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ABSTRACT Supply and demand increase in response to healthcare trends. Moreover, personal health
records (PHRs) are being managed by individuals. Such records are collected using different avenues and
vary considerably in terms of their type and scope depending on the particular circumstances. As a result,
some data may be missing, which has a negative effect on the data analysis, and such data should, therefore,
be replaced with appropriate values. In this study, a method for estimating missing data using a multi-modal
autoencoder applied to the field of healthcare big data is proposed. The proposed method uses a stacked
denoising autoencoder to estimate the missing data that occur during the data collection and processing
stages. Autoencoders are neural networks that output value of x” similar to an input value of x. In the present
study, data from the Korean National Health Nutrition Examination Survey (KNHNES), conducted by the
Korea Centers for Disease Control and Prevention (KCDC), are used. As representative healthcare data from
South Korea, they contain a large number of parameters identical to those used in the PHRs. Based on this,
models can be generated to estimate missing data occurring in PHRs. Furthermore, PHRs involve a multi-
modality that allows the data to be collected from multiple sources for a single object. Therefore, the stacked
denoising autoencoder applied is configured under a multi-modal setting. Through pre-processing, a set
of data without missing value in KNHNES is designed. In the data set based learning, a label is set as
original data, and an autoencoder input is set as noised input that additionally has as many random zero
numbers as noise factor. In this way, the autoencoder learns in the way of making the zero-based noise value
similar to the original label value. When the amount of missing data in a dataset reaches approximately 25%,
the accuracy of the proposed method using a multi-modal stacked denoising autoencoder is 0.9217, which is
higher than that achieved by other ordinary methods. For a single-modal denoising autoencoder, the accuracy
is 0.932, with a slight difference of approximately 0.01, which falls within the allowable limits in data
analysis. In terms of computational performance, a single-modal autoencoder has 10,384 parameters, which
is 5,594 more than those used in a multi-modal stacked autoencoder. These parameters affect the speed of the
model. Both models exhibit a significant difference in the number of parameters but demonstrate a relatively
small difference in accuracy, suggesting that the proposed multi-modal stacked denoising autoencoder is
advantageous over a single-modal model when used on a personal device. Moreover, a multi-modal model
can save additional time when processing large amounts of data in locations such as hospitals and institutions.

INDEX TERMS Autoencoder, data pre-processing, data estimation, data imputation, health big data, multi-
modal, missing data, machine learning.

I. INTRODUCTION
Healthcare big data involve complex relationships among
the different parameters and are adaptable to changes in the
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surroundings. As a result, soft computing technologies that
make predictions and deductions regarding the parameters
or other particular circumstances have been highlighted. Soft
computing is a technique designed to handle imprecise and
uncertain data in which mathematical modeling is difficult
or impossible to apply. Many real-world problems cannot be
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clearly defined, and soft computing is used to computerize
such ill-defined problems [1]. For example, the technique
has been applied to find optimal answers to fuzzy propo-
sitions in the real world, such as “big”, “small”, “cold”,
“hot”, “light”, and “heavy”’, by converting them into a rep-
resentation that can be understood by a computer. Moreover,
soft computing is a machine learning technique designed to
explore models with highest goodness-of-fit by repeating the
encoding and evaluation for a given problem.

With advances in soft computing, health platforms inte-
grating different sectors such as society, science, and industry
are currently under development. These platforms utilize a
variety of data, including electronic medical records (EMRs),
personal health records (PHRs), and lifelogs [2], [3]. Further-
more, the computerization of existing accumulated medical
records available in physical form allows for vast amounts
of data to be continually collected. Existing medical records
are difficult to integrate because they differ from the current
system depending on the particular circumstances or institu-
tions [4]. Handwritten diagnostic documents are collected in
various forms depending on the format and are difficult to
computerize. Despite the continued advancements in optical
character recognition (OCR) technology, handwritten docu-
ments are often misunderstood or unrecognizable [5]. Mean-
while, the recognition rate of the cursive script has increased,
reaching nearly 100%, with the development of both machine
and deep learning. Nevertheless, research projects for uti-
lizing recognized scripts have been undertaken in various
fields, such as natural language processing, table processing,
and language extension. As such, healthcare based on a soft
computing approach fully utilizes all types of collectible
data [1]-[5].

With the spread of smartphones and the compactness of
personal health devices, new parameters are being generated,
and the range of health data continues to expand. This rep-
resents a multi-modality that utilizes different data ranging
from personal data, such as a patient’s lifestyle, family his-
tory, or a pre-existing condition, to other areas, including the
weather, GPS, and distance traveled [6]. A multi-modality is
an environment in which different types of sensors or data
sources are collected and utilized for a single object [7].

