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ABSTRACT Tomato leaf disease seriously affects the yield of tomato. It is extremely vital for agricultural
economy to identify agricultural diseases. The traditional data augmentation methods, such as rotation,
flip and translation, are severely limited, which cannot achieve good generalization results. To improve the
recognition accuracy of tomato leaf diseases, a new method of data augmentation by generative adversarial
networks (GANSs) is proposed for leaf disease recognition in this work. Generated images augmented
by deep convolutional generative adversarial networks (DCGAN) and original images as the input of
GoogLeNet, this model can achieve a top-1 average identification accuracy of 94.33%. By adjusting the
hyper-parameters, modifying the architecture of the convolutional neural networks, and selecting different
generative adversarial networks, an improved model for training and testing 5 classes of tomato leaf images
was obtained. Meanwhile, images generated by DCGAN not only enlarge the size of the data set, but also
have the characteristics of diversity, which makes the model have a good generalization effect. We have also
visually confirmed that the images generated by DCGAN have much better quality and are more convincing
through the t-Distributed Stochastic Neighbor Embedding (t-SNE) and Visual Turing Test. Experiments with
tomato leaf disease identification show that DCGAN can generate data that approximate to real images,
which can be used to (1) provide a larger data set for the training of large neural networks, and improve
the performance of the recognition model through highly discriminating image generation technology; (2)
reduce the cost of data collection; (3) enhance the diversity of data and the generalization ability of the
recognition models.

INDEX TERMS Tomato leaf disease, data augmentation, generative adversarial networks, generalization,
recognition accuracy.

I. INTRODUCTION

Tomato is one of the most nutritive crops all over the world,
whose cultivation and level of production have a crucial
impact on the development of agricultural economy. Tomato
not only owns plenty of nutrition but also has pharmacolog-
ical effects, which keep people away from diseases such as
hypertension, hepatitis, gingival bleeding and so on [1]-[6].
On account of the wide use of tomato, the demand for tomato
is also rising. Statistics show that more than 80 percent of
agricultural production is produced by small farmers [7], and
production loss of more than 50 percent because of pests and
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diseases [8]. Diseases and insect pests are the key factors that
affect the growth of tomato, so it is particularly significant to
study the identification of crop diseases [9].

Nevertheless, traditional manual detection of pests and dis-
eases is low efficiency and high cost [10]. With the continuous
development of the Internet, image-based disease identifi-
cation has seen huge adoption in computer vision applica-
tions. People use efficient image identification technology to
process images, which can improve the efficiency of image
recognition, reduce the cost and improve the accuracy of
recognition [11].

One of the most recognized competitions in the world,
ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) [12], which used ImageNet to verify the model,
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has received a lot of attention in the field of computer vision
since it was held in 2010. However, it’s not going to perform
as well because in real world it does not have as much data as
ImageNet. Training a deep model on insufficient data usually
results in overfitting, since a model of high capacity is capable
of “memorizing” the dataset [13]. There are some methods
can solve the problems of overfitting like early stopping,
which means stopping iteration before the iterative conver-
gence of the model on the training dataset, regularization,
dropout, data augmentation and so on. Data augmentation
aims to increase the size of the dataset [14]. It is an approach
that is widely used in all fields. In this task, we chose to
focus our research on data augmentation. Traditional methods
of image augmentation include translation, flip, rotation,
brightness adjustment, affine transformation and Gaussian
noise, etc. The purpose of this method is to obtain a new
image that contains the same semantic information as the
original one, which cannot improve the diversity of datasets
and have no generalization ability. To make up for the short-
comings of common enhancement methods, Mohamad et al.
proposed using dropout and data augmentation to reduce
model overfitting [ 15]. Goodfellow et al. [16] compared iden-
tification accuracy by using different augmentation methods
such as C-DCGAN [17], rotation and translation and without
augmentation. The results not only show data augmentation
can improve the identification accuracy and avoid over-
fit of deep learning networks for tea leaf’s disease iden-
tification with insufficient training set size, but also show
traditional augmentation methods have been unsuccessful in
generalization. Pix2pix-GAN, stacked generative adversarial
networks (SGAN) are also used because of their strength for
image generation [18], [19]. Hojjat Salehinejad er al. [20]
used the GAN network generated images to train the clas-
sifier, demonstrate that augmenting the original imbalanced
data sets with GAN generated images improves performance
of chest pathology classification using the proposed DCNN
in comparison to the same DCNN trained with the original
data sets alone. Tang et al. [21] used an end-to-end trained
generative adversarial one-class classifier for abnormal chest
X-ray identification. This method can generate normal and
abnormal chest X-ray images using only normal chest X-ray
images, thereby reducing the workload of manual annotation.
Besides, several multi-stage training generation methods
in diagnostic and biomedical domains are proposed: CPG-
GANSs incorporate high-rough bounding box conditions in
PGGANSs and uses incremental training procedures from low-
resolution of newly-added layers to achieve high sensitivity
for generating real images [22]. In addition, Han ef al. also
combines noise-to-image with image-to-image GANs and
through Visual Turing Test and t-SNE results shows this
method can significantly boost tumor detection sensitiv-
ity by using PGGANSs, which is used to generate realistic
images and SimGAN/Multimodal UNsupervised Image-to-
image Translation (MUNIT), which is used to refer images
generating by PGGANSs. These methods have shown good
performance in the field of medical image diagnosis.
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In this paper, deep learning network is applied to iden-
tify tomato leaf diseases. We provide a method, which uses
DCGAN network to do data augmentation to the manually
collected dataset and takes part of the generated images
together with the original images as the input of deep con-
volutional neural network. AlexNet [23], GoogLeNet [24],
VGG16 networks [25] and ResNet [26] were selected as
backbone of tomato leaf disease identification model, and
transfer learning was used.

