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ABSTRACT This study presents the design and evaluation of a robust controller, based on frequency-
domain, in order to enhance the performance of dc-dc power converters under parametric uncertainties.
This robust control approach takes into account all possible uncertainties in the system such as load and
input voltage variations. Thereby, the robust controller design is based on the constraints of the gain and/or
phase margins delimited by these uncertainties in order to ensure robust performance and stability of the
system. Assessments on the performance of the proposed robust control are conducted. Comparisons with
other control methods are also provided. Experimental validations on a dc-dc buck converter system test
board are carried out to verify the theoretical claims.

INDEX TERMS Buck converter, dc-dc converter, frequency-domain, power electronics, parametric uncer-
tainties, robust control.

I. INTRODUCTION
Nowadays, the dynamic performance of dc-dc converters is
a subject of paramount importance. Such class of power
electronic converters are presented in a wide range of appli-
cations, ranging from interfacing renewable power sources
to regulation of different voltage levels in telecommunica-
tion and biomedical systems, just to name a few. In order
to functioning properly, dc-dc converters relies on feedback
control strategies, to operate under varying operating condi-
tions and subject to many sources of uncertainties, such as
parametric components uncertainties. Therefore, the design
of robust control systems for dc-dc converter is an open
research field which is increasingly attracting the attention
of many investigators [1]–[5].

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhixiang Zou .

Several researches are focused on the controller design in
order to improve the performance and stability, where the
main goals are simplicity in structure, high power density,
high efficiency, high quality in conversion, low cost and
reliability [1]–[5].

Some modern processes in industries require high-
dynamic-performance of power converters, thus different
types of converters are applied in some applications such as
in variable speed DC motor drivers [6], renewable energy
systems [7], transportation system [8], hybrid energy stor-
age [9], [10], communication systems [11].

In order to enhance power converter efficiency and
dynamic performance, several advanced control techniques
been proposed by researchers. State feedback techniques
are reported in [12] as current mode control method
that satisfies the required converter specification using the
pole-placement technique. In [13], the design tool integrating
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frequency-based design techniques for a given dynamic
specification, i.e. taking into account the set of achievable
crossover frequencies and phase margin requirements, is pro-
posed, in addition, this work presents the algorithms to cal-
culate the performance space and analyze their impact on
the controller design. In [14], a novel direct digital design
method for discrete controller with PID structure + filter,
namely PIDF controller, is introduced. The proposed con-
troller is evaluated in both simulation and experimental tests
performed in dc-dc buck converters. The controller design
is carryied out by pole-zero cancellation method with an
analytical design methodology based on inversion formulae.
The work developed in [15] addressed a regulation of a dc-dc
Boost converter subject to parametric uncertainties, i.e. load
and input voltage variation, and unmodeled dynamics. This
methodology combines a predesigned cascade controller and
nested reduced order PI observers to maintain the desir-
able voltage regulation performance. Several simulation and
experimental tests were performed to ratify the effectiveness
of this technique. Two control methodologies are presented
in [16] to control mismatched dc-dc buck converter. The first
method uses amultiple surface slidingmode control to handle
mismatched load uncertainty, meanwhile the second method
is based on simultaneous state and disturb observer that are
added into the loop. Furthermore, several works that combine
sensorless structures with second order sliding mode control
applied in dc-dc buck converters are discussed in the litera-
ture [17]–[19]. In [20] a proportional integral sliding func-
tion for dc-dc buck converter was investigated, the proposed
sliding mode was modified to improve the steady state and
dynamic performance by using a adaptive tuning controller to
compensate the load variations, furthermore, the closed-loop
stability was proved in steady state and several tests were
carried out to evaluate the performance and stability of the
control strategy proposed in comparison with the classical
strategies. In [21] a novel sliding mode controller is intro-
duced to mismatched uncertainties applied in dc-dc con-
verters. Then, an uncertainty and disturbance estimator was
developed based on sliding mode control approach, aiming to
improve the performance and stability of the power convert-
ers. Thereby, simulation and experimental tests proved the
good performance of the proposed methodology in presence
the uncertainties and disturbance.

In [4], a sample-data output feedback control problem was
investigated applied in a dc-dc buck converter taking into
account components uncertainties. Then, a reduced observer
and a robust output feedback controller was designed, both
devices in the sampled data form, which were evaluated in
presence of uncertainties. Furthermore, numerical simula-
tions and experimental results were analyzed to ratify the
good performance of the controller, in addition, the stability
analysis was addressed taking into account the uncertain-
ties parameters. In [22], a generalized proportional-integral
observer (GPIO) with a robust output feedback control prob-
lem applied in the dc-dc converter was investigated. Then,
a general class of time-varying disturbances occurred in the

dc-dc buck converter were analyzed and the results showed
that the proposed methodology allows to compensate for
this kind of disturbance. furthermore, experimental results
showed the efficiency of this methodology. In [23], a robust
stability analysis of the dc-dc buck converter when the sys-
tem is subjected to a multiple parametric uncertainties was
performed. This work proposed a practical approach to apply
the µ method in the robust stability analysis taking into
account several uncertainties. Several numerical and exper-
imental tests were performed to demonstrate the efficiency
of this stability analysis. Reference [24] deals about the
constrained stability problem and tracking problem by using
the Takagi-Sugeno (T-S) fuzzy positive systems, thereby,
the author used the linear programming to insert the con-
strained in the design phase. Numerical simulations were
carried out to show the success of the proposed methodology.
In [25], a generalized minimum variance (GMV) controller
is proposed to regulate the output of the dc-dc buck converter
in order to decrease the impact of the noise in the system per-
formance. This controller is compared with a linear controller
and shows better characteristics, significantly reducing their
variances, i.e. the GMV controller uses less energy causing
less switching losses, improving the efficiency of the buck
converter.