In a healthcare platform, users, patients, and regions act as
an object. The multi-modal data collected through a multi-
modal approach are used to make a prediction, deduction,
and classification of the health conditions of the subject,
thereby supporting the decision-making process. Further-
more, the provisioning of flexible and continuous services
when considering the situation of the user is one of the main
functions of a healthcare platform [8]. This demands various
computing technologies such as data mining, context aware-
ness, artificial intelligence, recommendation systems, and
cognitive science. Creating a prediction, deduction, and clas-
sification model based on computing technologies requires
vast amounts of data. Consequently, the multi-modal data
collected from different objects need to be integrated. During
the data integration process, the range of data collection
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varies depending on the particular circumstances, such as
interest in an object, the device status, and the surrounding
environment [9].

Missing data occur based on the specific circumstances
of an object. Moreover, data duplication or omission may
also occur during integration. To solve this problem, soft
computing provides optimal estimates of the missing data [2].
Missing data affect the data analysis or learning, and a model
generated from imperfect data tends to be less accurate dur-
ing actual use. Duplicated or missing data can be estimated
using values such as the mean, median, and mode, or using
methods such as regression, neural network, singular value
decomposition (SVD), or K-nearest neighbor (K-NN) [10].
Although an estimation using the mean value, median, and
mode is simple to achieve, it is less accurate, which makes
its application less viable. In addition, an estimation using
a regression, SVD, or K-NN may achieve relatively high
accuracy, but it requires user intervention, and extensive pre-
processing is needed for algorithmic applications. Moreover,
estimation using a neural network allows a model to learn
the features from the data on its own, minimizing the need
for user intervention. Therefore, in this study, a technique
for estimating missing data, specifically the missing data in
PHRs, using a multi-modal stacked denoising autoencoder in
the area of healthcare big data is proposed.

The remainder of this paper is organized as follows. Chap-
ter 2 discusses recent trends, including healthcare big data
and the handling of missing data in machine learning. Chap-
ter 3 describes the handling of missing data using a multi-
modal stacked denoising autoencoder in the area of healthcare
big data. Chapter 4 provides an evaluation of the performance
of the proposed approach, and Chapter 5 provides some
concluding remarks.

Il. RELATED STUDIES

A. HEALTHCARE BIG DATA

Healthcare big data refers to any data related to human health.
Because advancements in information and communication
technology have facilitated data collection in the field of
healthcare, healthcare data are currently being collected by
individuals, government agencies, and hospitals [11]. Health-
care data can be classified into several categories, including
personal genetic information, PHRs, and EMRs, depending
on the target of the data collection. PHRs, EMRs, and lifelogs
share common parameters, such as personal information and
health screening items, and the composition of such parame-
ters varies depending on the user. Parameters come in differ-
ent forms, ranging from data obtained from surveys, such as
the age, height, weight, and/or pre-existing condition of the
individual, to contextual data, such as the weather, environ-
ment, and natural disasters [12]. As data utilization becomes
more diverse, trends in the healthcare industry are shifting
from treatment-oriented to prevention-oriented healthcare.
This, in particular, has motivated the emergence of precision
medicine focusing on individual patients.
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Personal genetic information is unique information inher-
ited from one’s parents, and the human genome contains
sequences of approximately 3 billion base pairs. As a key
element of precision medicine tailored to provide optimal
and patient-centered healthcare services, such information
is playing a leading role in increasing the efficiency of
treatment while reducing costs [13]. With recent develop-
ments in genetic engineering, increasing numbers of private
companies are currently offering genetic testing services,
consequently reducing costs. This also allows individuals to
directly request for genetic testing, if desired, without having
to visit a hospital. Similar to precision medicine, personal
genetic information is used in human-centered healthcare
services.

PHRs consist of data collected through sensors, smart-
phones, and personal healthcare and wearable devices, as well
as data containing any medical practices recorded by an indi-
vidual. PHRs include data collected, viewed, and managed
by the subject of the health data collection. The composition
of a PHR depends on the personal interests or devices of
the individual, and many studies dealing with the integration
and utilization of PHRs are currently being conducted [14].
PHRs are mainly used for daily health management, such as
exercise, sleep, and weight management. For users requiring
a follow-up, such as those with diabetes, PHRs can be used in
conjunction with a personal health device for blood glucose
monitoring. EMRs refers to any automated medical informa-
tion in a hospital, such as diagnostic results, prescriptions,
surgical records, and inpatient admission records. Computer-
ization has enabled vast amounts of data to be processed, and
EMRs incorporated into IT now serve as a basis for precision
medicine [15]. For promoting better health, national health-
care information is collected in a database by the state (acting
as the main agent). In South Korea, KNHNES [16] data
are collected annually under the supervision of the KCDC.
Such data contain information on the health and nutritional
conditions to determine and evaluate the target indicators for
the promotion of better public health. Such an examination is
conducted to select vulnerable health groups through a sur-
vey regarding their tobacco and alcohol use, nutrient intake,
physical activity, chronic conditions, disease recognition rate,
and treatment rate, and to investigate trends in public health
policy.

