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ABSTRACT Recently, studies on single image super-resolution using Deep Convolutional Neural
Networks (DCNN) have been demonstrated to have made outstanding progress over conventional
signal-processing based methods. However, existing architectures have grown wider and deeper, resulting
in a large amount of computation and memory cost, but only a small improvement in performance.
To address this issue, in this paper, we present aWavelet- and Saak-transform Dual Path Network (WSDPN),
which considers not only low-resolution images but also transform-domain information. The proposed
network exploits the rich information extracted from the transform domain to reconstruct more accurate
high-resolution images. In addition, to reap the benefits from both residual network (ResNet) and densely
convolutional network (DenseNet) topologies, we use dual-path blocks as the basic building blocks which
allow feature re-use while ensuring the ability to continue extracting new features. Thanks to extensive
research on the attention mechanism, we further introduce spatial and self-attention blocks to refine features
based on feature correlations at different layers. The experimental results show that our proposed approach
achieves better performance on extensive benchmark evaluation than other state-of-the-art methods.

INDEX TERMS Super resolution, deep learning, convolutional neural network.

I. INTRODUCTION
Single Image Super Resolution (SISR) aims to leverage one
Low-Resolution (LR) image to predict useful information to
reconstruct a High-Resolution (HR) image while improving
the image quality. SISR has been widely applied in many
image processing fields, such as satellite image, surveillance,
medical imaging, and remote sensing. Since a determined
LR input can be obtained by adopting the same degradation
process on many possible HR images, which is the reason
why SISR has been an ill-posed problem despite decades of
extensive research.

Interpolation-based methods, including nearest neighbor,
bilinear, and bicubic interpolations, weight the adjacent pix-
els of an LR image to generate the HR image, which
often accompanied by blurred artifacts. Reconstruction-based
methods exploit complex prior knowledge to limit the desir-
able HR space to generate clear details. However, as the
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upscaling factor increases, a huge number of training samples
are required to recover HR images at a visually satisfactory
level which is very time-consuming. On the other hand,
the learning-based or example-based methods use supervised
learning to build a mathematical analysis between LR and
corresponding HR patches from the sample data which is
learned by either extracting internal similarities from the LR
patch itself or the correspondence between external exemplar
pairs. The neighbor embedding [1] method conducts mani-
fold learning on multiple nearest neighbors in the training
dataset to reconstruct HR patches. Sparse coding [2], [3]
methods consider image patches as a sparse linear combi-
nation of elements from a compact dictionary. Nonetheless,
due to over-reliance on the well-trained mappings and their
associated weak representation capabilities, they are usually
inefficient and thus show limited visual quality. Recently,
Convolutional Neural Networks (CNNs) have been shown to
exhibit superior performance as compared to prior models by
their remarkable learning capabilities. The Super-Resolution
Convolutional Neural Network (SRCNN) [4], known as the
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first CNN model in super-resolution tasks, learn end-to-end
mappings from LR to HR images through a fully convolu-
tional network. It outperforms the classical non-deep learn-
ing method. However, most deep-learning SR methods are
based on spatial domain input to reconstruct the output of the
network.

In this work, as an alternative, we investigate the advan-
tages of the data from the transform domain. More specif-
ically, we attempt to capture image information in both
the spatial and spectral domains to enhance SR quality.
In addition, motivated by the promising performance of the
residual network (ResNet) [5] and the densely convolutional
network (DenseNet) [6] in classification tasks, we propose
taking advantage of both networks and combining them with
wavelet and Saak transforms [7]. Our network is trained
with nine input channels, which comprise four sub-bands
of the low-resolution wavelet coefficients, four sub-bands
of the low-resolution Saak coefficients, and one LR image.
The experiments show that using the transformed signals
only increases the parameters by a small amount, but it
greatly improves the quality of the reconstructed image.
To further improve performance, we propose the Dual-Path
Block (DPB), which inherits the advantages of the resid-
ual network (ResNet) and densely convolutional network
(DenseNet), to facilitate the feature reuse within the network
and to meanwhile obtain more compact and accurate repre-
sentations that lead to more realistic visual effects. We also
apply self and spatial attention blocks to consider the corre-
lations between features at different levels and to recalibrate
the feature maps with context information.