Given the state-of-the-art above presented, it is possible to
verify that exists a lack contribution in the experimental inves-
tigation of robust control methodologies applied in power
electronic converters to ensure the gain and phase margin
when the system is subjected to parametric uncertainties (load
and input voltage variations).

The aim of this work is to investigate a robust control
methodology based on frequency response to ensure the
phase and gain margin when the system is subjected to
a family of parametric uncertainty. The proposed control
methodology is applied in a dc-dc buck converter and several
tests (load variations; input voltage variations and voltage
setpoint variation) are performed to assess the performance
and stability of the system when the dc-dc buck converter is
subjected to a specific family of uncertainties. Furthermore,
these tests are addressed to evaluate the control performance
of the proposed methodology.

The novel contributions of this work are summarized as
follows:
• A robust methodology of controller design, based on fre-
quency response analysis, is proposed for dc-dc power
converters to ensure the desired phase and gain margin
when the system is subjected to a family of parametric
uncertainty.

• The proposed robust methodology provides the desired
phase and gain margin of the system, ensuring robust
stability and robust performance for an entire predefined
uncertainty region.

• The proposed robust methodology is exhaustively eval-
uated in both simulation and experimental tests by using
simulation models (MATLAB/Simulink) and experim-
ental plant (dc-dc power converter board), respectively,
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to ratify the robustness and effectiveness of the pro-
posed controller. The Integral Squared Error (ISE) per-
formance index is computed to analyze the control
methodologies compared in this work. The results show
the proposed robust methodology outperforms the other
approaches.

The remainder of this paper is organized as follows.
Section II introduces the mathematical model of dc-dc
buck converter using the state-pace averaging technique.
Section III presents a brief analysis of interval systems
with parametric uncertainties. Section VI presents a brief
review about parametric robust control background based on
frequency-domain response. The proposed design method-
ology for robust controller is also introduced. Section V
presents an assessment of the simulation results and exper-
imental data. Finally, Section VI presents the main conclu-
sions about this work.

II. SYSTEM DESCRIPTION
Fig. 1 shows a typical topology of buck converter, which is
comprised of the switching component (Q1) with a PWMgate
drive controlled switch d(t), a diode (D1), a capacitor (C),
a inductor (L), and a Load resistance (RL).

FIGURE 1. Buck Converter Topology.

FIGURE 2. Power Stages of Buck converter. (a) On Stage; (b) Off Stage.

A. OPERATION MODE OF BUCK CONVERTER
In this work, the dc-dc buck converter operates in continuous
conduction mode (CCM). Thus, the converter exhibits two
circuit states as shown in Fig. 2.

The first state is when the switching component (Q1) is
turned on (cf. Fig. 2(a)). During this interval (dTs), the induc-
tor L is in a charging phase, and hence iL increase linearly.
The second state is when the switching component (Q1) is
turned off (cf. Fig. 2(b)). During this interval ((1 − d)Ts),
L is in a discharging phase; L discharges the stored energy to
output. Thus, iL decrease linearly, but will be not clamped to
zero.

B. MODELING OF A BUCK CONVERTER BY STATE-SPACE
AVERAGING TECHNIQUE
The state-space equations of the buck converter for the on and
off states of the switching component are given by (1) and (2).

ON ⇒


diL(t)
dt
= −

1
L
vc(t) +

1
L
vs(t)

dvc(t)
dt
=

1
C
iL(t) −

1
RLC

vc(t)
(1)

OFF ⇒


diL(t)
dt
= −

1
L
vc(t)

dvc(t)
dt
=

1
C
iL(t) −

1
RLC

vc(t)
(2)

The output voltage, vo(t) = vc(t), is a dc voltage that
contains small ripple due to the switching action.

By rewriting Eqs (1)–(2) in matrix form, the state-space
matrices and the input vectors for each stage can be found.

A1 =

 0 −
1
L

1
C

−
1

RLC

 , A2 =

 0 −
1
L

1
C

−
1

RLC


B1 =

[ 1
L
0

]
, B2 =

[
0
0

]
C1 = C2 =

[
0 1

]
, E1 = E2 = [ 0 ]

In CCM, the averaged behavior of the converter over one
switching period is defined as follows

dx(t)
dt
= Asx(t)+ Bsvs(t)

vo(t) = Csx(t)+ Esvs(t)
(3)

where:
As = d(t)A1 + (1 − d(t))A2, Bs = d(t)B1 + (1 − d(t))B2,
Cs = d(t)C1+ (1− d(t))C2 and Es = d(t)E1+ (1− d(t))E2.

Hence, the state-space averaged model of the buck con-
verter in CCM can be written according to (3).

d
dt

[
iL(t)
vc(t)

]
=

 0 −
1
L

1
C

−
1

RLC

[ iL(t)vc(t)

]
+

[ d(t)
L
0

]
vs(t)

(4)

C. SMALL-SIGNAL AVERAGED MODEL OF
THE BUCK CONVERTER
Equation (4) is a nonlinear continuous-time equation. There-
fore, it can be linearized by small-signal perturbation with
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iL(t) = IL + ĩL(t), vc(t) = Vc + ṽc(t), vs(t) = Vs + ṽs(t),
and d(t) = D + d̃(t), where: ĩL , ṽc, ṽs, d̃ represent a small
signal value, and IL , Vc, Vs, and D represent the dc value,
i.e., the operating point. It is important to note that IL � ĩL(t),
Vc � ṽc(t), Vs � ṽs(t), and D � d̃(t). The perturbation
yields the linear small-signal state-space equations in (5)
and (6).

d
dt

[
ĩL(t)
ṽc(t)

]
= A

[
ĩL(t)
ṽc(t)

]
+ Bṽs(t) + Bd d̃(t) (5)

ṽo(t) = C
[
ĩL(t)
ṽc(t)

]
+ Eṽs(t) + Ed d̃(t) (6)

where,

A = DA1 + (1− D)A2,

B = DB1 + (1− D)B2,

C = DC1 + (1− D)C2,

E = DE1 + (1− D)E2,

Bd = (A1 − A2)
[
IL
Vc

]
+ (B1 − B2)Vs

Ed = (C1 − C2)
[
IL
Vc

]
+ (E1 − E2)Vs.