Personal information is provided in an unidentified form
for the protection of personal health information. KNHNES
data, including primary and statistical data, are available on
the KNHNES website. Surveys are conducted on samples
taken from census data from the most recent period and
can be classified into health, health examination, and nutri-
tion surveys. Health surveys are subdivided into household,
health interview, and health behavior surveys, and consist of
parameters such as the number of household members, house-
hold type, income level, education level, physical activity,
tobacco and alcohol use, mental health, and safety awareness.
An examination survey consists of the individual’s weight,
height, blood pressure, pulse rate, urine status, oral cavity
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condition, pulmonary function, and grip strength. A nutrition
survey includes dietary lifestyle, dietary nutrition, supple-
ments, and food knowledge.

As a continual area of focus, healthcare big data continue
to evolve. By applying big data, image data such as those
from an X-ray, CT, or MRI have recently been applied to
machine learning. In particular, deep learning using a con-
volutional neural network (CNN) has achieved outstanding
performance in the field of image recognition and classifica-
tion, based upon which various healthcare models are being
developed [17].

B. HANDLING MISSING DATA IN MACHINE LEARNING
Missing data are denoted using null, n/a, NaN, or blank
spaces, indicating an empty space for non-zero data. This
affects the machine learning outcomes to a significant extent,
and if ignored frequently leads to errors in the training or
analysis of the models [18]. Higher missing-data rates result
in a poor-quality data analysis or modeling, which in turn
causes significant losses to the industry. Therefore, proper
processing of missing data is needed to conduct an accu-
rate and meaningful data analysis or modeling. The simplest
way to handle missing data is to eliminate all observations
containing such data. An observation represents a sequence
of transactions collected for an object. Most missing data
occur in an irregular and different manner, and deleting an
observation can cause loss of information [19]. Thus, it is
necessary to estimate the most appropriate value by inferring
any missing data. Missing data can be classified into three
types: missing completely at random, missing at random,
and not missing at random data. The methods for estimating
missing data include applying the mean, mode, k-NN, support
vector machine (SVM), or deep learning. Each method has
its own strengths and weaknesses, and it is important to
choose an appropriate estimation method based on the data
characteristics [11], [20]. In addition to these universal meth-
ods, various techniques such as a randomized latent factor
model [38], an effective scheme for QoS estimation [39],
and an inherently nonnegative latent factor model [40] have
been proposed depending on the field of application. Various
types of data, such as human life, industry, and health data,
are being collected, and the appropriate use and research
into various techniques are required according to the data
characteristics.

An estimation using the mean or median is a technique
in which missing data are input through statistical calcula-
tions in a parameter column. Each column independently
estimates missing data, and this type of estimation is avail-
able only for numerical data. Although an estimation method
for calculating missing data estimates is simple and fast,
the mean or mode does not consider the relationship between
parameters and achieves a significantly lower accuracy for
categorical data. Similarly, an estimation using the mode is
also extremely simple to apply operationally. This type of
estimation is primarily used for categorical data rather than
numerical data. Similar to the mean or median, the model
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does not consider the relationship between parameters. Fur-
thermore, if the estimation involves using the most frequently
observed values, bias may be introduced into the data. If bias
is present in the data, there may be unintended outcomes of
the data analysis or learning [19].

An estimation using k-NN [21] involves searching for k
nearest neighbors to the observations in which missing data
occur and imputing such data using a weighted mean of
the neighbors. k-NN is an algorithm designed for a sim-
ple classification and uses the feature similarities to predict
the values of the new data. The algorithm typically yields
higher accuracy than the mean or mode. However, it requires
many computations and only works when the entire training
dataset is stored in memory. Furthermore, the appropriate
value of k should be determined because the algorithm is
sensitive to outliers, and the outcome will vary depending
on k.

An estimation using an SVD [22] is a technique for predict-
ing missing data using an output value x" similar to input x
by diagonalizing a matrix in linear algebra. This technique
initializes a missing data value as O or as the mean of the
column and iteratively applies an estimation through a linear
combination of the k-most significant eigenvalue parameters
until converging to the next threshold. An SVD is applicable
to any m X n matrix. An orthogonal matrix is formed through
an eigenvalue decomposition, and the created orthogonal
matrix is used to generate the output value x” similar to
input x. The missing portion of x can be inferred from x” for
processing the missing data.

An estimation using deep learning [23] is a missing data
prediction method that uses multiple weighted values gen-
erated through neural network learning. This method allows
for a variety of representations based on neural network
architectures. An autoencoder has a typical neural network
architecture designed to estimate missing data. A stacked
autoencoder is a learning method similar to a deep neural
network (DNN) and is referred to as a deep network when
the hidden layer comprises multiple layers. Autoencoders are
neural networks that generate an output of value x” similar to
an input of value x and are mainly used for data compression
and reducing the number of dimensions.