The rest of this paper is organized as follows: The related
background is reviewed in Section II. Section III details
the proposed network. Model comparisons and experimental
results are presented in Section IV. Finally, conclusions are
offered in Section V.

II. RELATED WORK
A. DEEP LEARNING BASED IMAGE SUPER-RESOLUTION
The strong feature extraction and data representation abilities
in deep learning have led to a surge of research on convolu-
tional neural networks for SISR. As the seminal SR method
based on the convolutional structure, Dong et al. [4] pro-
posed the SRCNN that learns the nonlinear mapping between
LR and HR patches. However, the high computational cost
still hampers it from being applied in real-time applica-
tions since the network takes upsampled images as input.
To further improve accuracy, speed and memory efficiency,
FSRCNN [8] and ESPCN [9] conduct feature extraction
directly from LR images and adopt a post-upscaling scheme
which employs a deconvolution layer or a sub-pixel convolu-
tion module at the tail of the network to upsample the spatial
size. By so doing, as compared to SRCNN, they significantly
reduce computations while still failing to construct a deeper
model due to the difficulties of training. Also, the quality
of the reconstructed images may be degraded if there are

no sufficient layers in the network. In order to relieve the
training burden of deep networks, Kim et al. [10] proposed
VDSR, which introduces global residual learning so that the
network only needs to learn the residuals between HR and
LR patches, and the residuals are then added to the original
images to recover the SR results.

To avoid the checkboard artifacts produced by the decon-
volutional operation, we choose the sub-pixel convolution
module, which is regarded as a common convolution in LR
space followed by a periodic shuffling, for the last stage of
the network to upscale the spatial size. Furthermore, we apply
the residual learning mechanism to help the convergence of
training deep networks.

B. DEEP LEARNING IN TRANSFORM DOMAIN
A discrete wavelet transform analyzes an image by decom-
posing it into sub-bands that can capture textural and contex-
tual information in both the frequency and location domains.
A super-resolution algorithm with the wavelet transform is
implemented to estimate the missing coefficient, where the
LR image is considered to be the low-frequency subband of
the HR image. The difficulty lies in predicting the unknown
coefficients of the lost high-frequency subbands. DASR [11]
combines both interpolated LR images and high-frequency
subband images acquired by the discrete wavelet trans-
form to fulfill reconstruction with high-quality in the spatial
domain. Nguyen and Milanfar [12] established an interlaced
sampling structure in training data for the purpose of effi-
ciently calculating the wavelet coefficients. In addition to the
wavelet-based constraint, Jiji et al. [13] used a smooth prior to
determine the appropriate wavelet interpolation. Sparse cod-
ing was integrated to design different interpolation methods
in [14]–[16]. Kinebuchi et al. [17] exploited hidden Markov
trees to interpolate wavelet coefficients. DWSR [18] com-
bined CNN and a wavelet transform, which benefits from the
sparsity of wavelet residuals, to recover missing details and
achieves competitive performance. However, due to the lack
of training and the use of simple interpolation approaches,
the abovemethods failed to prove their superiority over recent
deep learning based models.

Kuo [19], [20] proposed the RECOS (REctified-
COrrelations on a Sphere) transform to explain CNN in
a mathematical model. This is a multi-layer transform
whose forward process maps three-dimensional data into
one-dimensional rectified spectral vectors. In order to reduce
the defects in the inverse process, Kuo et al. proposed a
Subspace approximation with an augmented kernel (Saak)
transform [7], which adopted the Karhunen-Loève (KL)
basis as the basic kernel. By using its negative vector to
augment the transform kernel and performing the sign-to-
position format conversion which is equivalent to the ReLU
activation, the Saak transform can solve the sign confusion
problem when multi-level transforms are cascaded. There is
no need to train the transform kernels through back propa-
gation, and it is possible in the meantime to minimize the
transform losses. The Saak coefficients represent the spectral
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components in the corresponding spatial area and thus offer
a joint spatial-spectral representation. In addition, the Saak
transform can apply Principal Component Analysis (PCA)
technique to reach energy compaction. The small perturba-
tion in the test data would not affect the leading coefficients,
and thus makes the Saak transform a robust process. Saak
transform is a data-driven approach, so it can easily adapt to
any task as a feature extraction technique or an unsupervised
dimension reduction procedure.