Hence, the linear small-signal averaged model (7)–(8) of
the buck converter operating in CCM is

d
dt

[
ĩL(t)
ṽc(t)

]
=

 0 −
1
L

1
C

−
1

RLC

[ ĩL(t)ṽc(t)

]

+

[ D
L
0

]
ṽs(t) +

[ Vs
L
0

]
d̃(t) (7)

ṽo(t) =
[
0 1

] [ ĩL(t)
ṽc(t)

]
+ [ 0 ]ṽs(t) + [ 0 ]d̃(t) (8)

D. THE DUTY CYCLE-TO-OUTPUT VOLTAGE
TRANSFER FUNCTION
The duty cycle-to-output voltage transfer function is calcu-
lated as follows,

Gvd (s) =
ṽo(s)

d̃(s)

∣∣∣∣
ṽs(s)=0

= C(sI − A)−1Bd + Ed (9)

Therefore, the duty cycle-to-output voltage transfer func-
tion of the buck converter is found by solving (9).

Gvd (s) =
ṽo(s)

d̃(s)

∣∣∣∣
ṽs(s)=0

=

Vs
LC

s2 + 1
RLC

s+ 1
LC

(10)

The nominal values of the plant parameters, operational
point, uncertainties and the meaning of each symbol in (10)
are presented in Table 1.

III. PARAMETRIC UNCERTAINTIES ANALYSIS
In the robust control theory, there are two main approaches
for taking into account uncertainties: parametric and non
parametric approaches. The second one focuses on prior

TABLE 1. Parameters of the Buck converter system.

knowledge of modeling errors that, for instance, come from
neglect parasitic effects at high frequency range. In this kind
of uncertainties, modeling can be unnecessarily conservative,
sometimes leading to high-order controllers with poor per-
formance. In contrast, the first approach, namely parametric
uncertainties, allows to take into account from the outset
in the controller design process a priory knowledge about
the possible range assumed for the values of system’s phys-
ical parameters, incorporating available information about
components (resistors, inductors, and capacitors) tolerances.
Therefore, the parametric uncertainty modeling approach
seems to be suitable for the design of control systems for
power electronic converters [26], being the approach used in
this paper. As dc-dc buck converters have electronic switches,
resistors, inductors and capacitors, as their main components,
the parametric approach shows to be a worthy tool for tak-
ing into account the possible interval range of components’
values (cf. Table 1), giving by the respective component
tolerance.

A. PARAMETRIC UNCERTAINTY AND INTERVAL
POLYNOMIAL
Let a be a real parameter assuming an uncertain value which
belongs to a pre-specified real interval range [a−, a+], where
the real numbers [a−, a+] are, respectively, the minimal
and maximal values delimited by a uncertainty box region,
which is known. Therefore, the parameter a may assume any
value within the uncertainty box region at any time. In short
notation, a ∈ [a−, a+].
Let x0, x1, . . . , xn be uncertain parameters assuming val-

ues in the corresponding pre-specified intervals [x−0 , x
+

0 ],
[x−1 , x

+

1 ], . . . , [x
−
n , x

+
n ], then an interval polynomial X (s),

on the Laplace’s complex variable s, is defined as

X (s) = x0 + x1s+ · · · + xnsn (11)

where x0 ∈ [x
−

0 , x
+

0 ], x1 ∈ [x
−

1 , x
+

1 ], . . . , xn ∈ [x
−
n , x

+
n ].

An interval polynomial X (s) may also be expressed in the
following compact and suitable form

X (s) = [x−0 , x
+

0 ]+ [x−1 , x
+

1 ]s+ · · · + [x−n , x
+
n ]s

n (12)

An interval polynomial X (s) is a compact representation
of a family of polynomials which has infinite members.
An interval polynomial X (s) is robustly Hurwitz stable if
all its members are Hurwitz stable (a polynomial is Hurwitz
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stable if all its roots are contained on the left half-plane
(LHP) of the s-plane). Therefore, it would be necessary to
check stability of an infinite number of polynomials to ensure
the robust stability for a given interval polynomial X (s).
Fortunately, the Russian scientist Kharitonov proved that
it is necessary and sufficient to test the Hurwitz stability
of only the following four polynomial [27], [28], which
belong to the X (s) family, to ensure the robust stability
of X (s).

X (1)(s) = x−0 + x
−

1 s+ x
+

2 s
2
+ x+3 s

3
+ . . .

X (2)(s) = x−0 + x
+

1 s+ x
+

2 s
2
+ x−3 s

3
+ . . .

X (3)(s) = x+0 + x
−

1 s+ x
−

2 s
2
+ x+3 s

3
+ . . .

X (4)(s) = x+0 + x
+

1 s+ x
−

2 s
2
+ x−3 s

3
+ . . . (13)

The four polynomial (13) are called Kharitonov polyno-
mials and play a role in the analysis and design of control
systems for plants having parametric uncertainties [28]. They
are, therefore, instrumental for the dc-dc buck converter con-
trol method proposed in this paper.

B. INTERVAL SYSTEMS
A strictly proper interval transfer function G(s) = N (s)

D(s)
can be described in the form of following ratio of interval
polynomials:

G(s) =
[n−0 , n

+

0 ]+ [n−1 , n
+

1 ]s+ · · · + [n−m, n
+
m]s

m

[d−0 , d
+

0 ]+ [d−1 , d
+

1 ]s+ · · · + [d−n , d
+
n ]sn

(14)

where the numerator, N (s), and the denominator, D(s), are
interval polynomials having fixed integer degrees m and n,
respectively, with the constraint that n > m. The real val-
ues of n−i , n

+

i , d
−

j and d+j with i = 0, 1, 2, . . . ,m and
j = 0, 1, 2, . . . , n, are the lower and upper limits of each
coefficient of the interval plant (14), defining the range of
variation of each uncertain coefficient.