The rest of the paper is organized as follows: Section 2
presents related work. Then, Section 3 presents methodol-
ogy. Section 4 presents achieved results and related discus-
sion, and finally, section 5 holds our conclusions and future
directions.

Il. RELATED WORK

With the wide application of deep learning, many researchers
focus on the identification of diseases and pests. Many
researchers use a large dataset to study the problem of
disease identification in agriculture, i.e., PlantVillage [27],
processing a large number of plant leaf images of differ-
ent species and different disease distribution from different
regions. KC et al. trained and tested the model on publicly
available PlantVillage subsets, with a classification accuracy
of 98.34% [28]. Without data augmentation, Brahimi et al.
trained the classifier with 14,828 images of the class of
tomato from the open test dataset, and achieved 99.18 per-
cent accuracy. In the aforementioned examples, you can see
that one of the benefits of using open datasets is that you
don’t have to worry about model overfitting due to insuffi-
cient dataset size, and it can reduce the workload. However,
datasets of some categories need to be enhanced, as the
number of leaves of different types varies greatly, which
will affect the accuracy of identification. The importance of
balancing datasets is highlighted by the fact that deep neural
networks may be most valuable in the work up of rare or
challenging diseases, which practitioners at a common skill
level may fail to recognize or misinterpret. Besides, other
researchers use self-collected data as input to neural networks
to identify different plant diseases. The difficulty of this kind
of problem is not only hard to collect, but also need to find
experts to do manual classification. Thus, in order to prevent
model overfitting, there are many methods to solve this kind
of problems in previous studies.

In this work, we focus on this approach of using data
augmentation. The main purpose of data augmentation is
to ensure the model will not see the same picture twice
during training time and expose the model to much more
aspects of data and thus generalize better [15]. Nevertheless,
the common data augmentation method that uses the same
picture for scaling and rotation make the diversity of the
dataset is not enough so that it leaves their application ad-hoc
and empirical. A method recently used by many researchers
— generating adversarial networks — has been successfully
applied to data enhancement. Generative Adversarial Net-
works (GANSs) [17] are a family of unsupervised neural net-
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works most commonly used for image generation [13]. As we
all know, in 2017 Arjovsky et al. [29] proposed an alter-
native method to the traditional method, Wasserstein GAN
(WGAN), which proved to improve the stability of learning
and solve the problem of modal collapse. Also, Han et al. [30]
proposed an approach for medical data augmentation which
used Wasserstein GAN(WGAN) to generate realistic images
applying in medical diagnosis. However, in this paper we
use the leaf data set. Based on the particularity of the data
characteristics, the leaf images of the same class have obvious
differences at different stages of diseases, and the similarity of
different classes of data is high. At present, there is no related
research that can prove that WGAN has better performance
in this field.

Some research based on GANs used to generate images
has appeared in the field of agricultural disease recognition.
Tian et al. [31] proposed an approach that can generate more
apple disease images by CycleGAN. Nevertheless, most of
the images generated by CycleGAN are of poor quality and
have limited diversity. LeafGAN is an image-to-image trans-
lation system, integrating an attention mechanism, which
generates diseased images via transformation from healthy
images, as a data augmentation tool for improving the perfor-
mance of plant disease diagnosis [32]. Its purpose is to bal-
ance the data set and generate clear images by transforming
healthy leaf data into leaf data for many different diseases.
Another form is noise-to-image, which is what we’re going
to study. We use the combined method of DCGAN and
CNN to conduct the identification experiment with a small
amount of data, aiming to solve the generalization problem of
tomato leaf disease identification, make the computer more
intelligent and reduce the workload of human. These two
works have in common that both GANs networks can pro-
duce images with clear disease spots, and both can solve the
problem of limitations related to data diversity. The difference
is that LeafGAN can transform healthy images into images
of different types of diseases, which is an image-to-image
transformation method, while DCGAN is a noise-to-image
transformation method, which generates labeled images into
the same type of images.

lll. MATERIAL AND METHOD

A. DATASETS

A total of 1500 tomato leaf images, openly and freely dataset,
collected from the Plant Village project [27], which are dis-
tributed in 5 different classes, were selected for this study
to aim for the highest variance among classes. The images
in our dataset are annotated as belonging to five different
categories which are tomato healthy, tomato late blight water
mold, tomato septoria leaf fungus, tomato target spot bacte-
ria and tomato YLCV virus (See Fig. 1). The size of each
image should be the same as the input size of neural network
(GoogLeNet, AlexNet and ResNet as 224 x 224 pixels, VGG
as 299 x 299 pixels), and use RGB color space and JPG format
images. In deep learning, the accuracy of identification is
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FIGURE 1. Example of tomato leaf images from the PlantVillage dataset,
representing every tomato disease used. (1) tomato_target spot bacteria.
(2) tomato_YLCV virus. (3) tomato_healthy. (4) tomato_late blight water
mold. (5) tomato_septoria leaf spot fungus.

TABLE 1. The tomato leaf dataset.