C. DUAL PATH NETWORK
Taking advantage of cutting-edge neural network architec-
tures to design a novel one is the most intuitive and effective
way to enhance themodel learning ability in a variety of tasks.
Recent studies show that scaling up networks [21] has been
widely adopted to improve performance of neural networks.
However, deep neural networks will encounter degradation
problems in which the network accuracy begins to saturate.
To solve this issue, recent works have focused on helping
the flow of information and gradients in the network to avoid
problems such as vanishing gradients and the curse of dimen-
sionality by modifying the network structure.

He et al. [5] proposed a residual network that introduced
identity mapping and shortcut connections to ease optimiza-
tion issues. In addition, due to the sparsity of input and output
signals, the networks are more robust and can be trained more
easily to further construct deep neural networks with hun-
dreds of layers. Recently, densely convolutional networks [6]
were proposed, where skip connections are introduced to con-
catenate from the input of convolutional layers to the output
to facilitate training by strengthening feature propagation and
encouraging feature reuse. Nevertheless, the method used to
fuse features is not an adding process but rather is a concate-
nation, which results in the width of the densely connected
path to increase linearly as the depth rises. This hampers
building a deeper and wider network due to a large number
of parameters and a large amount of GPU memory cost.
Chen et al. [22] proposed the Dual Path Network (DPN),
which is a compound network design intended to follow the
core idea of both residual and densely connected networks.
The DPN took the residual network as its backbone and
attached a thin, densely connected path to construct the dual
path network. However, in order to avoid high redundancy
and relieve the computational burden, DPN used the grouped
convolution to reduce the number of parameters caused by
the densely connected paths, which resulted in additional
hyperparameters. Also, in the DPN, shortcut connections
both in the residual path and densely connected path are
only applied between different blocks, making it difficult to
share information and improve gradient flow across layers.
In addition, in the two path topologies, skip connections do
not take the importance of different features into account,
where they are simply fused through feature adding and
concatenation. Different from the DPN, we use the gating
mechanism to limit the growth of the number of the feature
maps and simultaneously merge the information of the two

paths where the importance of the features in both paths will
be adaptively considered.

III. PROPOSED NETWORK
In this section, we introduce the proposed model in detail,
including the transformed inputs, the design of the dual-path
block, and then the overall network architecture.

A. TRANSFORM DOMAIN DATA
Image super-resolution technology can be divided into two
categories: frequency domain methods and spatial domain
methods. In this work, we propose the use of transform
domain signals to enhance SR quality. Here, the data are
first transformed to the frequency domain and they are
then combined together to capture both spatial and spectral
information. After processing by CNNs, the signals are
inverse transformed into the spatial domain to reconstruct a
super-resolved image.

Over the past few years, the common Fourier transform
was gradually replaced with the wavelet transform in image
and signal processing. In the study of Fourier theory, intri-
cated but periodic signals are represented as the sum, the-
oretically infinite, of sine and cosine waves. Though it can
decompose the analyzed signal into the frequency informa-
tion, it does not provide any time or location details that may
benefit SR applications. To address this issue, wavelet trans-
form applies different versions of basis function to analyze
a signal in the time domain which offers both the frequency
and location information. [23] Besides, wavelets allow rapid
and efficient transform algorithms that need to be considered
when the training of deep networks becomes a burden. Simi-
larily, the Saak coefficients collect the spectral component in
the corresponding spatial area and thus can provide a joint
spatial-spectral representation. As stated above, we chose
wavelet and Saak algorithms [7] to transform the input image
to offer additional information.

1) WAVELET-TRANSFORM INPUT
In order to obtain the wavelet subbands, LR training imagesX
are upsampled using bicubic interpolation. Then we generate
four LR wavelet sub-bands by conducting a Haar wavelet on
bicubic interpolated images Xbic, which can be denoted as:

{LL,LH ,HL,HH} = 2dDWT {Xbic}

where the LL, LH, HL, and HH are four subbands
of the bicubic-interpolated image, respectively. Note that
2dDWT{·} denotes the 2D discrete wavelet transform.

