
Received May 6, 2020, accepted May 20, 2020, date of publication May 25, 2020, date of current version June 5, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2996945

Optimized Signature Selection for Efficient
String Similarity Search
TAEGYOUNG LEE1, TAE-SUN CHUNG 2, AND JONGIK KIM 3
1Department of Computer Science and Engineering, The Hong Kong University of Science and Technology (HKUST), Hong Kong
2Department of Computer Engineering, Ajou University, Suwon 16499, South Korea
3Division of Computer Science and Engineering, Jeonbuk National University, Jeonju 54896, South Korea

Corresponding author: Jongik Kim (jongik@jbnu.ac.kr)

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the
Korean Government (Ministry of Science and ICT) under Grant 2019R1F1A1059795 and Grant 2019R1F1A1058548.

ABSTRACT In this paper, we study the problem of string similarity search to retrieve in a database all
strings similar to a query string within a given threshold. To measure the similarity between strings, we use
edit distance. Many algorithms have been proposed under a filtering-and-verification framework to solve
the problem. To reduce the overhead of edit distance verification, it is crucial to efficiently generate a small
number of candidates in the filtering phase. Recently, an index structure named HSTree has been proposed
for efficiently generating candidate strings. To generate candidates, they select and utilize HSTree nodes at
a specific level calculated from a given threshold. In this paper, we observe that there are many alternative
ways to select HSTree nodes, and propose a novel technique that selects HSTree nodes in an optimized way
based on the observation. We also propose a modified HSTree, named a threaded HSTree, which connects
inverted lists of an HSTree node to inverted lists of its child nodes. With a threaded HSTree, we can reduce
the overhead of index lookups in HSTree nodes while selecting optimal tree nodes. Experimental results
show that the proposed technique significantly outperforms the existing technique using the HSTree.

INDEX TERMS Edit distance, hierarchical tree index, optimized signature selection, partition signature
scheme, string similarity search.

I. INTRODUCTION
Finding similar objects is essential in data analytics, and
many similarity measures have been developed for differ-
ent types of data. For example, SimRank [13] and its vari-
ants [26], [37], [47], [49], [50], [52] have been proposed
to measure the similarity between objects in an information
network; common subgraphs [5], [36], missing edges and fea-
tures [51], [53], and graph edit distance [15], [32], [34] have
been developed to quantify the similarity between complex
objects that are represented by graph models; Jaccard [12],
Cosine, and Dice [9] similarities are commonly used for set
data; and LSA [19] have been developed to measure similar-
ity between documents through corpus analysis.

In this paper, we focus on syntactic similarity between
unstructured text data. Because text data are abundant, and
typographical errors and different representations of text data
cannot be avoidable, finding syntactically similar strings

The associate editor coordinating the review of this manuscript and

approving it for publication was Qichun Zhang .

is an fundamental operation required in a wide range of
applications including data cleaning [8], query relax-
ation [33], DNA read mapping [17], [18], and near duplicate
detection [45]. Tomeasure the similarity between two strings,
we use edit distance [11], [27], [28], [38], which is the
minimum number of edit operations (insertion, deletion, and
substitution) to transform one string to the other. Edit distance
has the following advantages over alternative measure: it
reflects the ordering of characters in the string and it allows
non-trivial alignment. These properties enable edit distance to
capture typographical errors for text documents, and to cap-
ture similarities for Homologous proteins or genes [29], [43].

The problem of string similarity search studied in this
paper is to retrieve all strings in a string database whose edit
distance to a query string is within a given threshold. This is
a challenging problem, because edit distance computation is
costly and a scan-based approach that computes the edit dis-
tance for each string in the database would incur a prohibiting
O(N · n2) cost for a large database, where N is the number
of strings in the database and n is the average length of a

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 98193

https://orcid.org/0000-0001-5992-1136
https://orcid.org/0000-0002-5857-6091
https://orcid.org/0000-0003-2479-8195

T. Lee et al.: Optimized Signature Selection for Efficient String Similarity Search

string. To address the performance challenge, there has been a
rich literature on this problem [3], [4], [6], [7], [16], [18],
[20]–[23], [29], [39], [41], [46], [48].

All existing techniques adopt a filtering-and-verification
framework, with a main focus on the filtering phase to reduce
the overhead of edit distance computation in the verification
phase. To effectively generate candidate strings by filtering
out strings dissimilar to a query string, they utilize signatures
extracted from data strings. The most widely used signature
scheme is q-gram, which is a substring of a string with
length q. Given two strings with an edit distance threshold,
a necessary condition to meet the threshold is established on
the minimum number of q-grams contained in both strings.
To efficiently generate candidate strings using the q-gram
signature scheme, all existing algorithms utilize an inverted
index built on data strings. They extract q-grams from data
strings, and make an inverted list on each q-gram, which is a
list of ids of strings that contain the q-gram. Then, they build
an index that maps each q-gram to its corresponding inverted
list. Early work (e.g., [20], [21]) extracts overlapping q-grams
from a query string, and using an inverted index, generates
those data string that shares enough number of q-grams with
the query string. Later work (e.g., [14], [17]) selects non-
overlapping q-grams from a query string to reduce the number
of candidate strings.

A drawback of the q-gram signature scheme is that there
can be many strings that share a q-gram, because q is usually
chosen to be a small value (e.g. from 2 to 4) to support various
thresholds. As a result, a large number of candidates can be
generated in the filtering phase. To overcome the limitation,
the partition signature scheme has been proposed [22], [23].
The partition signature scheme establishes a filtering con-
dition using the pigeonhole principle as follows. Given two
strings r and s with a threshold τ , if we decompose r into
τ + c partitions, i.e., disjoint substrings, at least c partitions
should be contained in s to meet the threshold. Since we can
use large signatures (especially when c = 1), the partition
signature scheme has been found to be much more efficient
than the q-gram scheme. However, an offline index cannot
be built on partitions because the number of partitions is
determined by the threshold, which is specified when a query
is issued. Therefore, it is not suitable to the string similarity
search problem. This scheme is proposed to solve the string
similarity join problem, where an index is built on-the-fly
during join processing.

Recently, a hierarchical index structure, named HSTree,
has been proposed to apply the partition signature scheme
to string similarity search problem [39], [48]. The HSTree
is a full binary tree. At the ith level of the tree, each data
string is decomposed into 2i partitions, where the jth partition
is indexed in the jth node of the ith level (see Section II-C
for the details of the HSTree index). Given a query string
with a threshold τ , it selects the lowest level having at least
τ + 1 nodes (or partitions) to use the pigeonhole principle.
As HSTree can use the partition signature scheme in the

search problem, it exhibits good performance. It is also easily
used to support top-k similarity queries.
Although we can use the partition signature scheme with

HSTree, this approach has the following limitation. We only
use the tree at a specific level, which is determined by
a threshold. In partition-based approach, we need at least
τ+1 partitions to use the pigeonhole principle. Since HSTree
selects nodes in a specific level, the number of partitions used
for a query is not consistently determined.
Example 1: Consider we have a string ‘‘SIMILARITY’’

in our string database. Figure 1 depicts how the string is
partitioned into each HSTree node. For a query with a thresh-
old τ = 2, the tree nodes at the second level is selected
and τ + 2 = 4 partitions of the string is used to check if
at least c = 2 partitions are contained in the query string.
When τ = 4, the tree nodes at the third level is selected and
τ + 4 = 8 partitions of the string is used to check if at least
c = 4 partitions are contained in the query string.

In Example 1, we have to select τ + 2 partitions for τ = 2,
while we should select τ + 4 partitions for τ = 4. When
using the pigeonhole principle with τ +c partitions, there is a
trade-off between filtering and verification costs for different
c values (see Section III-A for the details), but HSTree cannot
balance the trade-off because c value is determined by the
threshold τ as shown in the example above.
To address the limitation, we propose a partition selection

algorithm that selects τ + c partitions, i.e., HSTree nodes,
for a fixed value c regardless of τ . We observe that we can
select partitions from different levels of HSTree. For example,
consider we are given a fixed c = 1. When τ = 2, we can
select τ+c = 3 partitions ‘‘SIMIL’’ at level 1, and ‘‘AR’’ and
‘‘ITY’’ at level 2 in Figure 1. If τ = 4, we can select τ+c = 5
partitions ‘‘SI’’, ‘‘MIL’’, and ‘‘AR’’ at level 2 and ‘‘I’’ and
‘‘TY’’ at level 3. Interestingly, there aremany alternative ways
to select a given number of partitions. When τ = 2, for
example, we can select alternative combinations of τ +c = 3
partitions: {‘‘SIMIL’’, ‘‘AR’’, ‘‘ITY’’} or {‘‘SIM’’, ‘‘IL’’,
‘‘ARITY’’}. Based on the observation, we propose a novel
dynamic programming algorithm that selects an optimal com-
bination of a given number of partitions that generates the
minimum number of candidates.