Since N (s) and D(s) are both interval polynomials, hence,
four Kharitonov polynomials are associated forN (s) (15) and
other four Kharitonov polynomials for D(s) (16).

K (1)
N (s) = n−0 + n

−

1 s+ n
+

2 s
2
+ n+3 s

3
+ · · ·

K (2)
N (s) = n−0 + n

+

1 s+ n
+

2 s
2
+ n−3 s

3
+ · · ·

K (3)
N (s) = n+0 + n

−

1 s+ n
−

2 s
2
+ n+3 s

3
+ · · ·

K (4)
N (s) = n+0 + n

+

1 s+ n
−

2 s
2
+ n−3 s

3
+ · · · (15)

K (1)
D (s) = d−0 + d

−

1 s+ d
+

2 s
2
+ d+3 s

3
+ · · ·

K (2)
D (s) = d−0 + d

+

1 s+ d
+

2 s
2
+ d−3 s

3
+ · · ·

K (3)
D (s) = d+0 + d

−

1 s+ d
−

2 s
2
+ d+3 s

3
+ · · ·

K (4)
D (s) = d+0 + d

+

1 s+ d
−

2 s
2
+ d−3 s

3
+ · · · (16)

C. EXTREMAL SET AND POLYNOMIAL SEGMENT
Given two polynomials X (1)(s) and X (2)(s), a polyno-
mial segment, here denoted by [X (1)(s), X (2)(s)], is a
family of polynomial generated by the following convex

combination[
X (1)(s),X (2)(s)

]
=

{
λX (1)s+ (1− λ)X (2)s

}
(17)

where λ ∈ [0, 1]
Given three polynomials N (1)(s), N (2)(s), and D(s), a line

segment of plants is defined by following ratio of a
polynomial segment [N (1)(s),N (2)(s)] divided by a fixed
polynomial D(s).

G(1,2)(s) =

[
N (1)(s),N (2)(s)

]
D(s)

(18)

Conversely, given three polynomials N (s), D(1)(s), D(2)(s),
define an arc segment of plants in the form of the following
ratio of a fixed polynomial N (s) divided by a segment poly-
nomial [D(1)(s),D(2)(s)].

G(1,2)(s) =
N (s)[

D(1)(s),D(2)(s)
] (19)

Bhattacharyya and co-autors [28] recently proved that,
for analysis and synthesis of control systems such interval
plant model (14), it is sufficient to consider a set comprised
of 32 plant segments, named extremal set of the interval
plant G(s), as follow (with λ ∈ [0, 1])
Line Segments:

G1(λ, s)=

[
K (1)
N (s),K (2)

N (s)
]

K (1)
D (s)

, G2(λ, s)=

[
K (1)
N (s),K (3)

N (s)
]

K (1)
D (s)

G3(λ, s)=

[
K (2)
N (s),K (4)

N (s)
]

K (1)
D (s)

, G4(λ, s)=

[
K (3)
N (s),K (4)

N (s)
]

K (1)
D (s)

G5(λ, s)=

[
K (1)
N (s),K (2)

N (s)
]

K (2)
D (s)

, G6(λ, s)=

[
K (1)
N (s),K (3)

N (s)
]

K (2)
D (s)

G5(λ, s)=

[
K (1)
N (s),K (2)

N (s)
]

K (2)
D (s)

, G6(λ, s)=

[
K (1)
N (s),K (3)

N (s)
]

K (2)
D (s)

G7(λ, s)=

[
K (2)
N (s),K (4)

N (s)
]

K (2)
D (s)

, G8(λ, s)=

[
K (3)
N (s),K (4)

N (s)
]

K (2)
D (s)

G9(λ, s)=

[
K (1)
N (s),K (2)

N (s)
]

K (3)
D (s)

, G10(λ, s)=

[
K (1)
N (s),K (3)

N (s)
]

K (3)
D (s)

G11(λ,s)=

[
K (2)
N (s),K (4)

N (s)
]

K (3)
D (s)

, G12(λ, s)=

[
K (3)
N (s),K (4)

N (s)
]

K (3)
D (s)

G13(λ,s)=

[
K (1)
N (s),K (2)

N (s)
]

K (4)
D (s)

, G14(λ, s)=

[
K (1)
N (s),K (3)

N (s)
]

K (4)
D (s)

G15(λ,s)=

[
K (2)
N (s),K (4)

N (s)
]

K (4)
D (s)

, G16(λ, s)=

[
K (3)
N (s),K (4)

N (s)
]

K (4)
D (s)

(20)

Line Segments:

G17(λ,s)=
K (1)
N (s)[

K (1)
D (s),K (2)

D (s)
] , G18(λ, s)=

K (2)
N (s)[

K (1)
D (s),K (2)

D (s)
]
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G19(λ,s)=
K (3)
N (s)[

K (1)
D (s),K (2)

D (s)
] , G20(λ, s)=

K (4)
N (s)[

K (1)
D (s),K (2)

D (s)
]

G21(λ,s)=
K (1)
N (s)[

K (1)
D (s),K (3)

D (s)
] , G22(λ, s)=

K (2)
N (s)[

K (1)
D (s),K (3)

D (s)
]

G23(λ,s)=
K (3)
N (s)[

K (1)
D (s),K (3)

D (s)
] , G24(λ, s)=

K (4)
N (s)[

K (1)
D (s),K (3)

D (s)
]

G25(λ,s)=
K (1)
N (s)[

K (2)
D (s),K (4)

D (s)
] , G26(λ, s)=

K (2)
N (s)[

K (2)
D (s),K (4)