Disease Original ~ Augme  Training Validation Test
dataset nted
dataset
Target 300 760 800 200 60
spot
bacteria
YLCV 300 760 800 200 60
virus
Healthy 300 760 800 200 60
Late 300 760 800 200 60
blight
water
mold
Septoria 300 760 800 200 60
leaf spot
fungus
Total 1500 3800 4000 1000 300

affected if the samples are not evenly distributed [33], [34].
In addition, considering that insufficient data often occur and
it is difficult to collect vast data in many practical projects,
300 images of each type were randomly selected as original
dataset of this work to better solve practical problems. Under
this condition, there are two problems should be considered:
(1) There will be more and more parameters as the number
of network layers increase. (2) The number of the manually
collected tomato dataset is small. It is apt to lead to over-
fitting of the network under the influence of many param-
eters and few data sets. Data augmentation is an effective
way to solve this problem. In this work, DCGAN network
is proposed for the augment of tomato dataset. Based on
the original dataset, 240 samples from each type of tomato
leaf dataset are randomly selected as training samples, and
the remaining 60 samples from each type are used as test
samples (See Table 1). We increased the training set to
1000 pieces per category by means of data enhancement.
This number comes from the original ImageNet classifi-
cation challenge, where the dataset had 1,000 categories,
with fewer than 1,000 images per class (approximately
800 images). That’s enough to train early models of image
classification like AlexNet, so proving about 1,000 images
is enough [35]. In this case, each kind of image dataset has
800 training samples, 200 validation samples and 60 test
samples.

B. MODEL BULIDING

The main goal of this work is to generate realistic images
for each of classes to solve the problem of insufficient data.
In addition, we also improve the generalization ability of
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this model. The main process of tomato leaf diseases identifi-
cation is shown in Fig.2. We designed a novel model structure
to generate sample which hard to collect based on DCGAN’s
high stability and excellent sample generation capabilities.
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FIGURE 2. The main process of tomato leaf diseases identification.
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FIGURE 3. The main process of GAN.

1) BUILD DCGAN NETWORK

GAN is made up of generator network G and discriminator
network D, which makes G learn the distribution of the
data [17]. GAN has two different networks, among which
G is a generator network, which receives a random noise z
(random number) and generates images through this noise.
D is a discriminator network that determines whether an
image is “‘real” or not. Its input parameter is x, which rep-
resents a picture. Output D(x) represents the probability of
real pictures. The main process of GAN is shown in Fig. 3.
First, there is a generation generator that produces a very
poor image. And then there’s a generation of discriminators
that accurately categorizes the generated images against the
real ones. In short, the discriminator is a binary classifier that
outputs O for the generated image and 1 for the real one. Next,
we begin to train the second-generation generator, which
can produce slightly better images and can make the first-
generation generator believe that the generated images are
real. It then trains a second-generation discriminator, which
accurately identifies the real image with the one generated
by the second-generation generator. And so on, there will
be three generations, four generations...N generation of the
generator and discriminator, and finally discriminator cannot
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distinguish between the generated image and the real image,
the network fit. The objective function V (D; G) of GAN is
as follows:

m(%n mgx V (D, G) = Ex~P gy [108D (X)] Ec~p_(;)[log(1
DG @N] (D

where x is a real sample, D(x) represents the probability of
discriminating x as a real sample by discriminator networks
D, G(z) is a sample generated from noise z by the generator
network G, and D (G(z)) indicates the probability of dis-
criminating G(z) as a real sample by discriminator network
D. Compared with the earliest GAN, DCGAN was proposed
in 2015. Convolutional neural network performs well in all
tasks in supervised learning, but less in unsupervised learn-
ing. The algorithm of DCGAN, which can be considered as
the application of GAN extended to the field of CNN, com-
bines CNN in supervised learning with GAN in unsupervised
learning. The advantage of GAN is that it requires no spe-
cific cost function and can learn good feature representation,
but GAN is very unstable to train and often causes genera-
tors to produce meaningless output. Compared with GAN,
DCGAN made some changes to the structure of convolutional
neural network to improve the quality of samples and the
speed of convergence. These changes include: all pooling
layer is replaced by strided convolutions (discriminator) and
fractional-strided convolutions (generator). Batch normaliza-
tion was used on the generator and discriminator networks.
The discriminator network is a convolutional neural network
with the whole connection layer removed. In addition to using
tanh as the activation function on the output layer, the relu
activation function is used on the other layers of the generator
network. All activation functions using LeakyReLu is used as
a binary problem in discriminator network.

In this work, we proposed our own generator and dis-
criminator model by referring to the DCGAN structure. The
schematic diagram of DCGAN is as follows:

As shown in Fig. 4. For DCGAN based on neural network,
the general learning process is as follows: As the input of G,
7 is a noise, which can be gaussian noise, usually uniform
noise. After the generator G, a fake image is generated—
G(z), and G (z) and x are taken as inputs to discriminator D.
The output of the final discriminator D represents the prob-
ability that the data is real, which ranges from 0 to 1. For
discriminator, batch normalization is generally not required
after the first layer convolution, and the combination mode
of “conv2D +BN+ LeakyReLU” is always followed. For
the generator, the first layer is the full connection layer, then
the combined mode of “conv2D+BN+ReLU”’, and the last
layer of convolution is activated by tanh. Accordingly, input
images are scaled to between —1 and 1 by dividing by 255 and
multiplying by 2 minus 1.