The encoder and decoder are symmetrically constructed:
The network from the input layer up to the hidden layer
in the middle is called the encoder, and the network from
the output layer up to the hidden middle layer is called the
decoder. The weights w and w” of the symmetrical position
is configured to be equal. If the hidden node is smaller than
the input node in the neural network, input data compression
and feature extraction can both be achieved. Autoencoders
are generally used in pre-learning and to recover a source
using the characteristics of the manifold and generative model
learning.

In deep learning, the use of a generative adversarial net-
work (GAN) is also an approach to replace missing values
[45]. Using a GAN, we can construct a neural network that
outputs x” similar to the input x. Owing to its neural network
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structure, the use of a GAN has been attracting attention since
it was first proposed. This approach produces a new output
value for input x according to the learning direction. In a
learned GAN, a generator and a discriminator compete with
each other to learn. This produces virtual data with an output
similar to the distribution of the actual data. A GAN is highly
regarded owing to its outstanding performance in numer-
ous domains and has demonstrated excellent performance in
image reconstruction. In addition, a neural network can be
applied to continuous data because the image is converted
into a vector and then calculated.

However, a problem occurs in that learning becomes dif-
ficult, owing to the complicated structure. In addition, it is
difficult to specify a specific time point for terminating the
learning, resulting in a vanishing gradient from overfitting.
Although a GAN is useful for generating new data, its learn-
ing requires much more training data than a normal neural
network. Healthcare data require an output that is closest to
the input. In addition, because the types of data that can be
collected vary depending on the user’s particular situation,
generalization and scalability are required. The processing of
healthcare data using a GAN faces a problem in that the data
are difficult to apply to a real situation owing to high learning
difficulty and low scalability. In addition, healthcare data
contain many variables, and thus it is necessary to consider
the relationship between them.

Ill. HANDLING OF MISSING DATA USING MULTI-MODAL
STACKED DENOISING AUTOENCODER IN HEALTHCARE
BIG DATA

KNHNES [16] data can be classified into health, health
examination, and nutritional survey data. Health survey data
consist of an individual’s lifestyle, family history, and disease,
and medical records. A health examination survey consists of
the pulse rate, blood pressure, weight, height, and blood glu-
cose level of the individual. A nutritional survey consists of an
individual’s meal frequency, meal size, water intake, and use
of dietary supplements. KNHNES is not a typical PHR but
has a high potential owing to its vast amount of data, which
are also contained in the PHR. Approximately 600 parameters
containing a number of health-related items are applied, most
of which can be prepared and managed by individuals. There-
fore, a model derived from KNHNES is highly applicable
to a PHR. Moreover, KNHNES is a type of multi-modal
data collected through a variety of modes. In fact, data from
health surveys, health examinations, and dietary nutrition are
collected through each mode according to the data collection
path. During an integration process, missing data are intro-
duced through diverse circumstances. If there are numerous
transactions containing missing data, the outcomes of the
data analysis will vary depending on the pre-processing tech-
niques. This requires an appropriate processing technique that
minimizes the effects of the missing data on the outcome of
the data analysis. In this study, a method for estimating miss-
ing data using a multi-modal stacked denoising autoencoder
in the field of healthcare big data is proposed. This technique
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FIGURE 1. Configuration used for estimating missing data.

estimates missing data using a trained autoencoder for multi-
modal data. KNHNES includes various variables, and var-
ious multi-modal configurations are possible according to
the classification method used for the variables. By handling
missing data, better results from a data analysis and machine
learning can be expected. Fig. 1 shows the configuration used
for estimating such missing data.

A. PRE-PROCESSING OF NATIONAL HEALTH AND
NUTRITION SURVEY DATA

Among the primary data released by KNHNES [16] from
2013 to 2017, data from health, health examination, and nutri-
tional surveys are used in the present study. In addition, only
common parameters shared among the surveys are applied
because the scope of each survey varies annually, and any
parameters having 20% of data missing or greater in a column
scan are excluded. Among the primary data, 198 parame-
ters are selected, including pre-existing health conditions,
physician diagnosis, tobacco use, alcohol use, stress, and
depression. For the 189 parameters selected, 14,688 cases
were applied for this study, excluding those cases with a
missing data rate of 20% or higher determined through a
column scan.

KNHNES primary data include “Not Applicable (NA)”
(8, 88, and 888) and “No Answer” (9, 99, and 999)
responses. Such responses are not considered to be missing
data, although certain classes may affect the outcome of the
data analysis. In particular, an NA response is included in
numerous parameters, although the parameters containing
a significant number of NA responses (3,000 or more) are
excluded from all 14,688 cases. Accordingly, 80 parameters
are selected and used as the experimental data. KNHNES
contains data indicated by a 0 (class value), and proper pro-
cessing is therefore required. For categorical parameters in
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the 14,668 test data, each class is assigned a value of +1 to
change the values across all classes as follows: O(no)— 1(no),
1(yes)— 2(yes). Moreover, No Answer (9, 99, and 999),
NA, and NULL values are pre-processed into a value of 0
to indicate missing data. If continuous parameters have dif-
ferent scales, this may result in excessively large values
or a convergence of the weights to 0 [18], [19]. A dif-
ference in scale between parameters may lead to unsta-
ble learning of the weights, thereby requiring a feature
scaling [24].