D (s)
]

G27(λ,s)=
K (3)
N (s)[

K (2)
D (s),K (4)

D (s)
] , G28(λ, s)=

K (4)
N (s)[

K (2)
D (s),K (4)

D (s)
]

G29(λ,s)=
K (1)
N (s)[

K (3)
D (s),K (4)

D (s)
] , G30(λ, s)=

K (2)
N (s)[

K (3)
D (s),K (4)

D (s)
]

G31(λ,s)=
K (3)
N (s)[

K (3)
D (s),K (4)

D (s)
] , G32(λ, s)=

K (4)
N (s)[

K (3)
D (s),K (4)

D (s)
]

(21)

By using the 32 plant segments defined in (20) and (21),
calculated for s = jω, in a given frequency point ω,
a suitable template of parametric uncertainties can be gen-
erated in the complex plane of the loop transfer function.
In Fig.3, it is presented a polynomials segments family for
the interval parameters given in Table 1 and for frequency
ω = 1.0 rad/s. Therefore, extended frequency domains tools,
such as Nyquist and Bode diagrams can be used, allowing the
analysis and design of robust controllers taking into account
parametric uncertainties.

FIGURE 3. Frequency domain template G(jω) at ω = 1.0 rad/s.

IV. BACKGROUND OF FREQUENCY-
DOMAIN METHODOLOGY
In this paper, the proposed controller is represented in the
Lead-Lag structure and the parameters are designed con-
sidering the performance desired in closed-loop in the gain
crossover frequency, ωgc. The controller and the parameters

are given by:

LL(s) = Kc
Ts+ 1
αTs+ 1

. (22)

where, T , α and Kc are the controller parameters. Note
that T and α define the pole and zero of the controller,
and Kc is the controller gain. Such parameters are designed
considering the gain and phase margins desired [29].

A. CLASSICAL DESIGN METHOD OF LEAD-LAG
CONTROLLER
The controller design method based on the frequency-domain
considering a plant of fixed parametersG(s), aims to satisfy a
closed-loop performance to a desired phase and gain margin,
ϕm and Am, respectively. Let L(s) = LL(s)G(s) be the loop
transfer function, thus, the phase condition Eq. (23) defines
the poles and zeros of the Lead-Lag controller LL(s),

6 L(jωgc) = 6 LL(jωgc)+ 6 G(jωgc) = π + ϕm (23)

where:
• 6 LL(jωgc)is the phase compensation of the Lead-Lag
controller at the gain crossover frequency, ωgc;

• 6 G(jωgc) is the phase angle of the plant at the gain
crossover frequency, ωgc;

• ϕm is the desired phase margin.
Using the phase condition defined in Eq. (23), the param-

eters, α and T , of the Eq. (22), can be obtained by following
relations,

α =

√
1− sin(φc)
1+ sin(φc)

(24)

T =
1

ωgc
√
α

(25)

where, φc = 6 LL(jωgc).
On the other hand, the module condition of the Lead-Lag

controller LL(s), at the gain crossover frequency,ωgc, is given
by ∣∣G(jωgc)∣∣ ∣∣LL(jωgc)∣∣ = 1 (26)

where:
•

∣∣G(jωgc)∣∣ is the module of the plant at the gain crossover
frequency, ωgc;

•

∣∣LL(jωgc)∣∣ is the module of the controller Lead-Lag at
the gain crossover frequency,ωgc. And based on Eq. (23)
it is possible to represent Eq. (26) as

Kc =
1∣∣G(jωgc)∣∣ ∣∣LL(jωgc)∣∣ (27)

where:
• Kc is the Lead-Lag controller gain at the gain crossover
frequency, ωgc;

•

∣∣LL(jωgc)∣∣ become only themodule of the Lead-Lag part
(poles and zeros) at the gain crossover frequency, ωgc,
and is given by,
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∣∣LL(jωgc)∣∣ =
√

1+ (ωgcT )2

1+ (ωgcαT )2
(28)

where α and T are the Lead-Lag controller parameters, cal-
culated by Eqs. (24) and (25); and ωgc is gain crossover
frequency desired.

B. ANALYSIS OF THE LINEAR SMALL-SIGNAL AVERAGED
MODEL OF THE BUCK CONVERTER WITH INTERVAL
PARAMETRIC UNCERTAINTIES
The classical methodology to design controllers is based
in the controller parameter tuning using a fixed parameters
system model. Thus, it is common to use nominal models to
tune the controller. However, the real system is subjected to
parametric uncertainties, and, therefore, the controller must
ensure system stability and desired minimum performance
for all kinds of transfer functions that represent the whole
set of uncertainties. Thereby, when the small-signal model
of the Buck converter in (10) is subjected to uncertainties
parametric, it becomes an interval plant, given by

G(s) =
[n0−, n0+]

s2 + [d−1 , d
+

1 ]s+ [d−2 , d
+

2 ]
, (29)

where, the nominal parameters of interval plant (29) are:
no =

Vs
LC , d1 =

1
RLC

, and d2 = 1
LC . Note that the lower- and

upper-bound of each parameter is limited by the box region of
uncertainties (cf. Table 1), where the root locus for the poles
of the interval polynomial of (29) is presented in Fig. 4.

FIGURE 4. Root-Locus for the poles of the interval parameters of the buck
converter.

According to [28], a interval plant (29) generates
an extreme set with 32 interval plants of Kharitonov.
Fig. 4 shows the poles of the interval plant (29) for all plants
of Kharitonov delimited by the region of uncertainties.

To evaluate the frequency-domain response, Nyquist dia-
gram of the nominal plant, Eq. (10), is presented in Fig. 5(a)
and Nyquist diagram of the interval plant, Eq. (29), for
32 interval plants of Kharitonov is presented in Fig. 5(b).