2) SAAK-TRANSFORM INPUT
As in the above procedure, LR training imagesX are upscaled
first using a bicubic interpolation. Then, we reshape enlarged
LR images Xbic into a one-dimensional vector f by scanning
the grid points in a fixed order, after which we can calculate
the correlation matrix of f and take the eigenvectors of the
correlation matrix as the Karhunen-Loève (KL) basis bk , for
k = 1, · · · ,K .
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In summary, the anchor vectors can be denoted as

A = {a0, a1, · · · , ak , · · · , aK },

where K = Lk − 1 and Lk denotes the number of the spectral
dimensions. We then separate the anchor vectors into two
types, DC and AC vectors. The DC anchor vector is

a0 =
1
√
N
(1, 1, · · · , 1)T .

The AC anchor vectors are the remaining anchor vectors
a1 · · · aK . A basic way to obtain AC anchor vectors is to train
a convolutional neural network by backpropagation. Instead,
the Saak transform takes the KLT’s kernel vectors as the AC
anchor vectors and first augments the k-th KLT kernel vector
as

a2k−1 = bk , a2k = −bk .

Then, it projects the input vector f onto the set of augmented
kernels to obtain pk = aTk f. Finally, the projection p is
reshaped back into a 2D Saak feature map.

B. DUAL PATH BLOCK
As shown in Fig. 1, there are two paths, a residual path and a
densely connected path, in our dual-path block. We modify
the basic structure of ResNet [5] by passing the informa-
tion for the preceding layer to each layer in the residual
path. In order to make the network to adaptively consider
the importance of features at different levels while avoiding
the instability that may occur when training deep networks,
we set learnable weights to adjust the path of each skip
connection. Let Bi−1 and Bi be the input and output of the
i-th DPB, respectively. The residual path output Ro,i, which
has two convolution layers, can be formulated as

Ro,i = W res
i,2 F

res
i,1 + σ (W

res
i,1 Bi−1)+ Bi−1,

where F resi,1 = σ (W res
i,1 Bi−1), W

res
i,c is the weights of the

c-th convolution layer, and σ denotes the ReLU activation
function. Note that the bias term is omitted for simplicity.

FIGURE 1. The architecture of the dual-path block. Node ‘‘+’’ denotes the
element-wise addition, and ‘‘c ’’ denotes the concatenation operation.

Similar to the residual path, the densely connected path con-
nects all layers within the blocks in a feed-forward design.
Dense connections can improve information and gradients
flow throughout the network. Besides, concatenating feature
maps attained by other layers provides more information
in the input of following layers and improves performance.
The dense connected path output Do,i, which consists of two
convolution layers, can be formulated as

Do,i = [W dense
i,2 Fdensei,1 , σ (W dense

i,1 Bi−1),Bi−1],

where Fdensei,1 = σ (W dense
i,1 Bi−1), W dense

i,c is the weights of
the c-th convolution layer, σ denotes the ReLU activation
function, and [· · · , · · · ] refers to the concatenation operation.
The Local FusionModule (LFM) is then applied to adaptively
fuse the features from both paths. Since we want to fuse the
information extracted from both paths, and the feature maps
of the densely connected path are directly preserved in a con-
catenative manner, we first concatenate the feature maps of
the two paths and then adopt a 1×1 convolutional layer to fuse
the information and to adaptively control the width increment
of the dual-path block as well as the memory cost. We can
formulate the operation of Local Fusion Module (LFM) as

Fi,LFM = LFM i([Ro,i,Do,i]),

where LFM i(·) denotes the 1 × 1 convolutional layer.
To further enhance the information flow, improve the network
representation ability and increase performance, local resid-
ual learning is applied. Thus, the final output can be reached
by

Bi = Bi−1 + Fi,LFM .