FIGURE 1. ‘‘SIMILARITY’’ partitioned into HSTree nodes.

The following summarize the contributions of the paper

• We show that there are many alternative combinations of
HSTree nodes to evaluate a query, and develop a novel
dynamic programming algorithm that select an optimal
combination of nodes.

98194 VOLUME 8, 2020

T. Lee et al.: Optimized Signature Selection for Efficient String Similarity Search

• We propose an enhanced HSTree, named a threaded
HSTree, that connects inverted lists of an HSTree node
to inverted lists of its child nodes. With a threaded
HSTree, we can reduce the overhead of index lookups
in HSTree nodes while selecting optimal tree nodes.

• We implement the proposed algorithm and conduct
extensive experiments on real datasets. From our experi-
mental results, we show that the proposed algorithm sig-
nificantly outperforms the existing algorithm that uses
the HSTree.

The rest of this paper is organized as follows. In Section II,
we formulate the problem of string similarity search, describe
the candidate generation method based on the partition
signature scheme and review the HSTree index structure.
In Section III, we propose a novel dynamic programming
algorithm to select an optimal combination of tree nodes.
In Section IV, we enhance an HSTree to reduce the overhead
of index lookups. In Section V, we report our experimental
results on real datasets. We brief related work in Section VI
and conclude the paper in Section VII.

II. PROBLEM FORMULATION AND PRIOR WORK
A. PROBLEM FORMULATION
The edit distance between two strings r and s, denoted by
ed(r, s), is the minimum number of edit operations to trans-
form r into s or vice versa. An edit operation is insertion,
deletion, or substitution of a single character. For example,
ed(‘‘string’’, ‘‘strong’’) is 1 because ‘‘string’’ can
be transformed into ‘‘strong’’ by substituting one character
‘i’ with ‘o’.
Definition 1: Given a string databaseD, and a query string

q with an edit distance threshold τ , the problem of string
similarity search is to retrieve from D all strings s such that
ed(q, s) ≤ τ .
Example 2: For the strings in Table 1, consider a string

database D = {s1, s2, . . . , s8}. Given a query string q =
‘‘string’’ with a threshold 1, the result of the similarity
search is {s1, s2, s3}.

B. DISJOINT SIGNATURE-BASED APPROACH FOR
GENERATING CANDIDATES
We can establish a necessary condition between two strings
to meet a threshold using the pigeonhole principle. The fol-
lowing definition and lemma formally state the necessary
condition.
Definition 2: Given a string s, consider two substrings

s[p1, l1] and s[p2, l2] of s, where s[p, l] denotes a substring
of s starting at position p with length l. Without loss of
generality, we assume that p1 < p2. The substrings s[p1, l1]
and s[p2, l2] are disjoint, if and only if p1 + l1 ≤ p2.
Disjoint substrings in the definition above does not share

any character in a common position. For a string ‘‘abcde’’,
for example, ‘‘abc’’ and ‘‘de’’ are disjoint, but ‘‘abc’’ and
‘‘cd’’ are not disjoint.

Lemma 1: Given two strings r and s and a threshold τ ,
if we extract τ + c disjoint segments from r , where c is a
constant, s should contain at least c segments of r to meet the
threshold.

A disjoint segment of r contained in s is called a match-
ing segment. The lemma above states that we need at least
c matching segments to meet the threshold. The intuition
behind the lemma is that a mismatching segment causes at
least one edit operation, and edit operations caused by dif-
ferent segments are independent. If the number of matching
segments is less than c, the number of mismatching seg-
ments is greater than τ , and thus r and s cannot meet the
threshold τ .
Example 3: Consider two strings s5 and s6 in Table 1.

Given a threshold τ = 2, if we extract τ+2 disjoint segments,
‘‘al’’, ‘‘on’’, ‘‘ene’’, and ‘‘ss’’ from s5, only one of the
segments, i.e., ‘‘al’’, is contained in s6. Hence, s5 and s6
cannot meet the threshold by Lemma 1

TABLE 1. An example string collection.

In the q-gram signature scheme, existing techniques
select non-overlapping q-grams to generate candidates using
Lemma 1. However, those techniques cannot utilize string
segments between the selected q-grams, and filtering power
is limited because the signature size (i.e., q) is small.
PassJoin [22], [23] has been proposed to find similar strings
using partition-based signatures for Lemma 1. PassJoin
decomposes a string s into τ+c disjoint segments1 w1,w2, . . . ,
wτ+c, such that s = w1 ·w2 ·. . .·wτ+c, wherewi ·wi+1 denotes
the concatenation of wi and wi+1. We call wi a partition of s.
By using a partition-based signature, which is longer than a
q-gram signature, the number of candidates can be reduced
since the longer a signature is, the less strings that share
the signature. In the remaining of this subsection, we briefly
introduce the technique in PassJoin.

Given a string database D and a threshold τ , an index
is built on strings in Dl = {s | s ∈ D ∧ |s| = l} as
follows. Each string in Dl is partitioned into τ + c seg-
ments2. For the jth segments of the strings in Dl , we make
an inverted index Ljl that maps each distinct jth segment w to
Ljl(w), which is a list of ids of strings that have w in their

1We note that PassJoin [22], [23] uses τ + 1 signatures. In our discussion
here, we generalize it to τ + c signatures based on Lemma 1 for the easy of
description in the following section.

2There are many ways to partition a string into τ + c segments. PassJoin
uses an even-partition scheme, where each segment should have nearly the
same length. Refer to [22], [23] for the details.

VOLUME 8, 2020 98195

T. Lee et al.: Optimized Signature Selection for Efficient String Similarity Search

jth segments. In this way, an index Il = {Ljl | 1 ≤ j ≤
τ + c} is built for the strings in Dl . The index for D is
I = {Il | l is a distinct length of strings in D}.
Example 4: For the string collectionD in Table 1, consider

that τ = 1 and c = 1 are given. To make I6, we decompose
each string in D6 = {s1, s2, s3, s4} into two partitioned
segments with the same length 3. We can construct I9 for
D9 in a similar way. Figure 2 shows I6 = {L1

6,L
2
6} and

I9 = {L1
9,L

2
9}. Therefore, the index for D is I = {I6, I9}.

FIGURE 2. Example inverted indices I6 and I9 for the string collection
in Table 1.

Before we describe how to evaluate a query using the
index, we present an obvious necessary condition between
two strings to meet a threshold. The following lemma states
a condition on the size difference of two strings.
Lemma 2: Given two strings r and s with a threshold τ ,

if ed(r, s) ≤ τ , then ||r| − |s|| ≤ τ .
To evaluate a query string q, we need to search the index

from I|q|−τ to I|q|+τ by Lemma 2. For each inverted indexLjl
in Il (|q|− τ ≤ l ≤ |q|+ τ, 1 ≤ j ≤ τ + c), we first compute
substrings of q, denoted by W(q,Ljl), to look up Lil . Let the
length of segments indexed inLjl be `

j
l . Note that all segments

in Ljl have the same length (e.g., `29 = 5 in Example 4).
To find all segments inLjl that are contained in q, we compute
W(q,Ljl) = {w | w is a substring of q of length `jl} and take
union of Ljl(w)’s for all w ∈ W(q,Ljl). Let the result list of
the union be Rj

l(q). The set containing all candidate strings
in Il can be obtained by mergingRj

l(q)’s for all j ∈ [1, τ +c]
and choosing those strings that are contained at least c result
lists by Lemma 1.
Example 5: Given the index depicted in Figure 2, consider

a query string q = ‘‘aparment’’ with a threshold τ = 1,
where c = 1. Since |q| = 8, we need to search I7, I8,
and I9 by Lemma 2. Since I7 = I8 = ∅, we only look
up I9 as follows. Since `19 = 4 (for L1

9), each string in
W(q,L1

9) = {apar,parm,arme,rmen,ment} searches
L1
9, and R1

9 = {s7} is obtained since apar in W(q,L1
9)

is indexed in L1
9. To search L2

9, we enumerate W(q,L2
9) =

{aparm,parme,armen,rment} since `29 = 5 (for L2
9).

