
Received May 11, 2020, accepted May 18, 2020, date of publication May 25, 2020, date of current version June 5, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2997258

cBiK: A Space-Efficient Data Structure
for Spatial Keyword Queries
CARLOS E. SANJUAN-CONTRERAS 1, GILBERTO GUTIÉRREZ RETAMAL 1,
MIGUEL A. MARTÍNEZ-PRIETO2, AND DIEGO SECO 3
1Department of Computer Science and Information Technology, University of Bío-Bío, Chillán 3780000, Chile
2Department of Computer Science, University of Valladolid, 40005 Segovia, Spain
3Department of Computer Science, Millenium Institute for Foundational Research on Data (IMFD), Universidad de Concepción, Concepción 4070386, Chile

Corresponding author: Carlos E. Sanjuan-Contreras (csanjuan@ubiobio.cl)

The work of Carlos E. Sanjuan-Contreras and Gilberto Gutiérrez R. was supported by the University of Bío-Bío under Grant 192119 2/R
and Grant 195119 GI/VC. The work of Miguel A. Martínez-Prieto was supported by the Ministerio de Economía y Competitividad
(Presupuestos Generales del Estado (PGE) and Fondo Europeo de Desarrollo Regional (FEDER)), Spain, under Grant Datos 4.0:
TIN2016-78011-C4-1-R. The work of Diego Seco was supported in part by the Millennium Institute for Foundational Research
on Data, and in part by the National Agency for Research and Development (ANID) through Fondo Nacional de Desarrollo
Científico y Tecnológico (FONDECYT), Chile, under Grant 1170497.

ABSTRACT A vast amount of geo-referenced data is being generated by mobile devices and other sensors
increasing the importance of spatio-textual analyses on such data. Due to the large volume of data, the use of
indexes to speed up the queries that facilitate such analyses is imperative. Many disk resident indexes have
been proposed for different types of spatial keyword queries, but their efficiency is harmed by their high
I/O costs. In this work, we propose cBiK, the first spatio-textual index that uses compact data structures to
reduce the size of the structure, hence facilitating its usage in main memory. Our experimental evaluation,
shows that this approach needs half the space and is more than one order of magnitude faster than a disk
resident state-of-the-art index. Also, we show that our approach is competitive even in a scenario where the
disk resident data structure is warmed-up to fit in main memory.

INDEX TERMS Bitmap, compact data structure, kNN, spatial keyword query, spatio-textual data.

I. INTRODUCTION
The boom of mobile devices has made it possible to live
experiences and to access services that were inconceivable
a few years ago. Location-based applications are a good
example. Although they are ubiquitous nowadays, a decade
ago it was hard to imagine that a mobile phonewould allow us
to look for the nearest ‘‘tapas’’ restaurant or to obtain a list of
pet-friendly hotels located less than 3 km away. These appli-
cations have emerged due to the development of positioning
technologies such as GPS (Global Positioning System), but
also due to the consolidation of geo-tagged datasets, which
provide textual descriptions (usually as lists of keywords) for
geo-positioned objects.

SPOI1 (Smart POI dataset) is a good example of
geo-tagged dataset. It contains more than 27 million points of
interest around the world, including cafes, pubs, restaurants,
or hotels, which are described using keywords about their

The associate editor coordinating the review of this manuscript and

approving it for publication was Waleed Alsabhan .
1https://sdi4apps.eu/spoi/

specialties or the amenities they provide. Picture datasets or
collections of microposts from social-networks can be also
considered geo-tagged datasets. The former provides large
collections of geo-positioned pictures that are described using
particular keywords (e.g. an image of the ‘‘Grand Canyon’’
has its GPS coordinates, and also a set of keywords like
‘‘Natural park’’, ‘‘USA’’, or ‘‘Ancestral Puebloans’’, among
others). On the other hand, collections from social networks
expose large amounts of microposts that contain the loca-
tion from which they were published, and lists of hashtags,
as keywords.

In other domains, such as the Web, where just a portion of
the content is geo-tagged, there are some attempts to automat-
ically detect locations from web resources [1]. Such results
would enable the development of general location-aware
search engines, in which data structures such as the one pro-
posed in our work, are essential for an efficient information
retrieval as an extension of ubiquitous inverted indexes.