C. FEATURE FUSION MODULE (FFM)
We constructed the Feature Fusion Module (FFM) in our fea-
ture mapping sub-network to make full use of the information
obtained from each DPB and preserve persistent memory.
As shown in Fig. 2, the FFM is composed of a dual path
blockchain and a Mid-range Fusion Module (MFM). A series
of continuous DPBs are stacked into a chain structure to
form the dual-path blockchain for the purpose of performing
further feature extraction at multiple levels. The Mid-range
Fusion Module (MFM) is attached at the end of each FFM to
merge the information from the preceding FFM and from the
current blockchain to keep information. Similar to the Local
Fusion Module (LFM), MFM first concatenates the features
obtained by the previous FFM and by the current blockchain
and then passes through a convolutional layer that serves as a
gating mechanism to screen out the output information.

Inspired by [24] and [25], we also adopted the spatial
attention block attached at each DPB to learn the correlations
between hierarchical features as shown in Fig. 3. The spatial
attention first divides the input data into three parts by three
1 × 1 convolution layers and then performs the dot-product
operation in pairs to compute the similarity between two
feature maps at different levels. Note that there is a shortcut
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FIGURE 2. The framework of the proposed network.

FIGURE 3. The modules of (a) self-attention and (b) spatial attention.
U and V denote the current and previous output feature maps,
respectively. n, C, H, and W refer to the filter number, the channel
number, the height and width of the images, respectively.

connection between input and output. Therefore, the attention
model only needs to learn the residual mapping to fine-tune
the feature maps. Since the spatial attention takes the outputs

of both the previous and the current DPB as input,
it can comprehensively take the contextual information into
consideration.

In summary, in the dual path blockchain, the stacked DPBs
expand the receptive field of the network to extract deep fea-
ture representations, and the use of spatial attention consid-
ers hierarchical features to obtain more precise information.
In MFM, multiple skip connections facilitate feature reuse
and improve information flow across blocks.

D. NETWORK ARCHITECTURE
The proposed network for SISR, which is demonstrated
in Fig. 2, contains a feature extraction sub-network (FENet),
a feature mapping sub-network (FMNet), and an upscaling
sub-network (UpNet). The FENet extracts the feature maps
from the transform domain data. The FMNet is then applied
to learn finer features by multiple stacked feature fusion
modules. The learned features are used to generate the final
SR result in the UpNet. Specifically, in FENet, we adopt
a convolutional layer to extract the initial features from
the concatenation of LR input images and the transformed
inputs. The self-attention block proposed in [25] is located
at the end of FENet to recalibrate the features. Note that
the self-attention takes only the current input for computa-
tion, as shown in Fig. 3. For the FMNet, we stack multiple
FFMs, which are designed to refine the features yielded
from the feature extraction sub-network. The Global Fusion
Module (GFM) is utilized to integrate the global features
and avoid long-term information loss by fusing hierarchi-
cal features from all the FFMs. After integrating the highly
informative features, we adopt another self-attention block to
further adjust features for subsequent global residual learn-
ing. Finally, we utilize the sub-pixel convolution layer [9] to
upsample the spatial resolution for the purpose of reconstruct-
ing HR images in UpNet.

E. LOSS FUNCTION
Given N training sample pairs {Xn,Yn}Nn=1 from the dataset,
the proposed network is optimized to minimize the L1 loss
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function

L(2) =
1
N

N∑
n=1

||Yn − D2(Xn)||1,

where2 and D2(·) denotes the parameter set and the output,
respectively, of the network.

IV. EXPERIMENTS AND DISCUSSION
In this section, we first present the training data setting and
provide implementation details, including the model hyper-
parameters. Then, we analyze the influence of different com-
posing units in the proposed model using ablation studies.
Finally, comparisons with other state-of-the-art methods on
several publicly available benchmark datasets are made to
prove the superiority of our proposed network.

A. DATA AND SIMILARITY MEASURES
For the evaluation, the proposed method was compared on
four standard benchmark datasets, Set5 [26], Set14 [27],
BSD100 [28], and Urban100 [29]. The Set5, Set14, and
BSD100 consist of human images and natural scenes, while
the Urban100 contains the urban view. For training, we chose
the DIV2K dataset [30], which consists of 800 high-quality
(2K resolution) images for image restoration tasks. We per-
formed random horizontal flipping and 90 degree rotation
to augment the training data. We used the peak signal-to-
noise ratio (PSNR) and the structural similarity (SSIM) [31]
index as the measurement metrics. For a fair comparison,
we only take the luminance channel in YCbCr space into
consideration to calculate PSNR (dB) and SSIM index and
all images were center-cropped and a 4-pixel wide stripe
was removed from each border, which is a common practice
in SISR.