R2
9 = ∅ because no string in W(q,L2

9) is indexed in L2
9.

We merge R1
9 = {s7} and R2

9 = ∅ and find a candidate s7,
since s7 is contained in c (= 1) result list.
Once candidate strings are generated, each of candidate is

verified by computing the edit distance to the query string.
Intuitively, the smaller size W(q,Ljl), the smaller number
of candidates. By utilizing various conditions (e.g., a condi-
tion on position difference between segments), the number
of segments in W(q,Ljl) can be substantially reduced (see
Section II-C).

C. HSTree
The partition-based approach described in Section II-B can
build an index only with a given static threshold. Therefore,
it is hard to apply the approach to the search problem, where a
threshold can vary from query to query. To address the prob-
lem, HSTree [39], [48] has been proposed, which maintains
alternative partitioning results of each data string.

For each distinct string length l, an HSTree Hl is built on
Dl as follows. At the level i of the tree3, Hl partitions each
data string s ∈ Dl into 2i segments, and the jth segment of s is
indexed in the inverted index of the jth node, denoted by Li,jl ,
just like the partition-based approach in the previous section.
For the purpose of presentation, we use the inverted index in
a node interchangeably with the node itself in the rest of the
paper. Similar to PassJoin, HSTree also use an even-partition
scheme. Specifically, for each segment w at the level i, w is
partitioned into two disjoint segments in the (i + 1)th level,
such that the first segment is the prefix of w of length b|w|/2c
and the second segment is the suffix of w of length d|w|/2e.
For example, Figure 3 shows an HSTree H9 for the string
collection in Table 1.

FIGURE 3. H9 for the string collection in Table 1.

Given a query q with a threshold τ , we can evaluate
the query using the HSTree between H|q|−τ and H|q|+τ by
Lemma 2. To generate candidate strings, we need at least τ+1
partitions of strings by Lemma 1. For each Hl (|q| − τ ≤
l ≤ |q| + τ), we select the lowest level having at least τ + 1
nodes. Therefore, i = dlog2(τ +1)e. Given 2i nodes, i.e., Li,jl
(1 ≤ j ≤ 2i), the query can be evaluated as the similar way
introduced in the previous section. A segment set of the query
string q for searching an index Li,jl , denoted by W(q,Li,jl),
is computed using the following position lower bound and
upper bound (see PassJoin [22], [23] for the details).

LBT = max(1, p(Li,jl)− (j− 1),

p(Li,jl)+1− (τ + c− j)), (1)

UBT = min(|q| − `(Li,jl)+ 1, p(Li,jl)+ (j− 1),

p(Li,jl)+1+ (τ + c− j)), (2)

where `(Li,jl) and p(L
i,j
l) denote the length and the position of

the segments in Li,jl , respectively, and 1 = |q| − l. In the

3The root node of an HSTree is at the level 0.

98196 VOLUME 8, 2020

T. Lee et al.: Optimized Signature Selection for Efficient String Similarity Search

formulas above, j − 1 and τ + c − j indicate the relative
locations4 of a partition from the left-side and the right-side
perspectives, respectively. Given the LBT and UBT,

W(q,Li,jl) = {q[p, `(L
i,j
l)] | p ∈ [LBT,UBT]}, (3)

where q[p, `(Li,jl)] denotes a substring of q starting at posi-
tion p with length `(Li,jl). Since the level i has 2i nodes,
τ + c = 2i and c = 2i − τ in Lemma 1. Hence, we generate
those strings whose segments are selected from at least 2i−τ
nodes at the level i, while searching the index withW(q,Li,jl)
for 1 ≤ j ≤ 2i.
Example 6: Consider a query string q = ‘‘alignment’’

with a threshold τ = 1 for the string collection in Table 1.
Since |q| = 9, we need to search H8, H9, and H10.
As H8 = H10 = ∅, we search H9 depicted in Figure 3.
In H9, we select the level dlog2 τ + 1e = 1 and search L1,1

9
and L1,2

9 . To search L1,1
9 , we computeW(q,L1,1

9) = {alig}
(LBT = 1 and UBT = 1 because p(L1,1

9) = 1, 1 = 0, and
`(L1,1

9) = 4). Since L1,1
9 does not contain alig, we generate

no candidate string in this node. Next, we search L1,2
9 with

W(q,L1,2
9) = {nment} (LBT = 5 and UBT = 5 because

p(L1,2
9) = 5, 1 = 0, and `(L1,2

9) = 5). L1,2
9 does not contain

nment, and we generate no candidate in L1,2
9 either. Hence,

the result is ∅.

III. OPTIMIZED HSTree NODE SELECTION
A. MOTIVATION OF OUR WORK
In general, the quality of a partition signature for generating
candidates is assumed to be proportional to the size of the
signature. By choosing c = 1 in Lemma 1, we can maximize
the size of each partitioned segment, and thus expect that
the number of candidates generated from each partition is
minimized. For this reason, PassJoin [22], [23] uses τ + 1
scheme. If we use a larger c value, the size of each parti-
tion signature is reduced, and thus the inverted list for the
signature becomes longer. Nevertheless, we have a stricter
filtering condition, since a candidate requires to have at least
c partitioned segments contained in a query. To generate
candidates, however, we need to scan and merge more and
longer inverted lists, which can degrade the performance of
the search. Therefore, c in Lemma 1 can be also used as a
tunable parameter (e.g. [14], [17], [18]) to balance filtering
and verification costs.

In HSTree, the c value is dependent on τ , that is, c = 2i−τ
where i = dlog2(τ + 1)e. For example, we have to use τ + 1
scheme for τ = 3, while we should use τ + 4 scheme for
τ = 4. This is because we select nodes in a specific level
of the tree based on a given threshold. Since the c value is
determined by τ , we cannot expect consistent performance
for different τ values, and we have no chance for improving
performance by adjusting c. To address the problem, for a
given fixed c value, we propose a novel technique that selects

4The position of a segment starts from 1, while the relative location of a
partition starts from 0.

optimal τ + c disjoint nodes across different levels in an
HSTree, where any two nodes are disjoint if and only if they
do not lie on the same root-to-leaf path of the tree. Note that
if two HSTree nodes are disjoint, the substrings of a data
string corresponding the nodes are also disjoint. Given τ + c
disjoint nodes, therefore, we can apply Lemma 1 to generate
candidate strings.
Example 7: Consider a query string q = alignment for

τ = 4 for H9 in Figure 3. In the original HSTree technique,
we select the level 3 and c is determined to 23 − 4 = 4. For
a given c = 1, however, we can consider tree nodes from all
levels to select τ+1 = 5 disjoint nodes. For example, we can
select {L1,1

9 ,L3,5
9 ,L3,6

9 ,L3,7
9 ,L3,8

9 } at the levels 1 and 3.
Alternatively, we can also select {L2,1

9 ,L3,3
9 ,L3,4

9 ,L2,3
9 ,L2,4

9 }

at the level 2 and 3. There are many other combinations of
τ + 1 disjoint nodes in this case.
As shown in the example above, there can be multiple

combinations of τ + c disjoint nodes. Among all possible
combinations, in this paper, we develop a novel dynamic
programming algorithm that selects an optimal combination
that minimizes the number of candidates. We remark that
any combination of τ + c disjoint nodes generates candidate
strings containing all result strings by Lemma 1. Thus, our
optimization technique does not affect the accuracy of sim-
ilarity search, i.e., it does not miss any result string. In the
following subsections, we use c = 1 for simplicity, and we
will discuss the effect of different c values by treating c as a
tunable parameter in Section V-B.

