caused by the imperfect knowledge
of the friction model). Unlike the traditional robust controls
(focusing on the probabilistic distribution or the bound of the
uncertainty), we design an alternative method to tackle with
the uncertainty. An online estimation mechanism, consisting
the exponential leakage term and dead-zone, is proposed to
search the real-time information of the uncertainty. This esti-
mation method only needs the uncertainty is bounded (which
is practical for the robot in applications). It may relieve the
engineers from the plentiful investigations of the uncertainty.
With the estimated bounds information, two robust controls
are designed for the Delta parallel robot with the initial
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condition deviation, joints friction and uncertainty. Those
controls can provide two priorities for the Delta parallel robot
between the control efficiency and the control cost (high order
design).
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