B. IMPLEMENTATION DETAILS
Based on existing studies [32], [33], we used the
MATLAB [34] bicubic kernel to downsample HR images into
LR images. For training, we randomly cropped the 32 × 32
LR patches from the LR images as the inputs and set the
mini-batch size to 16. For optimization, we used an Adam
optimizer [35] with β1 = 0.9 and β2 = 0.999. The learning
rate was initialized to 10−4, which was decayed by a factor
of 2 at every 2 × 105 iterations. For model training and
testing, we used PyTorch [36] on an NVIDIA GTX 1080Ti
GPU, and it took about four days to train our proposed
WSDPN model. In the proposed network, we set 64 filters
for all convolutional layers and the kernel sizes were all
3 × 3 with the exception of the 1 × 1 convolutional layers.
In order to improve the learning capabilities of the network
and control the computational costs, we adopted 24 DPBs in
the FMNet. Meanwhile, we conducted zero-padding at the
boundaries of each feature-map to keep the spatial size after
the convolutional operation.

C. MODEL DISCUSSION
In this subsection, we discuss the influence of the different
components making up our model through ablation experi-
ments.

Considering different combinations of the types of input
data, we examined several settings for the proposed network
in Table 1. For quick validation, we used the original residual
block [37] as the building block and removed the feature
fusion module. Among the different combinations of input
data types, it could be observed that residual blocks with both
wavelet and Saak coefficients as input outperformed those
with only LR images based on the PSNR gains of 0.05dB.
Besides, using multiple inputs only increased the number of
parameters by 0.3%. This demonstrates that leveraging trans-
form domain input, which yields more information, indeed
benefits super-resolution.

TABLE 1. Ablation study on the effects of different input combinations in
residual blocks. Average PSNRs for a scale factor ×2 on the Set14 dataset
are reported.

TABLE 2. Ablation study on the effects of different path combinations in
dual-path blocks. Average PSNRs for a scale factor ×2 on the
Set14 dataset are reported.

We also explored the effects of different path topologies
on the dual-path block. Fig. 4 shows the three path topolo-
gies used for the comparison: (a) the original residual path
in SRResNet [37] and EDSR [38], which removes all the

FIGURE 4. Three path topologies for dual-path blocks. Node ‘‘+’’ denotes
the element-wise addition, and ‘‘c ’’ denotes the concatenation operation.
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TABLE 3. Quantitative evaluations of state-of-the-art SR methods. The best and the second best results are marked in red and blue, respectively.

FIGURE 5. PSNR performance v.s. the number of parameters. The results
are evaluated on the Set14 dataset for a scale factor of 4×.

batch normalization layers in ResNet [5] for reducing mem-
ory consumption, (b) the densely convolutional path, which
concatenates the feature maps of each layer to every other
layer within the blocks, and (c) the modified residual path
that adds the information of the preceding layer to each layer
of the residual path. Table. 2 provides all possible combi-
nations of the DPB topology. For simple, quick validation,

FIGURE 6. Running time and accuracy trade-off. The results are evaluated
on the BSD100 dataset for a scale factor of 4×.

we removed the attention modules and used only 16 DPBs
as the baseline model. It was observed that applying the
densely convolutional path and the modified residual path in
the DPBs led to the best performance. This was because it
can reserve the shallow features and continue discovering the
finer ones. If we take three path topologies at the same time,
the extracted features will interfere with each other, and the
PSNR performance will degrade slightly.
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FIGURE 7. The relationship between the number of DPBs and the
performance of the proposed model. Average PSNRs for a scale factor ×2
on the Set14 dataset are reported.