B. OPTIMIZED NODE SELECTION ALGORITHM
Given a query string q with a threshold τ , we search from
H|q|−τ to H|q|+τ to generate candidates as we discussed
earlier. Because we independently search each HSTree, and
each tree generates candidates independently, in this section,
we restrict our discussion to those strings of length l and
consider optimized node selection for the HSTree Hl . Given
τ + 1 nodes {N1,N2, . . . ,Nτ+1} of Hl , candidate strings are
generated as follows.

C =
τ+1⋃
i=1

⋃
w∈W(q,Ni)

Ni(w), (4)

where q is the query string andw is each segment inW(q,Ni).
Note that Ni also denotes the inverted index of the ith node.
Like all other string similarity search techniques that utilize
signatures to generate candidates, we assume each partition
signature independently generates candidate strings. There-
fore, the number of candidates can be estimated as:

NC =
τ+1∑
i=1

∑
w∈W(q,Ni)

|Ni(w)|, (5)

where |Ni(w)| denotes the size of the inverted list Ni(w).
An optimal combination of τ + 1 nodes can be obtained

by enumerating all possible τ + 1 disjoint nodes, computing
the number of candidates generated by each combination,

VOLUME 8, 2020 98197

T. Lee et al.: Optimized Signature Selection for Efficient String Similarity Search

and selecting a combination having the minimum number of
candidates. The following lemma states that we can prune
certain combinations of τ + 1 disjoint nodes.
Lemma 3: Given a combination of τ + 1 disjoint nodes

S = {N1, . . . ,Nτ+1} of Hl , if
∑τ+1

k=1 `(Nk) < l, there exists
another combination that generates candidates no more than
the initial combination S , where `(Nk) denotes the length of
segments indexed in Nk .

Proof: If
∑τ+1

k=1 `(Nk) < l, there should be at least one
node N ∈ S such that no nodes in the subtree rooted by the
sibling of N is included in S . By replacing N with its parent,
we can have another combination that generates candidates
no more than S, because candidate generated by the parent is
obviously a subset of that generated by N . �
Example 8: In Example 7, we may select τ + 1 nodes
{L2,1

9 ,L3,3
9 ,L3,4

9 ,L3,6
9 ,L2,4

9 }. In this case, we can replace
L3,6
9 with its parent L2,3

9 , and candidates generated by L2,3
9

is a subset of candidates generated by L3,6
9 .

The following recurrence calculates the minimum number
of candidates when we select n disjoint nodes from a subtree
rooted by Li,jl , which is the jth node at the level i of Hl for
those data strings of length l.

if n = 1:

NC(L
i,j
l , n) =

∑
w∈W(q,Li,j

l)

|Li,jl (w)|, (6)

otherwise :

NC(L
i,j
l , n) = min

k
{NC(L

i+1,2j−1
l , k)

+NC(L
i+1,2j
l , n− k)} (7)

In case n = 1, Li,jl generates the minimum number of can-
didates, thus we select Li,jl . When n > 1, we select k disjoint
nodes from the subtree rooted by the left child Li+1,2j−1l , and
remaining n−k disjoint nodes from the subtree rooted by the
right child Li+1,2jl . Among all possible k values, which are
discussed in Lemma 4, we select an optimal combination of
n disjoint nodes that has the minimum number of candidates.
Note that the recurrence considers only those combinations
of disjoint nodes {N1, . . .Nn} such that

∑n
k=1 `(Nk) = `(L

i,j
l)

by the following lemma.
Lemma 4: In the recurrence above, the range of all possi-

ble k values is as follows.

max(1, n− 2maxL−(i+1)) ≤ k ≤ min(n− 1, 2maxL−(i+1)),

where maxL denotes the maximum level of the tree, i.e., the
leaf level blog2 lc.

Proof: It is obvious that 1 ≤ k ≤ n − 1. Since
an HSTree is a full binary tree, the maximum number of
disjoint nodes (i.e., the number of nodes in the leaf level) in
the subtree rooted by Li+1,2j−1l (or Li+1,2jl) is 2maxL−(i+1).
Therefore, k ≤ 2maxL−(i+1) and n− k ≤ 2maxL−(i+1), that is,
n− 2maxL−(i+1)

≤ k ≤ 2maxL−(i+1). �

Theorem 1: NC(L
i,j
l , n) correctly computes the minimum

number of candidates.

FIGURE 4. An initial DP array for an HSTree having 15 nodes
(i.e., depth = 3) when τ = 4.

Proof: It considers k disjoint nodes in the left subtree
of Li,jl and n − k disjoint nodes in the right subtree of Li,jl .
Given any k value, assume that it correctly selects the min-
imum number of candidates in the left and right subtrees,
respectively. Since it considers all possible range of k value
by Lemma 4, it computes the minimum number of candidates
for the subtree rooted by Li,jl by the assumption. When Li,jl is
a leaf node, it clearly returns the correct number of candi-
dates by Equation (7). Therefore, by induction, NC(L

i,j
l , n)

correctly computes the minimum number of candidates. �
A minor difficulty with the recurrence is that we can

identify relative locations of partitions after selecting optimal
partitions, while LBT and UBT for W(q,Li,jl) require the
relative location of the partition Li,jl . Notice that j in Li,jl is
no more the relative location of the partition Li,jl , since we
select partitions in different levels of the tree. We solve the
problem by using the following LBL and UBL for W(q,Li,jl)
in our recurrence (see PassJoin [22], [23] for the details of
LBL and UBL).

LBL = max(1, p(Li,jl)− b
τ −1

2
c), (8)

UBL = min(|q| − `(Li,jl)+ 1, p(Li,jl)+ b
τ +1

2
c). (9)

After selecting optimal partitions, we use LBT and UBT
to generate candidates with the selected partitions. It is
worth noting that we do not need to lookup indices for
the inverted lists used in generating candidates, but we can
select the required inverted lists from those inverted lists
retrieved during partition selection because [LBT,UBT] ⊆
[LBL,UBL] [22], [23].

It is obviously inefficient to compute the minimum number
of candidates by recursively enumerating all possible combi-
nations of τ+1 disjoint nodes. Instead, we develop a dynamic
programming algorithm based on the recurrence above as
follows. There are |Hl | = 2maxL+1

− 1 nodes in Hl , where
maxL is the leaf level. We make an array A having |Hl |

elements, where the node Li,jl corresponds to A[2i − 1 + j].
For the purpose of presentation, we use A[Li,jl] to denote
A[2i − 1 + j]. The subtree rooted by Li,jl has 2maxL−i leaf
nodes. Hence, we make min(τ + 1, 2maxL−i) slots for A[Li,jl]
to keepNC(L

i,j
l , n) in the nth slot of A[Li,jl], i.e., A[L

i,j
l][n] =

NC(L
i,j
l , n). We initialize each slot of the array to ∞.

98198 VOLUME 8, 2020

T. Lee et al.: Optimized Signature Selection for Efficient String Similarity Search

For example, Figure 4 shows an initial DP array for anHSTree
with depth 3 when τ = 4.

Given an initialized DP array A, Algorithm 1 outlines our
dynamic programming algorithm that computes the mini-
mum number of candidates in Hl for a query string q with a
threshold τ . We assume that q, τ and A are globally visible in
the algorithm. In the algorithm, each slot of theDP arrayA has
three values: n_cands is the minimum number of candidates,
and left and right are links to its children cells, which are
used to keep track of the optimal combination of nodes. The
algorithm computes the minimum number of candidates only
when it is not already computed (Line 1). If the number of
nodes to be selected is 1, then it saves the sum of the sizes of
the inverted lists for W(q,Li,jl) of the current node (Line 4).
In this case, the child links are set to nil, which indicates
that this node is a terminal node (Line 5). If the number of
nodes to be selected is greater than 2, the algorithm selects an
optimal combination of nodes in the subtree rooted by current
node based on the recurrence (for loop in Line 7). It saves
the minimum number of candidates in A[Li,jl][n].n_cands
(Line 10). It also keeps, in A[Li,jl][n].left and A[Li,jl][n].right,
the slot numbers of the children of the current node
(Lines 11–12). Note that the algorithm only needs to keep
the slot numbers, because the children of current node
can be easily located as follows. The left and right chil-
dren of A[Li,jl] are A[L

i+1,2j−1
l] and A[Li+1,2jl], respectively.