2) BUILD IMAGE IDENTIFICATION NETWORKS
After aforementioned model of DCGAN enlarging training
samples, we conduct a framework of image identification
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FIGURE 4. DCGAN'’s discriminator (left) and generator architecture (right).

based on deep learning, which performs well in recent years.
Traditional neural network has a low accuracy, while machine
learning like random forest has been demonstrated the
unavoidable overfitting phenomenon will be exist in the prob-
lem of classification or regression with noise. Thus, we select
deep neural networks. Due to the development of deep learn-
ing technology, computer vision has achieved good results in
Large Scale Visual Recognition Challenge (ILSVRC) com-
petitions for the ImageNet dataset [12], and its error rate
has been lower than that of human vision. Some main-
stream architectures we can see commonly are AlexNet,
VGG, GoogLeNet, ResNet and so forth. In order to compare
which CNN model is more suitable for the classification
problem we proposed, we made corresponding experiments
to verify the performance of these models. According to
the characteristics of the number of the datasets, we use
the method of transfer learning and choose the pre-trained
model. We have made changes to some of the parame-
ters of the architectures, which are detailed in the next
chapter. Several metrics were used to evaluate the perfor-
mance of our experiments (i.e. accuracy, precision, recall,
f1), but for simplicity only the accuracy scores will be pre-
sented. Since the datasets are highly balanced, the rest of
the metrics fall in line and consequently were considered
redundant [13].

AlexNet: AlexNet was designed by Hinton and his student
Alex Krizhevsky, who successfully applied ReL.U, dropout
and LRN in CNN for the first time, and AlexNet also used
GPU for computation and acceleration. In order to avoid
overfitting, dropout is used on the last fully connected layers
of AlexNet, which can randomly ignore a subset of neurous
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while training. The AlexNet used in this work is shown
in Fig. 5.
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FIGURE 5. The architecture of AlexNet.

From the structure of the figure above, it can be seen that
AlexNet is similar to the LeNet architecture proposed by
Lecun in 1989 [36]. The network consists of eight weighted
layers, the first five being the convolutional layers, and the
remains are 3 fully connected layers. The first two convolu-
tional layers are followed by the normalization and pooling
layers respectively, and the last convolutional layer is fol-
lowed by a single pooling layer. The third, fourth and fifth
convolutional layers are connected directly. The second fully
connected layer is provided to the softmax classifier with five
class labels. ReLU, as the activation function of the first two
fully connected layers (fc6, fc7), generates 4096 values from
the results of 4096 operations. Finally, the output of the sev-
enth layer of 4096 data is fully connected to the five neurons
in the eighth layer(fc8). After training, it (fc8) outputs five
floating-point values, which is the predicted result.

GoogLeNet: GoogleNet (a.k.a, Inception V1) was the
champion of the ILSVRC 2014 competition, which achieved
a top-5 error of 6.67%. It proved to be it is extremely hard
for human to do this well with such a low error accuracy.
GoogLeNet has taken a bolder tack on networks. It imple-
mented a newfangled section which is named an inception
module, not like VGG, which inherits some of the architec-
tures of LeNet and AlexNet. The inception module used batch
normalization, RMSprop and image distortions. Although
this model has a much deeper architecture with 22 layers,
it drastically reduces the number of parameters, which is only
1/12 of AlexNet.

The overall structure of the GoogleNet network is shown
in the Fig. 6.

ol = 2 o o} 3 —
s Sm S om g 3
Input Image
224%224%3 TEXIZ0E SOxS6X61 S6xS6x100  I8A2SK197  ISNIEXS6  MMA28kiSD  LixldniS0  LoxD4xSI)  L4xL4xE1
a
5 E = 2
o = =
-t Em e Em Smp S Empc B
< 306
RSS2 Welin LXUAES:  TATBID TNTABS TATAMRL LALSIOM DAL G Ll
Max Pooling
Inception Module
Average Pooling
Fully Contected

FIGURE 6. The architecture of GooglLeNet.
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As it shown in Fig. 6, GoogleNet used inception
module(M1~M9). The main idea of inception is how to find
the optimal local sparse structure and cover it as an approx-
imate dense component. It differs from traditional multi-
channel convolution in that inception module used multiple
convolutions (1 x 1, 3 x 3, 5 x 5) combined with max-pooling
layer, which then associated the convolution and pooling
results. Due to the large number of network parameters in the
full connected layers, heavy computation and easy overfit-
ting, GoogLeNet does not adopt the full connection structure
in AlexNet, but directly used the method of averaging pooling
and dropout after inception module, which not only plays a
role in reducing dimension, but also prevents overfitting to
some extent. In this work there are total 9 inception models
in GoogLeNet architecture. A more detailed overview of this
architecture can be found for reference in [24].

VGGNet: VGG, developed by Simonyan and Zisserman,
was the runner-up at the ILSVRC 2014 competition. VGG
has been improved on the basis of AlexNet, the entire network
has used the same size of 3 x 3 convolution kernel size and
2 x 2 max pooling size, which make results of the network
simple. The structure of VGG is shown in Fig. 7.

conv3-128 ‘ conv3-256

[
conv3-512 ‘ conv3-512 ‘ conv7-4096 ‘

a0 "' conv3-64 |

i ! 1
sl conv3-64 conv3-128 conv3-256 ‘ ‘ conv3-512 ‘ conv3-512 conv1-4096 ‘
Image ! ! ) ) !
Max pool Max pool [ conv3-256 ‘ conv3-512 conv3-512 ‘ | convl-5 ‘
1 ! l
Max pool Max pool Max pool

FIGURE 7. The architecture of VGGNet.

Take VGG16 network as an example, as we can see in
the figure above: VGG contains 5 sets of convolution layers
followed by a pooling layer. The difference is that five con-
volution layers contain more and more convolution layers in
a cascade. In VGGNet, each convolution layer contains 2 to
4 convolution operations, the size of the convolution kernel is
3 x 3. Itis by far the most popular option in the community for
extracting features from images. However, VGGNet consists
of 138 million parameters, which can be a bit challenging to
handle.