The boundaries of the extremal set of G(s) (c.f. Fig. 5(b))
are defined by the border transfer functions of the extremal

FIGURE 5. Nyquist diagram for a) Nominal plant b) Extremal set.

set ofG(s). Therefore, the robust controller design is based on
the constrains of the gain and/or phase margins for the limits
of this uncertainties region, defined as the ‘‘worst case’’.

According to [28], the controller is considered robustly
stable for the transfer functions set of the extremal set, if the
Nyquist diagram of the loop transfer function to satisfy the
performance criteria predefined for the ‘‘worst case’’.

C. ROBUST DESIGN METHOD OF LEAD-LAG CONTROLLER
The proposed methodology for robust controller design using
extremal analysis must meet the design performance criteria
of the extremal set for the transfer function family of G(s).
As mentioned above, if the controller meets the design per-
formance criteria for the ‘‘worst case’’ of the G(s) transfer
function family, the controller will be robustly stable for all
transfer function family of G(s). Hence, the proposed robust
controller is designed for the ‘‘worst case’’ of theG(s) transfer
function family (29).

For the experiments tests, a controller in the Lead-Lag
structure was selected (22). Whose controller parameters
were calculated by (30), (31) and (32).

α =
1− sinφc
1+ sinφc

(30)

T =
1

ωgc
√
α

(31)

Kc =
1∣∣G(jωgc)∣∣

√
1+ (αTωgc)2

1+ (Tωgc)2
(32)

In order to design the robust controller, the first require-
ment is to define settling time to regulate the output of the
dc-dc buck converter: the settling time value (tr ) chosen was
15 times less than tr = 0.00314s, that represents the settling
time value of the open-loop plant. A heuristic relation was
defined in Ho [30], in which the product of the bandwidth
value by the settling time value is approximately constant and
equal to 0.9.

ωgc tr = 0.9 (33)
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Thus, from (31) the gain crossover frequency value corre-
sponding to the desired settling time is ωgc = 4312 rad/s.
This relation defines the closed-loop desired performance.

Fig. 6 represents the Bode diagram of the Loop transfer
function.

FIGURE 6. Bode Diagram of the Loop Transfer Function L(jωgc ) = G(jωgc ).

Notice that the lower and upper limits of the magnitude and
phase curves of the Loop transfer function (L(s)), correspond
to the limits that delimit the function family of G(s) consid-
ering the parametric uncertainties.

From Fig. 6, the desired gain crossover frequency value
ωgc = 4312 rad/s defines, in the phase bode diagram,
the phase margin of the open-loop G(s) plant for the ‘‘worst
case’’, which is 6 G(jωgc) = −178.5◦ = 3.11 rad.
The desired phase margin is added to the phase margin

of the plant for the ‘‘worst case’’, the value obtained corre-
sponds to the advance provided by the Lead-Lag part of the
controller. From [29], the desired phase margin considering
the desired relative damping, ξd = 0.3, is ϕm = 35◦, and
using equation (23) in degrees, it is obtained:

6 LL(jωgc) = 180◦ + ϕm − 6 G(jωgc),
6 LL(jωgc) = 393.5◦ − 360◦ = 33.5◦. (34)

where 360◦ corresponds to the surplus that must be subtracted
to exposed the true value of the phase to bemust compensated
by Lead-Lag controller.

Thereby, the positive value of the phase compensation
given by controller in (32), corresponds to a lead of 33.5◦

in the desired gain crossover frequency, providing a thresh-
old phase margin for the ‘‘worst case’’ of φc = 35◦ or
φc = 0.5847 rad. And the controller parameters α and T can
be calculated using (28) and (29), as follows:

α =
1− sin(0.5847)
1+ sin(0.5847)

= 0.2887,

T =
1

ωgc
√
α
= 0.43288 ms.

The phase lead given by the controller in the Lead-Lag
structure is shown in Fig. 7.

FIGURE 7. Bode Diagram Lead-Lag Compensator (C(jωgc )).

Defined the phase compensation of the Lead-Lag parcel
in (24). Then the module condition must be satisfied as
follows using (30):

Kc =
1∣∣G(jωgc)∣∣ ∣∣C(jωgc)∣∣ = 2.1219,

where

∣∣C(jωgc)∣∣ =
√

1+ (ωgcT )2

1+ (ωgcαT )2
≈ 5.3953 dB ≈ 1.8611,∣∣G(jωgc)∣∣ = −11.93 dB ≈ 0.2532.

The
∣∣G(jωgc)∣∣ module and the

∣∣C(jωgc)∣∣ module, can be
obtained from Figs. 6 and 7 for the new gain crossover
frequency ωgc, whose values obtained by graphic analysis
were

∣∣G(jωgc)∣∣ = 11.93 and
∣∣C(jωgc)∣∣ = 5.39.

Fig. 8 shows the Bode diagram for the Loop transfer func-
tion with the designed compensator.

Notice that the desired phase margin to the worst case
(cf. Fig. 8) is reached at the gain crossover frequency.
Thereby, according [28], it is concluded that the designed
controller is robustly stable, meeting the performance criteria
in the range of parametric uncertainties of the extremal set
of G(s).

Fig. 9 represents the Nyquist diagram of the loop transfer
function L(s). Analysing the Nyquist diagram, it is observed
that the minimum phase margin is reached at a point on the
extremal set that correspond to the ‘‘worst case’’ of the loop
transfer function set. In this case, the desired phase margin
of 35◦ was reached and satisfied the worst case criterion, and
as discussed in [28], the controller designed is robustly stable.

Finally, an integrator is added into the Lead-Lag con-
troller structure to ensure zero steady-state error. Thereby, the
controller design process ends resulting in the following

109224 VOLUME 8, 2020



E. M. Rocha et al.: Design and Experimental Assessment of a Robust Voltage Control

FIGURE 8. Bode Diagram Loop Transfer Function
L(jωgc ) = G(jωgc )C(jωgc ).