Geo-tagged datasets are increasingly larger, hence man-
aging and querying them is becoming more challenging.
Many and varied approaches have been described in the state

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 98827

https://orcid.org/0000-0002-7606-6474
https://orcid.org/0000-0001-6059-1453
https://orcid.org/0000-0002-2514-9907
https://orcid.org/0000-0002-6921-8812

C. E. Sanjuan-Contreras et al.: cBiK: Space-Efficient Data Structure for Spatial Keyword Queries

of the art for such purposes, but all of them share a main
feature: they are designed over disk-resident data structures
(indexes), which involve an important overhead in query
resolution time due to I/O operations. More recently, compact
data structures [2] have emerged as an efficient approach for
managing large datasets in main memory. These structures
store data in a compact manner, and are able to query them
with no prior decompression. This approach avoids costly
I/O operations, at the price of performing more computations
to access the data. In other words, compact data structures
are usually slower than traditional approaches when running
in the same level of the memory hierarchy, but they are
more likely to fit in higher levels, drastically increasing query
time performance. Although compact data structures have
been successfully used for different applications, including
spatial [3] or keyword-based search [4], they have not
been evaluated yet for queries that involve spatial and
keyword-based predicates, to the best of our knowledge.

In this paper, we propose a novel compact data structure
(called cBiK) that is able to store geo-tagged data in compact
space and it is also able to resolve three different spatial
keyword queries, Boolean Top-k Spatial Keyword Query
(BkSKQ), Ranked Top-k Spatial Keyword Query (RkSKQ)
and Boolean Range Searching Spatial Keyword Query
(bRS-SKQ). cBiK indexes spatial objects using an implicit
KD-tree, with no pointers, and encodes their descriptive key-
words using compressed bitmaps. Our experiments report
that cBiK uses only 35−40% of the space required by a state-
of-the-art index, while answers the corresponding queries up
to 2 orders of magnitude faster for a selected testbed, which
includes different real-world datasets. When both indexes
reside in main memory, query times are comparable, which
is not a surprising result when using compact data structures
as explained above. Furthermore, it is worth noting that cBiK
is a static index; i.e. it must be rebuilt from scratch to add
new data or update spatio-textual objects descriptions. This
is common when using compact data structures due to the
cost of update bitmaps [2].

A preliminary partial version of this researchwas presented
in [5]. In this article, we describe an improved version of
our data structure, which is also able to answer RkSKQ and
bRS-SKQ queries. In addition, we provide a more compre-
hensive experimental evaluation, including some new exper-
iments to thoroughly evaluate the performance of our data
structure and algorithms.

The rest of the paper is organized as follows. First,
Section II formally states the problem of spatio-textual
indexing and its variants. Then, Section III describes com-
mon approaches for dealing with spatial and temporal data
independently. Also, some basic concepts about compact
data structures are provided. This section can be skipped
by the reader with previous knowledge about such top-
ics. Section IV summarizes state-of-the-art approaches to
combine both dimensions in spatio-textual indexes. Then,
Section V describes our data structure, and Section VI
explains the three algorithms proposed to implement the

FIGURE 1. Example of a geo-tagged dataset describing hotels and the
services each provides.

corresponding spatial keyword queries. A comprehen-
sive experimental evaluation is presented in Section VII,
where cBiK is compared to a reference approach. Finally,
Section VIII concludes about our current results and devises
future lines of research.

II. PROBLEM DEFINITION
Before delving into the background of the paper, two basic
definitions need to be established:
Definition 1 (Spatio-Textual Object): A spatio-textual

object o is a tuple 〈l, t〉, where o.l provides the corresponding
spatial position, in a two dimensional plane, and o.t is the list
of keywords that describe the object.
Definition 2 (Geo-Tagged Dataset): A geo-tagged data-

set D is a collection of n spatio-textual objects, which are
tagged using a set T of m different keywords.

Fig. 1 illustrates a simple geo-tagged dataset that contains
n = 7 spatio-textual objects, each one describing a hotel
and the set of different services it offers. Note that m = 10
different services are offered, and the corresponding set of
keywords is T = {Air-conditioning, Bar, Buffet, Laundry,
Parking, Pets, Pool, Room-service, Smoke-free, Wi-Fi}.

A. SPATIAL KEYWORD QUERIES
A Spatial Keyword Query (SKQ) takes a user location and
user-supplied keywords as arguments and returns objects that
are spatially and textually relevant to these arguments [6].
Although different SKQs have been proposed in the state of
the art, we focus on the three types studied in [7], that are
explained below.

1) BOOLEAN TOP-k SPATIAL KEYWORD QUERY (BkSKQ)
BkSKQ retrieves the k objects closest to a given location,
which also satisfy the requested keywords. More formally,
BkSKQ is defined as a query q = 〈l, t, k〉, where q.l is the
location of the query point (latitude and longitude), q.t is the

98828 VOLUME 8, 2020

C. E. Sanjuan-Contreras et al.: cBiK: Space-Efficient Data Structure for Spatial Keyword Queries

list of requested keywords, and 1 ≤ q.k ≤ n is the maximum
number of objects to be retrieved.