ResNet: ResNet was proposed in 2015 by Kaiming He ez al.
introduced a novel architecture with “‘shortcut connections”
and features heavy batch normalization, winning first place
in the ImageNet competition classification task. As the name
implies, shortcut means ‘“‘choose the shortest path”. There
is a new structure in the ResNet, we call this “building
block™ (Fig.8).

We can see “a curved line”’, and this is the so-called short-
cut connection. The whole graph is also known as ““bottleneck
design’’, which designed for ResNet-50/101/152. To be clear
at a glance, it is in order to reduce the number of parameters.
The first convolution of 1 x 1 gets the 256-dimensional chan-
nel down to 64, and then at the end it recovers by convolution
of 1 x 1. In this work, the ResNet-50 was used, and the
ResNet-50 was represented by ResNet.
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FIGURE 8. Bottleneck building block for ResNet.

TABLE 2. Workstation specifications.

Software
Windows10
CUDA9.0+CUDNN?7.0
Keras Tensorflow

Hardware (Machine Type)
CPU: Intel Core 17-8700k
RAM:32GB
GPU: NVIDIA TITAN Xp

IV. EXPERIMENTS AND RESULTS

A. EXPERIMENTS DETAILS

In our implementation Keras and TensorFlow were used as
deep learning framework in python to build the network
model and we used dual Graphics Processing Unit (GPU) to
accelerate the experimental process. The experimental setup
is shown in Table 2. In this work, data augmentation scheme
was performed to training dataset and validation dataset
respectively. Transfer learning was applied to fine-tune the
pre-trained models. In this work, 3 evaluations were selected
as the quantitative evaluation indices: (a) generated image
quality, (b) tomato leaf disease identification accuracy, and
(c) DCGAN generalization ability.

B. COMPARISON EXPERIMENTS

To validate the performance of the proposed approach,
we conducted a set of experiments using a real dataset com-
bined with part of generated dataset by DCGAN. First and
foremost, different pre-trained network models, for instance,
AlexNet, GooLeNet, VGG16Net and ResNet, are used for
comparative experiments to find a network with the best
experimental results under the same conditions. In the case
of using pre-training model used as a deep learning model
for image classification can be easily reused for different
problems under the condition of only slight fine-tune certain
parameters [13], [37]. After that, according to the results,
the best network framework is selected and its parameters
are fine-tuned to compare the effects of different parameter
settings on its recognition accuracy. Secondly, we chose to
compare the performance of the variants of GANs such as
BEGAN and DCGAN that have been successfully applied
on other data sets. Two methods to evaluate network perfor-
mance are selected: (a) generated image quality by human
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TABLE 3. Identification accuracy (%) of different architectures.

Author Model Accuracy (%)
AlexNet 89.67
GooglLeNet 94.33
Proposed work
ResNet 83
VGG16 79.3

evaluation, (b) Gan-train [38] and GAN-test indicators. The
specific meaning will be introduced in the following part.
Then select a network with the best experimental results and
fine-tune its parameters. We conducted an experiment on
the model of DCGAN network, comparing its performance
under the conditions of different learning rate, batch size and
other hyper parameters. Thirdly, a very important indicator is
the prediction performance of our model on unseen data of
tomato leaf diseases. Hence, in our experiments, we decided
to test all the different range of train and test splits to evaluate
the robustness of our proposed algorithm and its ability to
avoid overfitting. The training dataset varies from 80%, 60%,
40 % to 20 % with the use of the same hyper parame-
ters. Finally, our goal is to use transfer learning to train a
good network with our own dataset. Therefore, the exper-
iment we did was to compare the performance of whether
dataset was augmented with DCGAN or not as the input of
GoogLeNet. Other images were used as test datasets to verify
the results and the best generalization results were obtained.
Furthermore, t-Distributed Stochastic Neighbor Embedding
(t-SNE) [39] is used to verify that the distribution of images
generated by the proposed method is closer to the sample
distribution of real images and the overlap between classes
is smaller. We also evaluate the appearance of the generated
images via Visual Turing Test [40] by plant experts.

C. PERFORMANCE EVALUATION

1) EXPERIMENTS ON DIFFERENT PRE-TRAINED MODELS
The identification accuracy of AlexNet, GoogleNet, ResNet
and VGG16 is shown in Table 3. In Table 3, the identification
accuracy of AlexNet, GooglLeNet, ResNet and VGGNet is
given in rows 2, row 3, and row 4 of the third column,
respectively. We used an initial learning rate of 0.001 and
then dropped by 0.5 per 512 iterations. Besides, Stochastic
gradient descent (SGD) with a momentum of 0.9 was used
for the optimization method. From the accuracy of identifi-
cation, it can be seen that GoogLeNet is a better architecture
than others under the same experimental conditions with the
accuracy of 94.33.

2) EXPERIMENTS OF DIFFERENT PARAMETERS ON
GoogleNet

In order to clarify the influence of different parameters
on network architecture, we rearranged the parameters of
GoogleNet in the above experiment. We adjusted the batch
size and iterations, and the experimental results are shown
in Table 4. According to the results, the model has the highest
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TABLE 4. Rearranged GooglLeNet results.

Iterations Batch size Accuracy (%)
512 16 91.00
32 91.67
64 92.67
1024 16 91.67
32 92.00
64 92.67
2048 16 93.67
32 94.33
64 94.00

accuracy when the number of iterations is 2048. As the
number of iterations increases (ranging from 512 to 2048),
the overall accuracy increases. When the number of iterations
is fixed, the accuracy of batch size which are 16 is lower than
that of batch size which are 32. When the number of iterations
is 2048 and the batch size is 32, the optimal result of the whole
model is 94.33.