To show the tradeoff between performance and model
size from the proposed network and existing SR networks,
we made a comparison shown in Fig. 5. The results are
evaluated on the Set14 dataset for a scaling factor of 4×.
It can be observed that our model outperforms most state-
of-the-art methods. It should be noted that our model shows
higher PSNR values but with fewer parameters than EDSR

and RDN. This evidence indicates that our network has a
better trade-off between performance and the number of
parameters. Fig. 6 demonstrates the trade-offs between the
reconstruction accuracy and the execution time. In terms of
running time, WSDPN runs faster than other SRmethods and
also obtains better PSNR results. It is obvious that our model
strikes a good balance between the reconstruction accuracy
and the running time.

To study the relationship between the number of DPBs
in FENet and the reconstruction performance of the pro-
posed model, we provide different number of DPBs and
the corresponding PSNR results in Fig. 7. To save training
time and perform simple and quick validation, we removed
the attention mechanism. It can be noticed that though the
depth increases as we use more DPBs, causing the number
of parameters to grow linearly, the increase in PSNR tends
to saturate. Thus, we chose 24 DPBs as our final model for
subsequent comparisons. The conclusion can be drawn that
designing a delicate architecture will be more helpful for
reconstruction accuracy than blindly increasing the depth of
the network.

FIGURE 8. The reconstruction results for ‘‘img_083’’ from Urban100 with a scale factor of 4.

FIGURE 9. The reconstruction results for ‘‘img_100’’ from Urban100 with a scale factor of 4.
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FIGURE 10. The reconstruction results for ‘‘img_820’’ from DIV2K with a scale factor of 4.

FIGURE 11. The reconstruction results for ‘‘img_842’’ from DIV2K with a scale factor of 4.

FIGURE 12. The reconstruction results for ‘‘img_900’’ from DIV2K with a scale factor of 4.

D. COMPARISON WITH STATE-OF-THE-ART METHODS
To show the effectiveness of our model, the average PSNR
and SSIM results of several state-of-the-art SISR methods,

including SRCNN [4], FSRCNN [8], VDSR [10],
LapSRN [33], DRCN [39], DRRN [40], SRResNet [37],
D-DBPN [41], EDSR [38], and RDN [42], are reported in the
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form of a quantitative evaluation. In this work, the geometric
self-ensemble [38] technique is also performed to obtain
higher performance. Specifically, the test images are flipped
and rotated to augment seven images from the original.
We input these images into the network and perform an
inverse transform on the output high resolution images. All
of these images are then added together and averaged to
obtain the final high-resolution output.This self-ensemble
strategy has an edge over other ensemble methods in that
it can be easily applied to various models without further
training. Although the self-ensemble method does not require
additional parameters, it can be noticed that this technique
indeed increases the PSNR metric at approximately 0.1dB.
The model with the self-ensemble method is denoted by
adding ‘‘+’’ postfix to the model name. The quantitative
evaluations for scales ×2, ×3 and ×4 in the benchmark
datasets are listed in Table 3. It can be seen that, compared
to other methods, our model yields the best performance.
In addition, the visual results of various methods for a scale
factor×4 are presented in Fig. 8∼ 12. It can be observed that
the results of prior methods often include some distortions
and artifacts, such as the stripes or the fur on animals,
the word contour, and the lines of the buildings. By contrast,
our method prevents such distortions, avoids the artifacts,
and produces more realistic results. The proposed model
sufficiently recovers the HR images with fine textures and
thus demonstrates its superiority.

V. CONCLUSION
In this paper, we propose image super-resolution algorithms
benefiting from the Saak and wavelet transforms. Our pro-
posed multiple transform domain inputs extract rich infor-
mation from the original LR image and thus can make
our network learn the finer mapping between LR and HR
pairs. Thanks to the robustness and efficiency of the residual
network and the densely convolutional network, we apply
the dual-path blocks as the basic architecture by which
to construct our network. To further improve performance,
we connect each layer within the dual-path block to increase
information and gradient flows. In addition, we adopt self
and spatial attention mechanisms, which aim to progressively
recalibrate the learned feature maps, to improve the represen-
tational ability of the network. Compared with most state-
of-the-art methods, WSDPN can achieve competitive or even
better results under the premise that the number of parameters
is economical.
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