Feature scaling is a technique used to normalize the ranges
of the parameters to be scaled equally. This technique is
employed to evaluate the influence of a particular param-
eter during data analysis, such as through a regression or
clustering analysis, as well as in a neural network model.
Therefore, it converts the parameters into the categorical type
via data binning while applying feature scaling. Binning is a
categorization technique for dividing continuous parameters
into intervals (bins). KNHNES facilitating the application
of data binning and feature scaling methods to categorize
the parameters of different units, including the individual’s
age, height, and blood pressure. With a minimum parameter
value of 0% and a maximum value of 100%, the parameters
are categorized into nine intervals. Table 1 shows the bin-
ning and features scaling of continuous parameters from the
KNHNES data. Because missing data are set to a value of 0
in the experimental data, the parameters are binned within the
range of 1-9.

B. ESTIMATION OF MISSING VALUES USING STACKED
DENOISING AUTOENCODER

The denoising autoencoder applied is a modification of the
learning methods used in ordinary autoencoders [25]. This
autoencoder adds random noise to noise-free input data and
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TABLE 1. Binning and feature scaling of continuous variables.

Binning 0 1 2 3 4
Normalization N/A 0-0.1 0.1-0.2 0.2-0.3 0.3-04
Binning 5 6 7 8 9
Normalization 04-05 0.6-0.7 0.7-0.8 0.8-0.9 09-1.0
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FIGURE 2. Estimation of missing values using stacked denoising
autoencoder.

learns with the aim of restoring the original noise-free data.
It repeats the process of randomly adding noise to the input
value and then restoring it to the original data. The stacked
denoising autoencoder randomly selects a value from the
original data before data entry and converts it into a 0. In neu-
ral network learning, missing data are normally estimated
as 0. Similarly, when applying denoising autoencoder learn-
ing, the noise is estimated as 0 and restored to the original
data when missing data occur. Accordingly, a value of 0 is
entered when missing data occur, which in turn will be input
using a non-zero predicted value through a trained neural
network. When expressing the modality according to the data
characteristics as a neural network, several hidden layers are
required. In addition, when stacking hidden layers into mul-
tiple layers, various forms can be configured using a stacked
denoising autoencoder. This is divided into unsupervised
learning and supervised learning according to the learning
method. Early stacked denoising autoencoders were intro-
duced by applying a restricted Boltzmann machine (RBM)
in the form of a deep belief network (DBN) [41], [42].
This is used to overcome the huge amount of computation
required, the local minima, and vanishing gradient problems.
Currently, the use of various propagation functions and opti-
mizers makes learning easier when using backpropagation
[43], [44]. In this study, we experimented with a supervised
stacked denoising autoencoder. Input x’ is composed of data
in which 25% of missing values (0) are randomly gener-
ated as noise. The label data consist of the original data x
without missing values. The autoencoder is trained through a
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backpropagation with a loss of the MAE of output x* and
x generated as a result of one-time learning. Fig. 2 shows
an estimation of missing data using the stacked denoising
autoencoder. As shown in Fig. 2, the original data undergo
a noise addition step and are converted into training data.
Furthermore, with the original data being a label, weights
are learned using the error in the output values of the neural
network. Fig. 2 shows an illustration of a stacked denoising
autoencoder consisting of one input layer, three hidden layers,
and one output layer. For example, an autoencoder consisting
of five hidden layers (54, 32, 16, 32, and 64) is as follows:
80(input) — 64(hidden) — 32(hidden) — 16(hidden) —
32(hidden) — 64(hidden) — 80(output), the first half of
which is an encoder, ranging from 80 to 16, and the remaining
half is a decoder, ranging from 16 to 80. The transactions
in the source data have a missing value rate of approxi-
mately 25%. During stacked denoising autoencoder learning,
the noise factor increases by 0.05, starting from 0.05 until
it reaches 0.30. A rectifier linear unit [26] and Adam [27]
were employed for the activation function and optimizer,
respectively. The data selected in KNHNES for experiments
are 14,688 data without missing value. Accordingly, in the
step of Add Noise, as many input numbers as noise factor
are randomly replaced by 0, and thereby a set of Noised
KNHENS is created. At this time, the label is the original
data without noise, and it is used to calculate an error of an
output. Experimental data on 14,688 cases were randomly
assigned as follows: 70% to the training data, 10% to the
model validation data, and 20% to the test data. A total of
80 parameters were selected, with 80 input nodes and 80
output nodes. As the number of hidden layers increases, the
repeated experiments show a lower accuracy and higher loss,
which also occurs in general deep learning because healthcare
data are not large in scale. Therefore, the KNHNES data show
that the neural network structure is higher. The number of
hidden nodes increases to half the number of input nodes, and
the results of the repeated experiments show the smallest dif-
ference between the accuracy and loss of the training and veri-
fication data when 64 nodes are configured. Table 2 shows the
learning results according to the autoencoder applied. In gen-
eral, models containing more parameters have more feature
information. The learning outcome shows that the highest
accuracy and smallest loss can be achieved when a model is
configured using a single hidden layer and 64 nodes. Despite
the fact that the performance of the actual system decreases
with an increase in the number of parameters, because the
two models have only a slight difference in the number of
parameters (480), the 80-64-80 model was selected for this
study. The accuracy of the selected model is 0.9421, which
indicates that most of the estimates for the missing data are
meaningful.