In fact, any experiment should be analyzed according to
the actual situation. Experimental results and parameter set-
tings are largely determined by the datasets used and the
performance of the computer. Batch size affects the opti-
mization degree and convergence rate of the model, and its
setting also needs to be analyzed according to the dataset
actually selected. Since GAN added some generated data
to the training set, it would lead to overfitting (the data
in the test set is all original data, and the model learns
what the original data looks like and what the generated
data looks like). This identification model achieves opti-
mal accuracy when the batch size is 32 and the number of
iterations is 2048.

3) EXPERIMENTS ON DIFFERENT GAN MODELS

In this experiment, we used variants of GANs to generate
images to solve the problem of few-shot learning. Due to
the instability and intractability of the original GAN model,
the generative adversarial networks we used is variant of
GANs, DCGAN and BEGAN, which have been widely used
in recent years with good effects. The experimental results are
shown in Table 4. Since the number of original images in each
of the 5 classes is 300, we randomly selected 240 images for
data augmentation (the test set cannot be used for data aug-
mentation) and enhanced the images in each class to 1000 by
using the generative adversarial networks. In this experiment,
the parameters of DCGAN and BEGAN were set to the
default size, the learning rate was set to 0.0002 (the Learning
rate of for Adam [0.0002]), and the magnitude of the momen-
tum is set to 0.5(the Momentum term of Adam [0.5].) Three
comparative experiments were designed: (a) training samples
augmented by DCGAN, (b) training samples augmented by
BEGAN, (c) training samples augmented by DCGAN and
BEGAN.
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We trained these five types of tomato leaf disease images
respectively on GANSs. To prevent all images from being read
into memory at once, we used a mini-batch training method.
The batch size is set to 64. The generated images and the orig-
inal images are displayed as shown in Fig. 9.(a) to (j) show us
the original tomato leaf images on the left and the generated
tomato leaf images on the right, with images of different
classes separated. There are similar features between the
generated images and the original images, although the gener-
ated ones are of comparatively low resolution. The generated
images convincingly show the characteristics of different
disease types and can be classified for deep neural network
training.

(1) 0]

FIGURE 9. Samples of real (R) and synthesized (S) dataset: (a) Target Spot
Bacteria-R; (b) Target Spot Bacteria-S; (c) YLCV Virus-R; (d) YLCV Virus-S;
(e) Healthy-R; (f) Healthy-S; (g)Late Blight Water Mold-R; (h) Late Blight
Water Mold-S; (i) Septoria-R; (j) Septoria-S.

TABLE 5. Accuracy (%) of different GANs.

Model Accuracy GAN- GAN-

(%) train(%) test(%)

DCGAN 9433 66.00 67.00
BEGAN 88.67 21.30 49.67
DCGAN+BEGAN 91.00 55.00 60.67

GAN-train and GAN-test are accuracies given as percentage (higher is
better).

The evaluation and comparison of GANS, or images gener-
ated by GANS, is a challenging task. In addition to observing
the quality of generated images, we introduce three quantita-
tive indicators based on image classification to evaluate the
quality of GANs. As shown in Table 5, the second column in
the table shows the identification accuracy obtained by using
different networks which are used to augment the images and
combining with the identification network of GoogleNet.
The indexes of the third and fourth columns are GAN-train
and GAN-test respectively. The meaning of GAN-train is that
a classifier is trained based on GANs generated images and
tested on real images. This index evaluates the diversity and
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authenticity of GAN generated images. In addition, the mean-
ing of GAN-test is that a classifier is trained according to
the real images and tested on the generated images, which
evaluates the authenticity of the GANs generated image.
A pre-trained model trained on real data and generated data
augmented by DCGAN achieves 94.33% accuracy on the
test set. Images generated by DCGAN achieve a GAN-train
accuracy of 66.00% and GAN-test accuracy of 67.00%;, high-
lighting their high image quality as well as diversity.

Moreover, in order to better visualize the distribution of
DCGAN-generated data, t-Distributed Stochastic Neighbor
Embedding (t-SNE) was applied to this work. The t-SNE is
a popular dimensionality reduction algorithm for visualizing
high-dimensional datasets. It uses the distance between each
individual data and all other data to weigh the correlation
between each other. We randomly selected 100 images of
each category, and a total of 500 images were used to test
the results (see Fig. 10). In Fig. 10, different colors represent
different labels; analysis from two aspects: the same class
of data has a large overlap, and different classes of data
are distributed far. It can be seen that the images of each
class show the stripe-shaped distribution after dimensionality
reduction. This phenomenon shows that DCGAN success-
fully captures the subtle features of real images, which are
separable and can be used to train classification networks.
Also, the wide distribution of data between the same category
further indicates that the generated data samples are more
diverse.

v W —

& C
&
I
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FIGURE 10. Two-dimensional scatter plot of high-dimensional data
generated with t-SNE (1: tomato_target spot bacteria; 2: tomato_YLCV
virus; 3: tomato_healthy; 4: tomato_late blight water mold; 5:
tomato_septoria leaf spot fungus).

To visually analyze the distribution between the real
images and DCGAN-based images, we randomly selected
100 real images and 100 generated images per class by using
the t-SNE method. As Fig. 11 represents, the real image
distributions largely overlap with the generated image distri-
butions. This trend shows that the DCGAN-based images has
a similar distribution to the real ones. As a whole, the images
generated by DCGAN fill the distribution uncovered by the
real ones with less overlap.