FIGURE 9. Nyquist Diagram Loop Transfer Function
L(jωgc ) = G(jωgc )C(jωgc ).

controller structure (35).

C(s) =
1
s
LL(s) =

KLL
s

(
Ts+ 1
αTs+ 1

)
(35)

D. IMPLEMENTATION OF THE PROPOSED ROBUST
CONTROL METHODOLOGY
The flowchart of the proposed control implementation is
depicted in Fig. 10.

The proposed control design process is summarized as
follows: In step 1, the box region of uncertainties is built
based on a previously specified uncertainty range delim-
ited by the designer. The lower-and upper-bound of each
parameter are provided in Table 1. In step 2, the phase mar-
gin of the open-loop transfer function for the ‘‘worst case’’
analysing the extremal Bode diagram (cf. Fig. 6). After that,
the desired phase margin ϕm is chosen (step 3) to satisfy

the ‘‘worst case’’ condition. In step 4, the Lead-Lag phase
compensation is calculated by using the relationship defined
in (23). Then, the Lead-Lag controller parameters, α and T ,
are tuned using the relationship defined in Eqs. (30) and (31),
respectively (step 5). The Lead-Lag controller gain,KLL (32),
is computed using the modulus condition (26) in step 6. The
phase condition for the ‘‘worst case’’ is verified in step 7,
in case of achieving it, advance to step 8, if not, go back to
step 3, where the desired phase margin must be redefined.
After that, the Lead-Lad controller, LL(s), is tuned (step 8).
In order to ensure zero steady-state error, an integrator is
added into the Lead-Lag controller structure (step 9). Aim
to obtain a discrete equivalent controller the Tustin Method is
used (Step 10) to perform the discrete approximation. Finally,
step 11 presents the generic form for obtaining the discrete
gains of the digital controller to be implemented.

V. RESULTS ANALYSIS
This section presents and discusses the main results of the
tests described in the next subsections, aiming to evalu-
ate the control performance of the proposed controller in
comparison with a robust controller, proposed by Keel and
S. P. Bhattacharyya [31], and a classical controller based on
pole-placement methodology, proposed by Aström [32].

These experiments aim to show that the proposed robust
controller is able to better compensates for the oscillations
caused by parametric uncertainties (load and input voltage
variations). In addition to ensuring better reference tracking.

All the experiments are performed with simulations in
Matlab/Simulink. Moreover, a dc-dc buck converter system
board is developed, as shown in Fig. 11, in order to validate
the theoretical claims. The controller has been implemented
by using a 32-bit ARMcoremicrocontroller AT91SAM3×8E
(cf. Fig. 11). The desired set point values are provided by a
microcomputer system via USB communication.

A. SETPOINT VOLTAGE VARIATION
In order to evaluate the controller performance for different
operating condition of voltage reference (Vref), the dc-dc
buck converter system is subjected to different operat-
ing condition after achieving its nominal operating point
(cf. Table 1). Thereby, a reference voltage variation (1Vref)
is performed (t = 3.0s) within amplitude range from 1 to 4 V.

Fig. 12 shows the simulated and experimental responses
performed in the dc-dc buck converter with variations in the
voltage reference (Vref) under the three control approaches
where sub-figures A1, B1, C1 and D1 refer to the simulation
tests and sub-figures A2, B2, C2 and D2 refer to the practical
tests.

The simulated results show that, for the proposed robust
controller, the voltage overshoot is very small, thus end-
ing in fast voltage tracking compared to the other control
approaches. The experimental results again confirm the supe-
rior performance of the proposed robust controller in the
regulation over the voltage reference.
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FIGURE 10. Flowchart of the robust controller design methodology.
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FIGURE 11. DC-DC buck converter board developed.

FIGURE 12. Reference Voltage Variation 1Vref. (A) 1Vref = 1V;
(B) 1Vref = 2V; (C) 1Vref = 3V; (D) 1Vref = 4V.

FIGURE 13. Control Signal for the Reference Voltage Variation Test 1Vref.
(A) 1Vref = 1V; (B) 1Vref = 2V; (C) 1Vref = 3V; (D) 1Vref = 4V.

Fig. 13 shows the duty cycle control for this experiment
under the three control approaches. Note that the saturation of
the control signal does not occur at any time. The controller

efforts of the evaluated controllers is almost similar under
variations in the operation voltage, according to the simulated
and experimental results (cf. Fig. 13).
Therefore, all controllers are able to track the reference

voltage, meeting the pre-established performance require-
ments, however, the proposed robust controller achieves bet-
ter performance with fast response in comparison with other
controllers.

B. DC INPUT VOLTAGE VARIATION
In this subsection, the dc-dc buck converter is subjected to
a variation in the input dc voltage (Vs), within amplitude
range from 1 to 4 V, after achieving its nominal operation
point. Note that the closed-loop characteristic polynomial
depends on plant parameters (Vs,L,C,RL , see Eq. (10)) and
controller parameters, thus, changing one of these parameters
modifies the closed-loop poles of the system. Thereby, it is
justified the robust controller design strategy based on para-
metric uncertainties to enhance the performance of the dc-dc
buck converter under input voltage variation.

FIGURE 14. Input Voltage Variation 1Vs. (A) 1Vs = 1V ; (B) 1Vs = 2V ;
(C) 1Vs = 3V ; (D) 1Vs = 4V .

Fig. 14 shows the simulated and experimental results of
closed-loop system performance for input voltage variation
under the three control approaches where sub-figures A1, B1,
C1 and D1 refer to the simulation tests and sub-figures A2,
B2, C2 and D2 refer to the practical tests. After the system
reaches its steady state, some variations in the input volt-
age (Vs) are performed (t = 3.0s) with amplitudes of 1V,
2V, 3V, and 4V, respectively, as shown in sub-figures A, B,
C and D, respectively (cf. Fig. 14).