Algorithm 1: DPSelect(Li,jl , n)

input : Li,jl is a node of Hl , and n is the number of
disjoint nodes to select.

output: A[Li,jl][n].n_cands – minimum number of
candidates of n disjoint nodes in the subtree
rooted by Li,jl

1 if A[Li,jl][n].n_cands 6= ∞ then
2 return A[Li,jl][n].n_cands;

3 if n = 1 then
4 A[Li,jl][n].n_cands←

∑
w∈W(q,Li,j

l) |L
i,j
l (w)|;

5 A[Li,jl][n].left← A[Li,jl][n].right← nil;

6 else
7 for k ← max(1, n− 2maxL−(i+1)) to

min(n− 1, 2maxL−(i+1)) do
8 NC ← DPSelect(Li+1,2j−1l , k)+

DPSelect(Li+1,2jl , n− k);
9 if A[Li,jl][n] > NC then
10 A[Li,jl][n].n_cands← NC ;
11 A[Li,jl][n].left← k;
12 A[Li,jl][n].right← n− k;

13 return A[Li,jl][n].n_cands;

Recall the location of Li,jl in A is 2i − 1+ j. Let the location
be x. The locations of the left and right children are 2x =
2i+1−1+2j−1 and 2x+1 = 2i+1−1+2j, respectively. The
algorithm finally returns the number of minimum candidates
(Line 13).
Example 9: Given a query string q with a threshold

τ = 4, consider an HSTree Hl shown in Figure 5(a). In the
figure, the number in each node denotes the sum of the
lengths of the inverted lists selected by segments of q (i.e.,∑

w∈W(q,Li,j
l) |L

i,j
l (w)|). We can find an optimal combination

of disjoint nodes by calling DPSelect(L0,1
l , τ + 1 = 5).

To find an optimal combination, DPSelect construct a DP
array depicted in Figure 5(b). It recursively fills each slot in
the array while keeping links to its children slots. Once it fills
A[L0,1

l][5], we can find an optimal combination by following
the links of A[L0,1

l][5], which are depicted in red lines in the
figure. The optimal combination of disjoint nodes selected by
the algorithm is indicated by the grayed slots.

FIGURE 5. A running example of the DPSelect algorithm.

Lemma 5: The time complexity of the algorithm is
O(l · τ · CI), where l is the length of strings indexed in an
HSTreeHl , τ is a threshold for a query, and CI is the average
cost for index lookups.

Proof: It can be seen that the number of segments in
W(q,Li,jl) is at most 2τ . The algorithm requires O(l · τ · CI)
to fill the first row of the DP array, i.e., A[1][∗], since there
are at most l slots in the first row. In the nth row of the DP
array, there are at most l

2dlog2 ne ≤
l
n slots. A slot in the nth

row requires at most 2(n − 1) lookups of the DP array slots
(see Line 6 of the algorithm). Hence, the algorithm requires
O(l) to fill the nth row (n > 1), and it requires O(l · τ) to fill
all the rows except the first row. Consequently, filling the first
row dominates the time complexity of the algorithm, which
is O(l · τ · CI). �

VOLUME 8, 2020 98199

T. Lee et al.: Optimized Signature Selection for Efficient String Similarity Search

C. REDUCING INDEX LOOKUP OVERHEAD
A drawback of the proposed algorithm is that it looks up
indices in all tree nodes. To reduce the overhead of index
lookups, we limit the maximum level maxL to dlog2(τ +1)e,
i.e., the minimum level having at least τ + 1 nodes. An inter-
esting observation is that we can ignore HSTree nodes below
a certain level to select τ + 1 disjoint nodes for a query.
Lemma 6 formally states the observation.
Lemma 6: Given a threshold τ and a maximum level

maxL, the minimum level where we can select a node is

minL = dlog2(2
maxL/(2maxL

− τ))e.

Proof: The maximum number of possible disjoint nodes
(i.e., the number of nodes in the leaf level) in an HSTree is
2maxL. Consider we select a node at minL. Then, we cannot
use any nodes in the subtree rooted by the selected node (the
subtree has 2maxL−minL nodes at the level maxL). Hence,
the maximum number of remaining disjoint nodes is 2maxL

−

2maxL−minL. To select τ + 1 disjoint nodes, we need to be
able to select τ nodes in the remaining disjoint nodes. Hence,
we have the inequality, τ ≤ 2maxL

− 2maxL−minL. The
inequality gives us the minimum level minL = dlog2(2maxL/

(2maxL
− τ))e. �

Example 10: For the HSTree in Figure 3, if τ = 5,
maxL = dlog2(5 + 1)e = 3 and minL =

dlog2(2
3/(23 − 5)e = 2.

The observation can be generalized to τ + c scheme as
follows. Since we need to select τ + c disjoint nodes, maxL
becomes dlog2(τ + c)e, and minL in Lemma 6 becomes
dlog2(2

maxL/(2maxL
− (τ + c− 1)))e. We remark that Algo-

rithm 1 does not look up the inverted indices of the nodes
below minL by Lemma 4 (i.e, the condition in Line 3 is
always false for the nodes below minL).

IV. THREADED HSTree
To further reduce the index lookup cost, in this section,
we develop a threaded HSTree structure. Consider a seg-
ment w indexed in an HSTree node N and let the inverted
list for w be Iw. The first half of w is indexed in the left child
of N and the second half of w is indexed in the right child
of N . Let the inverted lists of the first and second halves be
Iw1 and Iw2 , respectively. We connect Iw with Iw1 and Iw2 with
pointers, which are called threads. If we look up the inverted
index in N to find Iw for w, we can directly locate Iw1 and Iw2

by following the threads. Figure 6 shows this modification of
the HSTree in Figure 3, where the dashed blue lines denote
the threads that connect inverted lists.

We use a threaded HSTree with our algorithm as follows.
Given a query, we first look up inverted indices of the nodes at
the minimum level minL, and we keep the retrieved inverted
lists. For each node N in the next level, we first locate its
parent node, and follow the threads of the inverted lists kept
in the parent node. It can be easily seen that the inverted lists
identified by parent’s threads are a subset of the inverted lists
required in N . Hence, we look up the inverted index in N to
retrieve unidentified inverted lists only. In this way, we can

FIGURE 6. Threaded HSTree for the HSTree in Figure 3.

retrieve all inverted lists for the nodes at the levels between
minL and maxL. Then, we fill the first row of the DP array
using the sizes of retrieved inverted lists. Finally, we apply
our algorithm to compute remaining slots of the DP array.
We remark that the condition Line 3 of the algorithm is always
false, since we initialize the first row of the DP array before
calling the algorithm.

Algorithm 2 encapsulates the initialization of the DP
array using a threaded HSTree. We assume that q, τ ,
the HSTree Hl , and the DP array A are visible in the
algorithm. The algorithm first initialize an array of sets of
inverted lists SL , which keeps inverted lists corresponding
to W(q,Li,jl) for each node L i,jl (Line 1). Then, it retrieve
inverted lists for the query in each node at the level minL
(Line 2). Recall that an HSTree node N also denotes the
inverted index in N . For simplicity, we use SL[N] to denote
the element of SL corresponding to the node N . After looking
up inverted indices in the nodes at the level minL and retriev-
ing inverted lists for the query, it uses the retrieved inverted
lists to construct inverted lists of the nodes at the levels above

Algorithm 2: InitializeDPArray

1 SL ← an array of empty sets;
2 foreach node N at level minL do
3 SL[N] =

⋃
w∈W(q,N) N (w);

4 for lv← minL+ 1 to maxL do
5 foreach node N at level lv do
6 NP← parent of N ;
7 foreach list l ∈ SL[NP] do
8 if N is the left child of NP then
9 SL[N] = SL[N] ∪ l.left_thread;

10 else SL[N] = SL[N] ∪ l.right_thread;

11 foreach w ∈W(q,N) do
12 if N (w) 6∈ SL[N] then
13 SL[N] = SL[N] ∪ N (w)

14 for lv← minL to maxL do
15 foreach node N at level lv do
16 A[N][1]←

∑
l∈SL [N] |l|;

98200 VOLUME 8, 2020

T. Lee et al.: Optimized Signature Selection for Efficient String Similarity Search

FIGURE 7. Query time for different c values.