C. MULTI-MODAL STACKED DENOISING AUTOENCODER
FOR ESTIMATING MISSING VALUES

Various types of data are frequently utilized in the field
of machine learning, and many different data types can be
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TABLE 2. Learning results according to autoencoder applied.

collected for a single object. Modeling can be conducted
by integrating data concurrently or by applying only the
necessary parameters individually. However, the structure
of the data collected for an object varies depending on the
observational tools. Configuring them as a single transaction
may cause a data distortion or loss in terms of the relationship
or features. In particular, the data available in the healthcare
field may vary depending on particular circumstances in the
application of the generated model. In this regard, a multi-
modality has emerged as an approach in which a model
generated for an object is divided into several parts based on
the data characteristics.

By applying a stacked denoising autoencoder, missing data
can be estimated, although learning using a single autoen-
coder will result in a high computational workload and loss
in learning efficiency because there are numerous types of
parameters used. An autoencoder is an ordinary type of neural
network, and its performance varies greatly according to the
learning method or configuration applied. For low-impact
parameters, in particular, if the weights converge to 0, it may
result in an increase in the computational workload because
such convergence is of little significance, although valid val-
ues still remain. To achieve personalization and customiza-
tion, healthcare models have been developed with a focus
on small devices or smartphones, thus requiring an efficient
model with a low computational workload [28]. In this regard,
it is necessary to reconfigure the training data based on such
workload by considering the classification of the parameters
and to construct a multi-modal autoencoder. Therefore, in this
study, a technique for estimating the missing data using a
multi-modal stacked denoising autoencoder is proposed. The
proposed method involves handling missing data using inte-
grated KNHNES data in a single-modal approach for each
parameter class. For this purpose, several hidden nodes are
required. In this structure, each single-modal autoencoder is
merged into a hidden layer and then output as each single-
modal.

A total of 80 parameters consisting of existing chronic
conditions, diagnosed chronic conditions, the time of the
initial diagnosis showing chronic conditions, current treat-
ments for chronic conditions, physical activities, exercise
information, health examination information, dietary nutri-
tion, and stress are selected. KNHNES data are arranged in
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FIGURE 3. Multi-modal stacked denoising autoencoder.

a hierarchical form and can be classified into super- and sub-
classes. For example, parameters sharing a common super-
class can be categorized into a prevalence class, such as
“pre-existing hypertension”, ‘““pre-existing diabetes™, “‘pre-
existing hyperlipidemia”, “diagnosed arthritis”, and “time
of the first diagnosis with hypertension.” Single-modal data
with a superclass, consisting of chronic conditions, physical
activities, health examination information, dietary nutrition,
and subjective health conditions, are employed in this study.

The parameters are classified into five modes: chronic
conditions (m1), physical activities (m2), health examination
(m3), dietary nutrition (m4), and subjective health conditions
(m5), and 20, 8, 29, 10, and 13 parameters are assigned
to each mode, respectively. When applying a multi-modal
stacked denoising autoencoder, the structure of the hidden
nodes is modified with the number of classified input nodes,
whereas the parameters remain the same. All single-modal
data have a different input value depending on the number
of parameters classified into each class, the middle hidden
value of which is smaller than the input value. The encoder
side consists of 20 x 10 chronic conditions (m1), 8 x 4 phys-
ical activities (m2), 29 x 15 health examination data (m3),
10 x 4 dietary nutrition data (m4), and 13 x 6 subjec-
tive health conditions (m5), with an added hidden layer
of 40 nodes that merge the parameters. The decoder is con-
figured symmetrically with the encoder. Fig. 3 illustrates
the multi-modal stacked denoising autoencoder. As shown
in Fig. 3, layer m1(20) indicates that the single-modal chronic
conditions (m1) consist of 20 hidden nodes. This configura-
tion allows a feature extraction and learning to be conducted
for each class. Moreover, all single-modal data can be sepa-
rated and used as an initial value for a new neural network
model.

IV. PERFORMANCE EVALUATION

A. EVALUATION RESULTS ACCORDING TO METHODS FOR
ESTIMATING MISSING DATA

For validation, the proposed method is compared with exist-
ing missing data estimation methods. The experimental data
are processed using a multi-modal stacked denoising autoen-
coder (MMSDAE), K-NN [21], SVD [22], and the col-
umn means (c.mean), and accordingly organized into the
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TABLE 3. Evaluation results according to the methods used for
estimating missing values.