4) EFFECTS OF DIFFERENT PARAMETERS ON DCGAN

This group of experiments is similar to the second
group of experiments. We rearranged the parameters of
DCGAN network to achieve better generation effect and
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FIGURE 11. T-SNE plot with 100 tomato leaf disease images per each
category: (a) tomato_target spot bacteria; (b) tomato_YLCV virus;

(c) tomato_healthy; (d) tomato_late blight water mold;

(e) tomato_septoria leaf spot fungus.

TABLE 6. Rearranged DCGAN results.

Learning rate Momentum Batch size Accuracy
(%)

0.02 0.5 16 94.33
0.5 36 93.00

0.9 16 86.67

0.9 36 91.33

0.002 0.5 16 91.00
0.5 36 92.33

0.9 16 90.67

0.9 36 86.00

0.0002 0.5 16 89.67
0.5 36 94.00

0.9 16 92.30

0.9 36 91.00

TABLE 7. Use different proportions of the original sample.

Original Generated Train accuracy Test accuracy (%)
samples samples (%)

80 920 99.2 85

160 840 99.6 89.5

240 760 99.8 94.33

identification accuracy. We rearranged for the following
parameters: learning rate, momentum, and batch size. The
experimental results are shown in Table 6. When the fixed
parameters are momentum and batch size, with the downward
adjustment of learning rate value, the accuracy of recognition
is lower. While when fixed parameters are learning rate and
batch size, accuracy always works best when momentum is
0.5. Similarly, when fixed parameters are learning rate and
momentum, we found that accuracy was not significantly
affected by batch size. It can be concluded that when the
learning rate is 0.02, the momentum is 0.5, and the batch size
is 16, the accuracy rate is the best, and the result is 94.33.

5) EFFECTS OF DIFFERENT ORIGINAL IMAGES
In this experiment, we chose different proportions of data as
the training set. In the experiment, 300 samples of each type
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TABLE 8. Use different data augmentation methods.

Model Generalization results (100 graphs)
common 68%
DCGAN 83%

of tomato leaf disease were collected, which were divided
into training set, validation set and test set. The ratio of
training set to validation set is fixed at 8:2. There are a total
of 300 pieces of original data for each type of tomato leaf
disease, and the rest is used for the test set. The design of the
experiment is shown in Table 7. The first column of Table 7
shows the original samples, and the second column shows the
samples generated using DCGAN network, both of which are
used as training sets and validation sets. The third column
in the table shows the accuracy of the training, while the
fourth column shows the accuracy of the test. The training
dataset varies from 80%, 60%, 40 % to 20 % with the use
of the same hyper parameters. According to the experiment,
when the training set (including the verification set) con-
tains more information of the original data, the less infor-
mation of the generated data and the higher the recognition
accuracy.

6) IDENTIFICATION ACCURACY USING TRAINING SAMPLES
AUGMENTED BY DIFFERENT METHOD

In this experiment, GoogleNet is trained with the following
training samples: a. training samples augmented by DCGAN,
b. training samples augmented by common augmentation
method. The common augmentation method we used in this
work involved operations such as move, rotation, flip and
brightness enhancement. We use the original images and
the generated images as the training set and validation set
of the deep neural recognition network. We then used data
from the non-training set and the validation set as test set to
test the accuracy of recognition, which were found online.
The experimental results are shown in Table 8. The average
recognition accuracy using training samples augmented by
DCGAN is about 15% higher than that of common augmen-
tation method. The experimental results show that under the
same conditions, generated data by DCGAN can enhance the
diversity of the data set and improve the generalization ability
of the model.

7) VALIDATION USING VISUAL TURING TEST

To test the quality of the generated images and the authen-
ticity of the images, we conducted a Visual Turing Test
with five botanists. The Visual Turing Test can be used to
visually evaluate GAN-generated images. When the image
information and background were not given, we conducted
two sets of tests on 5 botanists: a total of 200 images were
tested by selecting 20 real and 20 generated images from each
class of tomato leaves. The first set of tests required experts
to identify whether the image was generated or authentic;
the second set of tests required experts to identify which class
the image was. The questions for botanists are as follows:
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TABLE 9. Experiment results of entire visual turing test.

Botanistl R-R R-G GR G-G
Azﬁjctyl- 66% Accuracyl 74% 26% 42% 58%
. 0
Accuracy?2: 85.5% Cl C2 C3 C4 C5
Accuracy2  77.5% 80% 85% 85% 100%
Botanis2 R-R R-G GR G-G
Agf:aur;;scyl' s7.504,  Accuracyl 64% 36% 49% 51%
. . (1]
Accuracy?2: 91.5% Cl C2 C3 C4 5
Botanist Accuracy?  90% 100% 87.5% 80% 100%
otanis
R-R R-G G-R G-G
Accuracyl Botanist3 Al 1 62% 38% 19% 81%
66% Accuracyl: 71.5% ceuracy 0 o 0 A
Accuracy2  Accuracy2: 90% Clo C2 . C3o C4o C5 )
90.2% Accuracy?2 80% 100% 90% 80% 100%
Botanistd R-R R-G GR G-G
Aiiauﬁfﬁyl £ 70% Aceuracyl 1% 29% 31% 69%
. 0
Accuracy?2: 92% 1 Cc2 C3 C4 C5
Accuracy?2 82.5% 100% 90% 87.5% 100%
Botanists R-R R-G GR G-G
Agzaulilascyr 62.5% Accuracy1 84% 16% 59% 41%
. . 0
Accuracy?2: 92% C1 2 C3 C4 C5
Accuracy? 90% 97.5% 92.5% 80% 100%

accuracyl and accuracy2 denotes the successful identification rate between the real/generated images and between the different classes of images

respectively.
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FIGURE 12. Visual Turing Test results (by botanists for classifying real(R) vs generated(G) images).
R-R: a real image is recognized as a real image; R-G: a real image is recognized as a generated
image; G-R: a generated image is recognized as a real image; G-G: a generated image is

recognized as a generated image. Accuracy indicates the botanists’ successfully classification rate
of real / generated images.