TABLE 2. Datasets used in experiments.

minL (i.e., levels lv > minL) (Line 4). For each node N at the
level lv, it first locates the parent node NP of N (Line 6), and
obtains inverted lists for the query in N using the inverted
lists of the parent nodes, i.e., SL[Np] as follows. If N is the
left child of Np, it follows the left thread of each inverted list
in SL[Np] (Line 8). Otherwise, it follows the right thread of
each inverted list in SL[Np] (Line 9). To retrieve those inverted
lists that are not identified from SL[NP], it finally lookup
the inverted index in N (Line 11). For each segment w ∈
W(q,N), if the inverted list ofw is not identified from SL[NP]
(Line 12), we lookup the inverted index of N to retrieve the
inverted index (Line 13). In Line 12, we need to check if w is
contained in the segments corresponding to the inverted lists
in SL[N]. Thismembership test can be easily done bymerging
the positions of the segments inW(q,N) and the positions of
the segments corresponding to the inverted lists in SL[N].

V. EXPERIMENTS
A. EXPERIMENTAL SETTINGS
In experiments, we used four widely used real-world
datasets, IMDB Actor and Movie (http://www.imdb.com),
andWebCorpus (http://www.ldc.upenn.edu/Catalog, number
LDC2006T13). Some important statistics of the datasets are
presented in Table 2. We chose the datasets to compare
performance for short and long strings. Our algorithm was
implemented in GNU C++ and compiled with -O3 option.
All experiments were conducted on a machine with 32GB
main memory and Intel i7 CPU running an Ubuntu operating
system. Datasets and indices were held in main memory.

We randomly extracted 2000 query strings from each data
set, ran queries.We evaluated the proposed technique in terms
of query processing time. The reported results in this section
are aggregated response times from 2000 queries. Since the
HSTree technique consistently outperformed other existing
techniques as reported in [39], [48], we compared our tech-
nique with the original HSTree technique [39], [48]. In the

remaining sections, we denote our algorithm by OptSearch
and the original HSTree search algorithm by HSSearch.

B. EXPERIMENTS ON DIFFERENT C VALUES
In this subsection, we evaluate our algorithm varying c values.
Even when c > 1, as shown in [17]5, we can still estimate
an upper bound of the number of candidates with the sum
of the sizes of inverted lists for a query string. Therefore,
we can still use our algorithm to obtain an optimal combi-
nation of τ + c disjoint nodes. In this case, as discussed in
Section III-C, we only need to change maxL to dlog2(τ + c)e
and minL to dlog2(2

maxL/(2maxL
− (τ + c − 1)))e in our

algorithm.
Figure 7 shows query response times for alternative c

values on three different datasets. If we use a c value larger
than 1, an underflow of the number of partitions may occurs.
In this case, we re-evaluated the query using τ + 1 partitions.
For all datasets and thresholds, we observed that c = 2
exhibited the best performance. It can be explained by the
query time ratios shown in Figure 8. There is a trade-off
between filtering (i.e., merging inverted lists) and verification
(i.e., edit distance computation) times for different c values.
To obtain the best performance, we need to balance the trade-
off. As shown in the figure, the time differences between
filtering and verification were minimized when c was 2.
We remark that the cost for selecting an optimal combination
is negligible, and it is included in Indexlookup in Figure 8.
These results justify the motivation of our work described in
Section III-A. Based on the results in this subsection, we used
c = 2 in our algorithm in the following subsections.

C. EXPERIMENTS ON INDEX LOOKUP TIME
In this subsection, we evaluate the effects on index lookup
times when a threaded HSTree and the restriction of the
maximum levelmaxL are applied. Figure 9 shows the results.
When we used a threaded HSTree, index lookup time was
reduced by 1.5 times on average.Whenwe applied the restric-
tion of maxL (i.e., maxL= dlog2(τ + c)e) along with a
threaded HSTree, index lookup time was reduced by 2 times
on average. As shown in Figure 8, index lookup time did not
affect the query time when a threshold was large (e.g., τ ≥ 3).

5we remark that [17] is a DNA read mapping technique that utilizes q-
grams, and thus the contributions of this paper are orthogonal to that of [17].

VOLUME 8, 2020 98201

T. Lee et al.: Optimized Signature Selection for Efficient String Similarity Search

FIGURE 8. Query time ratios for different c values.

FIGURE 9. Index lookup time comparisions.

FIGURE 10. Comparisons with HSSearch (Query Time).

For a low threshold (e.g. τ = 1), however, index lookup
time was very important on the overall performance because
merging inverted lists and verifying candidate strings were
very fast. Since the proposed technique looks up inverted
indices in all HSTree nodes to select an optimized combi-
nation of nodes, it is crucial to reduce index lookup time
for low thresholds. As shown in the experiments in this sub-
section, the threaded HSTree structure and maxL restriction
technique effectively reduced index lookup time.

D. COMPARISONS WITH HSSearch
In this subsection, we compare our algorithm with
HSSearch. Figure 10 shows the results. On each dataset,
OptSearch outperformedHSSearch by up to about 3 times.
For low thresholds (e.g., τ ≤ 2), the performance of
OptSearch was just as good as HSSearch. This is because
inverted lists for partitions are very short and list merging
and edit distance computation can be done very quickly
on a low threshold. Since OptSearch requires more index

lookups, the benefit of OptSearch is reduced by the over-
head of index lookups. As a threshold increased, however,
OptSearch significantly outperformed HSSearch because
of the optimal partition selection and a good balance between
filtering and verification. For example, OptSearch is about
3 times faster than HSSearch when τ = 4 on the Actor
dataset (Figure 10(a)).

Since we used the dataset, Corpus, which contains
10millions of strings, we can see that the proposed techniques
scales well to a large dataset from Figure 10(c).

VI. RELATED WORK
A. SIMILARITY MEASURES
The problem of quantifying similarity between objects has
witnessed growing interest over the past decades. To measure
the similarity between text data, character-based similarity
functions and token set-based similarity functions are widely
used. The most representative character-based similarity
function is edit distance [11], [27], [28], [38], which is also

98202 VOLUME 8, 2020

T. Lee et al.: Optimized Signature Selection for Efficient String Similarity Search

known as Levenshtein distance. Since it reflects the ordering
of characters in strings and it allows non-trivial alignment,
it is widely adopted in many applications. For concrete
examples, it is used in practical applications such as diff
and patch commands in Linux OS systems, source code
management for version control systems like GitHub, and
DNA read mappers (e.g. [17], [18]) for analyzing genomic
data. Set-based similarity functions such as Jaccard coeffi-
cient [12], Dice [9] and Cosine similarity are also used to
measure the similarity between text data by tokenizing each
string into a set of words or q-grams. Since set-based similar-
ity functions considers only exact match between tokens, they
might not correctly measure similarity when the granularity
of a token is large. Fast-Join [40] and MF-Join [42] address
this problem by considering similarity between tokens using
edit distance before computing set-based similarity. LSA [19]
and it variants (e.g., [24], [25]) also have been developed
to measure similarity between documents through corpus
analysis.

There are similarity functions that are used in structured
data. SimRank [13] and many variants [26], [37], [47], [49],
[50], [52] has been proposed to consider semantic similarity
information between objects in information networks. The
intuition behind SimRank is that similar objects are linked by
similar objects. Based on the intuition, it quantifies node sim-
ilarity based on the compound similarity of their neighbors.
Graph edit distance [32], [34] and feature-based similarity
functions [5], [36], [51], [53] has been proposed to quantify
the similarity between complex objects represented by graph
models. Similar to edit distance, graph edit distance measure
the distance between two graphs using the minimum number
of edit operations to make the graphs isomorphic. In contrast
to edit distance, however, graph edit distance computation is
NP-hard and many techniques have been proposed to effi-
ciently compute graph edit distance (e.g. [15], [32]).