Missing Values Estimation Method (Accuracy)

If\;‘;if; SVD K-NN | cmean | SDAE | MMSDAE
005 | 09142 | 08901 | 07144 | 09675 | 09617
0.0 | 08941 | 08764 | 0.6751 | 09619 | 0.9571
0.15 | 0.8595 | 0.8490 | 0.6214 | 09556 | 0.9459
020 | 08012 | 0.7907 | 0.5451 | 09458 | 0.9345
025 | 07427 | 07242 | 0.5048 | 09321 | 0.9217
030 | 07019 | 06726 | 04191 | 0.8790 | 0.8610

training data. In the c.mean method, the mean of each column
replaces a missing value. The training data are then applied
to the same machine learning algorithm to generate a model,
and the resulting model is evaluated. For the experimen-
tal data, 14,668 cases are prepared by pre-processing the
KNHNES [16] data. Among the experimental data, 70% of
the parameters are randomly assigned to the training data,
10% to the model validation data, and 20% to the test data.
In the method, data do not include a missing value. For exper-
iments, input data are randomly replaced by O according to
the noise factor. Therefore, each model receives the input data
with a virtual missing value and predicts a missing value. The
training data are used to generate each model, which will be
evaluated through the validation data. The test data generate a
random missing data value by applying the generated model,
which randomly generates missing data, and the noise factor
increases by 0.05 within a range of 0.05 to 0.30. A noise factor
of 0.05 indicates that the randomly generated missing data is
5%. The test data are applied to each model, and the output
is compared with the original test data to identify any errors.
The missing data are then compared with the original data
to calculate the margin of error. In the error measurement,
the true value is the original test data, and the predicted value
is the restored test data. The test data input into each model is
t’, the output data are t*, and the correct answer data are t. The
error is evaluated using the correct data t as the actual value
and the output data t* as the predicted value. For performance
evaluation, each model is evaluated ten times repeatedly
according to the noise factor, and the mean of accuracy values
is calculated. Table 3 shows the evaluation results according
to the methods used for estimating the missing data. The
table also shows the accuracy of the missing data estimation
for each model based on the noise factor. The missing data
estimation method using an autoencoder exhibits the highest
accuracy, regardless of the noise factor, and a higher noise
factor results in overall lower accuracy.

B. EVALUATION RESULTS ACCORDING TO MULTI-MODAL
CONFIGURATION

In machine learning, parameters such as the learning
efficiency and learning time vary depending on the parameter
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FIGURE 4. Multi-modal data configuration based on a feature analysis.

construction or training data. A parameter construction that
handles all parameters using a single algorithm is simple
and easy to implement [29], [30]. Unfortunately, it increases
the computational workload of the algorithm and may
decrease the efficiency in the actual application. Further-
more, the accuracy and computational speed may decrease as
the relationships among the ill-defined input parameters are
learned. Thus, for a dataset having many input parameters,
a systemic strategy for parameter construction is needed to
cluster parameters with a high mutual impact based on a
feature analysis. An additional experiment was conducted to
evaluate the performance of the models for different multi-
modal configurations [31]-[33].

The characteristics of the parameters are examined through
a similarity and cluster analysis. Using each estimation
method, a combination of parameters is applied to construct
the multi-modal data. Based on this, the following three
datasets can be generated: similarity-based multi-modal data,
cluster-based multi-modal data, and category-based multi-
modal data. Fig. 4 shows the multi-modal data configuration
based on a feature analysis. Based on the similarity [34],
a cluster analysis [35], and the category construction, vari-
ous multi-modal autoencoders are configured and evaluated.
Therefore, in this study, we developed appropriate models
for a similarity-based multi-modal stacked denoising autoen-
coder (SbM_SDAE), a clustering-based multi-modal stacked
denoising autoencoder (CbM_SDAE), and a hierarchical
structure-based multi-modal stacked denoising autoencoder
(HbM_DAE), and we evaluated their performance.

HbM_DAE is a multi-modal data model based on the
hierarchical architecture described in section 3.C. HbM_DAE
utilizes the categories classified by KNHNES so as to
design variables in multi-modal. For the fair evaluation
of models, the number of hidden nodes is set to 1/2 of
input nodes. Each model has a different Epoch value. The
maximum Epoch is 50, and Epoch occurs at the con-
vergent point of accuracy. SbM_SDAE ends learning at
31 Epoch, CbM_SDAE at 30 Epoch, and HbM_DAE at
27 Epoch.

Similarity analysis is a method for determining whether
parameters are positively or negatively correlated with each
other. These correlations are represented within a range of
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FIGURE 5. Multi-modal stacked denoising autoencoders according to data construction.