The simulated results (see sub-figures A1, B1, C1 and D1)
show that the proposed controller more effectively com-
pensates the oscillations caused by input voltage variations
reducing the oscillation amplitude and settling time in com-
parison with other control approaches. The effectiveness and
robustness of the proposed robust controller is ratified in the
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experimental results (see sub-figures A2, B2, C2 and D2)
where, for larger perturbation in the input voltage source,
the proposed control methodology outperforms the other
control approaches. Therefore, the impact of input voltage
variation is lower for the proposed robust controller.

Fig. 15 shows the duty cycle control signal for variation of
the input voltage source under the three control approaches.
The saturation of the control signal did not occur in any
of the evaluated methods, preserving the integrity of the
switching circuit and, consequently, the operation of the
controllers.

FIGURE 15. Control Signal for the Input Voltage Variation 1Vs.
(A) 1Vs = 1V ; (B) 1Vs = 2V ; (C) 1Vs = 3V ; (D) 1Vs = 4V .

C. LOAD RESISTANCE VARIATION
In this subsection, the dc-dc buck converter is subjected
to a variation in the load resistance (RL), after achieving
its nominal operation point. Each test resistance variation
is achieved by combining up to four parallel resistances
of 4.0 � each. Considering the nominal value of the load
resistance equal RL = 4.0 � (cf. Table 1), the experiments
are performed to a variation in the load resistance value for
RL = 2.0 �, 1.33 � and 1.0 �.

Fig. 16 shows the simulated and experimental results of
closed-loop system performance for load variation under the
three control approaches where sub-figures A1, B1, C1 and
D1 refer to the simulation tests and sub-figures A2, B2,
C2 and D2 refer to the practical tests.

All controllers achieve the desired performance require-
ment, ensuring system stability and null regime error for the
load resistance variation test. The transient response seems to
be almost similar for both simulated and experimental results,
however, for larger variation in the load resistance (RL),
the proposed robust controller outperforms the other con-
trollers, reducing the oscillation amplitude in comparison
with faster transient, as shown in sub-figure C2 (cf. Fig 16).

Fig. 17 present the duty cycle control signal for this case.
Note that the control signals of the simulated model do not

FIGURE 16. Load Resistance Variation 1RL. (A) 1RL = 2�;
(B) 1RL = 1.33�; (C) 1RL = 1�.

FIGURE 17. Control Signal for Load Resistance Variation 1RL.
(A) 1RL = 2�; (B) 1RL = 1.33�; (C) 1RL = 1�.

correspond faithfully to the results obtained of the control
signals in the experimental tests. This behavior can be jus-
tified by the fact that the simulated nonlinear model does
not observe all the dynamics of the real system. However,
the main observation to be made is the fact that in none of
the load variation cases there was control signal saturation.

D. PERFORMANCE INDEX ANALYSIS
In order to perform a quantitative evaluation of the evaluated
control design methodologies for the aforementioned tests,
the Integral of Squared Error (ISE) and the Integral of Square
Control Signal (ISCS) are used as a metric of performance
indexes.

Fig. 18 shows the ISE index performance for voltage
setpoint variation (sub-figure A1 and A2), input voltage
variation (sub-figure B1 and B2) and load resistance varia-
tion (sub-figure C1 and C2) tests, respectively, where sub-
figures A1, B1, C1 and D1 refer to the simulation tests and
sub-figures A2, B2, C2 and D2 refer to the practical tests.
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FIGURE 18. Integral of Squared Error (ISE). (A) 1Vref; (B) 1Vin; (C) 1RL.

The ISE index performance ratifies the effectiveness
of the proposed robust controller for tracking reference
for both simulated and experimental tests (see sub-
figures A1 and A2).

For the input voltage variation test, the control system
performance is enhance when the buck converter is regulated
by the proposed robust controller according to the ISE index
performance, as shown in sub-figures B1 and B2 (cf. Fig. 18).
Therefore, the impact of input voltage variation is lower for
the proposed robust controller controller.

In the simulation case of the load resistance variation test,
the control system performance is almost similar for the
three control approaches. However, for the experimental case,
the proposed robust controller presents a minor performance
degradation, being more evident for large load variations.
These claims are ratifying by the ISE index performance in
sub-figures C1 and C2 (cf. Fig. 18).

FIGURE 19. Integral of Square Control Signal (ISCS). (A) 1Vref; (B) 1Vin;
(C) 1RL.

Fig. 19 presents the ISCS index performance for volt-
age setpoint variation (sub-figure A1 and A2), input voltage

variation (sub-figure B1 and B2) and load resistance varia-
tion (sub-figure C1 and C2) tests, respectively, where sub-
figures A1, B1, C1 and D1 refer to the simulation tests
and sub-figures A2, B2, C2 and D2 refer to the practical
tests. Notice that the proposed robust controller ensure the
lowest energy effort, mainly in the region outside the nominal
operating point, as shown in sub-figures A2, B2 and C2
(cf. Fig. 19).

VI. CONCLUSION
This paper addresses a control approach for designing
fixed order robust controller based on frequency-domain,
to enhance the performance of dc-dc power converters.

The proposed control approach reduces the impact of the
parametric uncertainties in dc-dc power converter systems,
ensuring robust stability and robust performance for an entire
predefined uncertainty region.

The proposed control methodology has been exhaus-
tively evaluated in both computational simulations as well
as by means of experiments performed in a 20 W dc
buck converter. The proposed robust controller performance
is compared with a classical controller based on pole-
placement and a robust controller based on Kharitonov
Theorem.

For both simulated and experimental results, the pro-
posed controller shows a better dynamic behavior, such
as minor overshoot and fast transient response. Moreover,
the performance indicators comparison show that the pro-
posed controller more effectively compensates for distur-
bances offering robust performance and stability, ensuring the
desired performance.
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