B. STRING SIMILARITY QUERY PROCESSING
Set similarity join is the problem of finding similar pairs of
records from two collections of records, which is essential
in many applications including data cleaning [8] and near
duplicate detection [45]. Many algorithms are developed for
the problem of set similarity join [1], [2], [6], [8], [10],
[30], [35], [40], [41], [43]–[45]. Some of these algorithms
(e.g. [2], [31]) solve only join problems, but most of these
algorithms can be applied to the search problem in their
original form or with slight modification. Many algorithms
and inverted index structures have been proposed for the
similarity search problem [3], [4], [6], [7], [16], [20], [21],
[29], [41], [46]. The technique called VGRAM [21], [46] was
proposed to use variable-length grams in an inverted index to
improve similarity search performance and reduce the index
size. A disk-based inverted index structure [4] was proposed
for supporting similarity search on large datasets. In [16],
a dataset partitioning algorithm has been proposed to reduce
the number of candidates by exploiting document frequency
orderings. Recent techniques exploits partitioning of data

strings to establish a filtering condition based on the pigeon-
hole principle. PassJoin [22], [23] decomposes data strings
into τ+1 partitions to perform efficient string similarity join.
HSTree [39], [48] proposes a hierarchical index structure
that considers multiple partitionings of a string to support
string similarity search using the partition-based approach of
PassJoin.

VII. CONCLUSION
In this paper, we propose an optimal partition selection algo-
rithm to improve the performance of string similarity search
using the HSTree indexing technique. We observed that there
can be multiple combination of τ + c disjoint nodes in an
HSTree, and proposed a novel dynamic programming algo-
rithm that selects an optimal combination of HSTree nodes.
To reduce the overhead of selecting optimal combination,
we also proposed a threaded HSTree, which is an enhanced
HSTree structure. We evaluated the proposed technique using
real datasets and showed our technique outperformed the
existing technique HSSearch.

REFERENCES

[1] A. Arasu, V. Ganti, and R. Kaushik, ‘‘Efficient exact set-similarity joins,’’
in Proc. VLDB, 2006, pp. 918–929.

[2] R. J. Bayardo, Y. Ma, and R. Srikant, ‘‘Scaling up all pairs similar-
ity search,’’ in Proc. 16th Int. Conf. World Wide Web WWW, 2007,
pp. 131–140.

[3] A. Behm, S. Ji, C. Li, and J. Lu, ‘‘Space-constrained gram-based indexing
for efficient approximate string search,’’ inProc. IEEE 25th Int. Conf. Data
Eng., Mar. 2009, pp. 604–615.

[4] A. Behm, C. Li, and M. J. Carey, ‘‘Answering approximate string queries
on large data sets using external memory,’’ in Proc. IEEE 27th Int. Conf.
Data Eng., Apr. 2011, pp. 888–899.

[5] H. Bunke and K. Shearer, ‘‘A graph distance metric based on the max-
imal common subgraph,’’ Pattern Recognit. Lett., vol. 19, nos. 3–4,
pp. 255–259, Mar. 1998.

[6] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani, ‘‘Robust and efficient
fuzzy match for online data cleaning,’’ in Proc. ACM SIGMOD Int. Conf.
Manage. Data SIGMOD, 2003, pp. 313–324.

[7] S. Chaudhuri, V. Ganti, and L. Gravano, ‘‘Selectivity estimation for string
predicates: Overcoming the underestimation problem,’’ in Proc. 20th Int.
Conf. Data Eng., 2004, pp. 227–238.

[8] S. Chaudhuri, V. Ganti, and R. Kaushik, ‘‘A primitive operator for simi-
larity joins in data cleaning,’’ in Proc. 22nd Int. Conf. Data Eng. (ICDE),
Apr. 2006, p. 5.

[9] L. R. Dice, ‘‘Measures of the amount of ecologic association between
species,’’ Ecology, vol. 26, no. 3, pp. 297–302, Jul. 1945.

[10] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas, S. Muthukrishnan,
and D. Srivastava, ‘‘Approximate string joins in a database (almost) for
free,’’ in Proc. VLDB, Sep. 2001, pp. 491–500.

[11] P. A. V. Hall and G. R. Dowling, ‘‘Approximate string matching,’’ ACM
Comput. Surv., vol. 12, pp. 381–402, Dec. 1980.

[12] P. Jaccard, ‘‘Étude comparative de la distribution florale dans une portion
des alpes et des jura,’’ Bull Soc Vaudoise Sci. Nat., vol. 37, pp. 547–579,
1901.

[13] G. Jeh and J. Widom, ‘‘SimRank: A measure of structural-context similar-
ity,’’ in Proc. 8th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining
KDD, 2002, pp. 538–543.

[14] J. Kim, ‘‘An effective candidate generation method for improving perfor-
mance of edit similarity query processing,’’ Inf. Syst., vol. 47, pp. 116–128,
Jan. 2015.

[15] J. Kim, D.-H. Choi, and C. Li, ‘‘Inves: Incremental partitioning-based ver-
ification for graph similarity search,’’ in Proc. EDBT, 2019, pp. 229–240.

[16] J. Kim and H. Lee, ‘‘Efficient exact similarity searches using multiple
token orderings,’’ in Proc. IEEE 28th Int. Conf. Data Eng., Apr. 2012,
pp. 822–833.

VOLUME 8, 2020 98203

T. Lee et al.: Optimized Signature Selection for Efficient String Similarity Search

[17] J. Kim, C. Li, andX. Xie, ‘‘Improving readmapping using additional prefix
grams,’’ BMC Bioinf., vol. 15, no. 1, p. 42, 2014.

[18] J. Kim, C. Li, and X. Xie, ‘‘Hobbes3: Dynamic generation of variable-
length signatures for efficient approximate subsequence mappings,’’ in
Proc. IEEE 32nd Int. Conf. Data Eng. (ICDE), May 2016, pp. 169–180.

[19] T. K. Landauer and S. T. Dumais, ‘‘A solution to Plato’s problem: The latent
semantic analysis theory of acquisition, induction, and representation of
knowledge.,’’ Psychol. Rev., vol. 104, no. 2, pp. 211–240, 1997.

[20] C. Li, J. Lu, and Y. Lu, ‘‘Efficient merging and filtering algorithms for
approximate string searches,’’ in Proc. IEEE 24th Int. Conf. Data Eng.,
Apr. 2008, pp. 257–266.

[21] C. Li, B. Wang, and X. Yang, ‘‘VGRAM: Improving performance of
approximate queries on string collections using variable-length grams,’’
in Proc. VLDB, 2007, pp. 303–314.

[22] G. Li, D. Deng, and J. Feng, ‘‘Pass-join+: A partition-based method
for string similarity joins with edit-distance constraints,’’ ACM Trans.
Database Syst., vol. 38, no. 2, pp. 1–40, 2013.

[23] G. Li, D. Deng, J. Wang, and J. Feng, ‘‘Pass-join: A partition based method
for similarity joins,’’ Proc. VLDB Endowment, vol. 5, no. 3, pp. 253–264,
2011.

[24] P. Martin, S. Benno, and A. Maik, ‘‘A wikipedia- based multilingual
retrieval model,’’ in Proc. ECIR, 2008, pp. 522–530.

[25] I. Matveeva, G. Levow, A. Farahat, and C. Royer, ‘‘Term representa-
tion with generalized latent semantic analysis,’’ in Proc. RANLP, 2005,
pp. 308–315.

[26] T. Milo, A. Somech, and B. Youngmann, ‘‘Boosting simrank with seman-
tics,’’ in Proc. EDBT, 2019, pp. 1–12.

[27] S. B. Needleman and C. D. Wunsch, ‘‘A general method applicable to the
search for similarities in the amino acid sequence of two proteins,’’ J. Mol.
Biol., vol. 48, no. 3, pp. 443–453, Mar. 1970.

[28] J. L. Peterson, ‘‘Computer programs for detecting and correcting spelling
errors,’’ Commun. ACM, vol. 23, no. 12, pp. 676–687, Dec. 1980.

[29] J. Qin,W.Wang, Y. Lu, C. Xiao, and X. Lin, ‘‘Efficient exact edit similarity
query processing with the asymmetric signature scheme,’’ in Proc. Int.
Conf. Manage. Data SIGMOD, 2011, pp. 1033–1044.

[30] K. Ramasamy, J. M. Patel, R. Kaushik, and J. F. Naughton, ‘‘Set contain-
ment joins: The good, the bad and the ugly,’’ in Proc. VLDB, Sep. 2000,
pp. 351–362.

[31] L. A. Ribeiro and T. Härder, ‘‘Efficient set similarity joins using min-
prefix,’’ in Proc. ADBIS, 2009, pp. 88–102.