(1) Identify which of the following images are real and which
are generated by DCGAN; (ii) In addition, please determine
which of these images are healthy and which are diseased.
If the images are diseased, which category does it belong to?

In order to make the results of the Visual Turing Test
reliable, we mix high-quality generated images with low-
quality real images for comparison and set the size of all
images to 100 x 100. In order to quantitatively measure
the recognition results, we plot the test results, as shown
in Fig. 12. Some images generated by DCGAN are consid-
ered real, while some real images are considered generated.
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The generated images successfully captured the character-
istics of the real data, with an average accuracy of 66%
for the five experts. Fig. 13 shows the accuracy of five
experts in identifying tomato leaf classification problems.
From Fig. 13, the recognition rate of some categories has
reached 100%, which prove that generated leaves are more
authentic. Table 9 shows the complete data results of the
Turing test. Overall, botanists have a lower accuracy rate of
66% when judging whether the leaves are real or generated,
and a higher accuracy rate of 90.2% when identifying tomato
leaf species. The above experiments successfully proved that
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C4, 80%

FIGURE 13. The above experiments were used to show the accuracy of 5 botanists in identifying
images of different classes of tomato leaves. C1 ~ C5 represent five classes of images. The
percentage given in the pie chart indicates that the botanist identified the correct ratio (different

colors indicate different categories).

TABLE 10. Studies in tomato leaf diseases identification.

Study Classification Dataset Accuracy
method (%)
(Raza et al., 2015) SVM 71 images 89.93
[41] 2 classes
(Wang et al.,2019)  AlexNet+trans 14529 95.62
[42] fer learning images
10 classes
(Prasad et al., 2016) KNN 287 images 93.00
[43] 5 classes
(Guo et al., 2019) Multi-Scale 5766 92.70
[44] AlexNet images
8 classes
Our method DCGAN+ 1500 94.33
CNN images
5 classes

using DCGAN can generate realistic tomato leaf images and
show good performance.

8) COMPARED WITH THE STATE-OF-ART METHODS

The state-of-art methods used to study tomato leaf diseases
recognition should be mentioned here. Table 10 shows some
recent works on tomato leaf diseases recognition, which sep-
arately lists the recognition methods, the number of pictures
used and the accuracy rate. The first one used the traditional
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recognition method SVM. Although only 71 images are used
for classification, its accuracy rate is only 89.93%. The sec-
ond one has an accuracy of 95.62%, but 14,529 images were
used to train the network. The remaining two accuracy rates
are 93% and 92.7%, respectively. However, Prasad et al.
used the KNN algorithm and the recognition process was
complicated. Guo et al. used 5766 images to train the net-
work. In short, a good network model with high recognition
accuracy is something we need to consider, and the number
of samples used should not be too much.

V. CONCLUSIONS

In this paper, we demonstrate that DCGAN can generate data
that approximate to real images to provide both a larger data
set for the training of large neural networks and improve the
generalization ability of recognition models and enhance the
diversity of data. We designed the experiments, which use
the images of tomato leaf disease in the open dataset PlantVil-
lage with the purpose of convincing people and simulate the
few-shot learning problem, so as to achieve a good general-
ization effect. In Section IV, the experimental results show
that DCGAN can generate real disease and health images of
tomato leaves. Different from the traditional data augmenta-
tion methods, according to the t-SNE and Visual Turing Test
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results, the distributions of the images generated by GANs
after dimensionality reduction were relatively clearly divided
into different classes, and the generated images had more
overlaps with the original images. This proves that the quality
of images generated by GAN is superior to traditional data
augmentation methods. In addition, we saw that the GAN-
train and GAN-test values of DCGAN were higher than those
of BEGAN (on the data set of tomato leaves), which proved
the advantages of DCGAN’s performance.

By combining DCGAN with GoogLeNet, the generated
data and real data were mixed as the input of the convolutional
neural network, we got the best results used to train the CNN
network that we designed. In the meantime, we also solved
the problem that the CNN network is difficult to converge put
down to the difficulty of data collection and extremely sim-
ilar features. In respect of details of identification, DCGAN
can be optimized by adjusting batch size, learning rate and
momentum to generate more realistic and diverse samples.
By rearranging some parameters such as the batch size and
learning rate of the identification network, the accuracy of
the results can be improved.

In future work, we plan to find a better data augmentation
method to solve the problem of tomato leaf disease recogni-
tion, so that the robustness and accuracy of the recognition
can be improved. (i) Faced with the imbalance of the data
set, try to use image-to-image GANs instead of noise-to-
image GANSs to convert healthy leaf images into disease leaf
images to solve the problem of data imbalance in reality.
Such an image-to-image translation system is proposed in
Cap et al. [32]; (ii) According to the characteristics of plant
leaf data, the spots of the same class of disease have obvious
differences at different stages of disease, and the similari-
ties of different classes of disease are high. A multi-scale
convolutional neural network may be designed to compre-
hensively extract multiple features to improve the network
responses with different granularity characteristics [44].
(iii) It is difficult to collect the leaves in actual works. There-
fore, the problem of few-shot learning is urgent to be solved
(i.e., Wang et al. proposed a method based on Siamese net-
work for plant leaves classification [45]). All in all, by defin-
ing new methods to solve the problem of tomato leaf disease
identification, we strive to achieve continuous improvement
in performance.
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