—1 to +1, in which a value closer to —1 indicates that
the relationship is moving more in the opposite direction,
whereas a value closer to +1 indicates that the relationship
is moving more in the same direction [36], [37]. Values
closer to O indicate a lower mutual impact. A Pearson’s
coefficient [34], a widely known and simple-to-implement
correlation coefficient, is used in this analysis. In addition,
many other correlation coefficients are available for user con-
venience and different types of data. Cluster analysis involves
grouping a set of parameters in proximity to each other in
terms of the vector space.

In this analysis, the k-means algorithm is applied [35], and
the k value at which the entire cluster achieves the minimum
variance is selected. A categorical analysis is a method for
categorizing the parameters that have been classified as being
of the same class in the KNHNES data. This is the most
common and basic clustering algorithm available and exhibits
excellent performance, particularly considering the difficul-
ties in its implementation. In addition, many other methods
are available for constructing multi-modal data. Performance
evaluation of the proposed method applied to a multi-modal
data construction is conducted in an attempt to determine its
effects on the accuracy of the model and to identify the need
for diversity when selecting an algorithm according to the
different datasets used.

Fig. 5 shows the multi-modal stacked autoencoders accord-
ing to the data construction. A similarity-based data config-
uration using the Pearson’s correlation coefficient is used to
randomly select a parameter, and eight parameters having a
high absolute value of similarity are clustered. This process
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TABLE 4. Learning results of multi-modal stacked denoising autoencoder.

SbM CbM HbM
Parameter 5,032 |Parameter 6,488 |Parameter 4,790
Noise Accuracy Noise Accuracy Noise Accuracy
Factor Factor Factor
0.05 0.9601 0.05 0.9577 0.05 0.9617
0.10 0.9559 0.10 0.9510 0.10 0.9571
0.15 0.9412 0.15 0.9426 0.15 0.9459
0.20 0.9313 0.20 0.9312 0.20 0.9345
0.25 0.9209 0.25 0.9241 0.25 0.9217
0.30 0.8497 0.30 0.8550 0.30 0.8610

is then repeated using the parameters other than those already
selected.

As aresult, a total of ten groups consisting of eight param-
eters are generated. Using k-means clustering [35], a value
of 7 is used as the k value. With the Bouldin index, clustering
results are evaluated, and thus the optimal k value is found.
A category-based data configuration consists of five groups
according to the data label, such as a physician diagno-
sis (dg) and health examination (HE). As shown in Fig. 5,
the SbM_1(8) layer indicates that group 1 of the similarity-
based multi-modal data has eight input nodes.

During multi-modal autoencoder learning, all conditions
remain the same, except for the number of hidden nodes,
depending on the parameter configuration. The multi-modal
stacked denoising autoencoder consists of three hidden
layers in a single-modal. Each single-modal needs to be
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integrated, and to this end, the total number of weights is
adjusted. Table 4 shows the learning results of the
multi-modal stacked denoising autoencoder. As indicated
in Table 4, the parameters are determined based on the
configuration of the autoencoder’s input, hidden, and output
nodes and the HbM appears to be the smallest, indicating
that this model requires the least number of resources for
actual use.

Moreover, HbM also shows the highest accuracy according
to the noise factor. This can be explained based on the fact that
the classes categorized in the KNHNES [16] data consider
real-world situations. If a dataset with ill-defined classes is
used to construct multi-modal data, it may yield different
outcomes.

V. CONCLUSIONS

The proposed method involves inputting the missing data into
the PHRs by using a multi-modal stacked denoising autoen-
coder trained using KNHNES data. A total of 80 parameters
are selected from the preprocessed KNHNES data. A single-
modal denoising autoencoder is trained using the selected
parameters to estimate the missing data. The results show
that the accuracy of the proposed method is 0.9321 when a
noise factor of 0.25 is applied. Given that KNHNES or PHR
data have a multi-modality feature, in this study, a multi-
modal stacked denoising autoencoder is constructed. For this
purpose, 80 selected parameters are classified into 5 single-
modals. The multi-modal stacked denoising autoencoder is
trained using the classified parameters, and the resulting
accuracy is 0.9217 when the noise factor is 0.25; this accuracy
is higher than that of other ordinary missing data estima-
tion methods such as SVD, K-NN, and the column mean.
For a single-modal feature, 10,384 parameters are gener-
ated, whereas, for a multi-modal feature, 4,790 parameters
are generated. This indicates that the multi-modal stacked
denoising autoencoder is more suitable for a personal device
than a single-modal feature because the number of parameters
for a multi-modal feature is nearly half, with only a slight
difference in accuracy. Healthcare data may be composed of
all missing data according to the particular situation of the
user. In this case, it may be possible to predict the missing data
using a pre-learned autoencoder. In addition, a difference in
the learning efficiency occurs depending on the configuration
of the variables. A modality configuration that clearly shows
the characteristics of the variables improves the learning
efficiency and allows more accurate neural network models
to be generated. Further studies are required to examine and
evaluate the effects of missing data estimated using a multi-
modal stacked denoising autoencoder on healthcare-related
machine learning models.
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