[32] K. Riesen, S. Fankhauser, and H. Bunke, ‘‘Speeding up graph edit
distance computation with a bipartite heuristic,’’ in Proc. MLG, 2007,
pp. 21–24.

[33] M. Sahami and T. D. Heilman, ‘‘A Web-based kernel function for measur-
ing the similarity of short text snippets,’’ in Proc. 15th Int. Conf. World
Wide Web WWW, 2006, pp. 377–386.

[34] A. Sanfeliu and K.-S. Fu, ‘‘A distance measure between attributed rela-
tional graphs for pattern recognition,’’ IEEE Trans. Syst., Man, Cybern.,
vols. SMC–13, no. 3, pp. 353–362, May 1983.

[35] S. Sarawagi and A. Kirpal, ‘‘Efficient set joins on similarity predi-
cates,’’ in Proc. ACM SIGMOD Int. Conf. Manage. Data SIGMOD, 2004,
pp. 743–754.

[36] H. Shang, X. Lin, Y. Zhang, J. X. Yu, and W. Wang, ‘‘Connected substruc-
ture similarity search,’’ in Proc. Int. Conf. Manage. Data SIGMOD, 2010,
pp. 903–914.

[37] H. Tong, C. Faloutsos, and J.-Y. Pan, ‘‘Fast random walk with restart and
its applications,’’ in Proc. 6th Int. Conf. Data Mining (ICDM), Dec. 2006,
pp. 613–622.

[38] R. A. Wagner and M. J. Fischer, ‘‘The String-to-String correction prob-
lem,’’ J. ACM (JACM), vol. 21, no. 1, pp. 168–173, Jan. 1974.

[39] J. Wang, G. Li, D. Deng, Y. Zhang, and J. Feng, ‘‘Two birds with one stone:
An efficient hierarchical framework for top-k and threshold-based string
similarity search,’’ in Proc. IEEE 31st Int. Conf. Data Eng., Apr. 2015,
pp. 519–530.

[40] J. Wang, G. Li, and J. Fe, ‘‘Fast-join: An efficient method for fuzzy token
matching based string similarity join,’’ in Proc. IEEE 27th Int. Conf. Data
Eng., Apr. 2011, pp. 458–469.

[41] J. Wang, G. Li, and J. Feng, ‘‘Can we beat the prefix filtering?: An adaptive
framework for similarity join and search,’’ inProc. Int. Conf.Manage. Data
SIGMOD, 2012, pp. 85–96.

[42] J.Wang, C. Lin, and C. Zaniolo, ‘‘MF-join: Efficient fuzzy string similarity
join with multi-level filtering,’’ in Proc. IEEE 35th Int. Conf. Data Eng.
(ICDE), Apr. 2019, pp. 386–397.

[43] C. Xiao, W. Wang, and X. Lin, ‘‘Ed-join: An efficient algorithm for sim-
ilarity joins with edit distance constraints,’’ in Proc. PVLDB, Aug. 2008,
pp. 933–944.

[44] C. Xiao, W. Wang, X. Lin, and H. Shang, ‘‘Top-k set similarity joins,’’ in
Proc. IEEE 25th Int. Conf. Data Eng., Mar. 2009, pp. 916–927.

[45] C. Xiao, W. Wang, X. Lin, and J. X. Yu, ‘‘Efficient similarity joins for near
duplicate detection,’’ in Proc. 17th Int. Conf. WorldWideWebWWW, 2008,
pp. 131–140.

[46] X. Yang, B. Wang, and C. Li, ‘‘Cost-based variable-length-Gram selection
for string collections to support approximate queries efficiently,’’ in Proc.
ACM SIGMOD Int. Conf. Manage. Data SIGMOD, 2008, pp. 353–364.

[47] S.-H. Yoon, S.-W. Kim, and S. Park, ‘‘C-rank: A link-based similarity
measure for scientific literature databases,’’ Inf. Sci., vol. 326, pp. 25–40,
Jan. 2016.

[48] M. Yu, J. Wang, G. Li, Y. Zhang, D. Deng, and J. Feng, ‘‘A unified frame-
work for string similarity search with edit-distance constraint,’’ VLDB J.,
vol. 26, no. 2, pp. 249–274, Apr. 2017.

[49] W. Yu, X. Lin, W. Zhang, J. Pei, and J. A. McCann, ‘‘SimRank*: Effective
and scalable pairwise similarity search based on graph topology,’’ VLDB
J., vol. 28, no. 3, pp. 401–426, Jun. 2019.

[50] M. Zhang, J. Wang, and W. Wang, ‘‘HeteRank: A general similarity
measure in heterogeneous information networks by integrating multi-type
relationships,’’ Inf. Sci., vol. 453, pp. 389–407, Jul. 2018.

[51] S. Zhang, J. Yang, andW. Jin, ‘‘SAPPER: Subgraph indexing and approxi-
mate matching in large graphs,’’ Proc. VLDB Endowment, vol. 3, nos. 1–2,
pp. 1185–1194, Sep. 2010.

[52] P. Zhao, J. Han, andY. Sun, ‘‘P-rank: A comprehensive structural similarity
measure over information networks,’’ in Proc. 18th ACM Conf. Inf. Knowl.
Manage. CIKM, 2009, pp. 553–562.

[53] G. Zhu, X. Lin, K. Zhu, W. Zhang, and J. X. Yu, ‘‘TreeSpan: Efficiently
computing similarity all-matching,’’ in Proc. Int. Conf. Manage. Data
SIGMOD, 2012, pp. 529–540.

TAEGYOUNG LEE received the B.S. and M.S.
degrees in computer science and engineering
from Jeonbuk National University, South Korea,
in 2015 and 2017, respectively, and the second
M.S. degree in computer science from the Korea
Advanced Institute of Science and Technology
(KAIST), in 2019. She is currently pursuing the
Ph.D. degree in computer science and engineer-
ing with The Hong Kong University of Science
and Technology (HKUST). Her research interests

include data analysis, theory of computation, and computational geometry.

TAE-SUN CHUNG received the B.S. degree
in computer science from the Korea Advanced
Institute of Science and Technology (KAIST),
in February 1995, and the M.S. and Ph.D. degrees
in computer science from Seoul National Uni-
versity, South Korea, in February 1997 and
August 2002, respectively. He is currently a Pro-
fessor with the Department of Software, Ajou
University. His current research interests include
flash memory storage, query processing in spatial

databases, machine learning, similarity search, and general database systems.

JONGIK KIM received the B.S. and M.S.
degrees in computer science from the Korea
Advanced Institute of Science and Technology
(KAIST), in 1998 and 2000, respectively, and
the Ph.D. degree in computer engineering from
Seoul National University, South Korea, in 2004.
He worked as a Senior Researcher at the Elec-
tronics and Telecommunications Research Insti-
tute (ETRI), from 2004 to 2007. He joined the
Division of Computer Science and Engineering,

Jeonbuk National University, as a Faculty Member, in 2007. He is currently
a Professor with Jeonbuk National University. He was a Visiting Scholar
with the University of California at Irvine (UCI) Irvine, from 2012 to
2013. He has been working in the area of semi-structured database (XML
database), telematics systems, flash-memory data management, event stream
processing, and similarity query processing.

98204 VOLUME 8, 2020

	INTRODUCTION
	PROBLEM FORMULATION AND PRIOR WORK
	PROBLEM FORMULATION
	DISJOINT SIGNATURE-BASED APPROACH FOR GENERATING CANDIDATES
	HSTree

	OPTIMIZED HSTree NODE SELECTION
	MOTIVATION OF OUR WORK
	OPTIMIZED NODE SELECTION ALGORITHM
	REDUCING INDEX LOOKUP OVERHEAD

	THREADED HSTree
	EXPERIMENTS
	EXPERIMENTAL SETTINGS
	EXPERIMENTS ON DIFFERENT C VALUES
	EXPERIMENTS ON INDEX LOOKUP TIME
	COMPARISONS WITH HSSearch

	RELATED WORK
	SIMILARITY MEASURES
	 STRING SIMILARITY QUERY PROCESSING

	CONCLUSION
	REFERENCES
	Biographies
	TAEGYOUNG LEE
	TAE-SUN CHUNG
	JONGIK KIM