BkSKQ returns a result set that contains, at most,
q.k objects: {o1, o2, . . . , oq.k}, which are the q.k objects clos-
est to q.l, ordered by Euclidean distance (ascending order),
that also satisfy q.t ⊆ oi.t , with 1 ≤ i ≤ q.k .
An example of BkSKQ query is looking for the 2 closest

hotels to our location2 that provide Wi-Fi and Parking ser-
vices: q = 〈(xi, yi), {Wi-Fi, Parking}, 2〉. As can be seen
in Fig. 1, p3 and p1 are the closest hotels to our location that
provide the requested services, so they are returned in such
an order.

2) RANKED TOP-k SPATIAL KEYWORD QUERY (RkSKQ)
RkSKQ uses a function score to retrieve the best-rated objects
according to their proximity to the desired location and their
textual relevance to the requested keywords. Specifically,
the function to obtain the score of a spatio-textual object o
for a query q, is defined as:

τ (o, q) = α · δ(o.l, q.l)+ (1− α) · θ (o.t, q.t) (1)

Note that δ(o.l, q.l) corresponds to the spatial proxim-
ity between o and q, and θ (o.t, q.t) measures the textual
relevance between o and q. Spatial proximity and textual
relevance are weighted by a preference parameter α ∈ [0, 1].
Thus, if α = 1, τ (o, q) only considers spatial proximity, while
if α = 0, only textual relevance is used to rank the best
candidates.

More formally, RkSKQ is defined as a query q =

〈l, t, k, α〉, where q.l, q.t , and q.k have the same meaning
that in BkSKQ, and α ∈ [0, 1] weights the importance of
spatial proximity and textual relevance in the final result.
Thus, RkSKQ returns a ranked list that includes the best-rated
spatial points (in descending order) for the given query.

a: SPATIAL PROXIMITY
The spatial proximity δ(o.l, q.l) is calculated using the
normalized Euclidean distance, as defined in (2), where
dist(o.l, q.l) is the Euclidean distance between o and q, and
distmax is the maximum Euclidean distance between two
objects in D:

δ(o.l, q.l) = 1−
dist(o.l, q.l)
distmax

(2)

b: TEXTUAL RELEVANCE
Different information retrieval models, like Language
Model [8], Cosine Similarity [9] or BM25 [10], have been
used to obtain the textual relevance of a point to a given
query. In our case, we use a simple model that assigns the
same relevance to all the keywords requested in a query, so the
textual relevance of a point (to a given query) is proportional

2We assume that ‘‘our location’’ is defined by coordinates (xi, yi).

to the number of requested keywords that it contains:

θ (o.t, q.t) =
|q.t|∑
i=1

1
|q.t|

, if q.ti ∈ o.t (3)

An example RkSKQ query, where proximity is consid-
ered more relevant than the services provided by the hotel
(e.g. proximity is weighted as 0.75) is looking for the
2 best hotels that provide Wi-Fi and Parking services:
q = 〈(xl, yl), {Wi-Fi, Parking}, 2, 0.75〉. In this case, p3 is
returned because it provides both services and it is closer to
our location. However, p5 is returned (instead of p1) although
it does not provide Parking, because it is closer to our loca-
tion, and proximity is more relevant for the given query.

3) BOOLEAN RANGE SEARCHING SPATIAL KEYWORD
QUERY (bRS-SKQ)
bRS-SKQ retrieves all objects located within a determined
query region that also contain all the requested keywords.
More formally, q = 〈r, t〉 where q.r indicates a (rectangular
shaped) query region and q.t , as in the previous queries,
provides the list of requested keywords.

The result of bRS-SKQ is a collection of objects: {o1, . . .},
such that ∀oi, it is satisfied that oi.l ∩ q.r 6= ∅ ∧ q.t ⊆ oi.t .

An example of bRS-SKQ is looking for hotels that provide
Wi-Fi in our region3, which is represented by the red-line
square in Fig. 1: q = 〈(xbl, ybl; xtr , ytr), {Wi-Fi}〉. In this
case, only p3 and p5 are returned, because the other candi-
dates with Wi-Fi are outside the given region.

III. PREVIOUS CONCEPTS
In this section, we summarize the basic knowledge about
spatial indexes, textual indexes and compact data structures
that is necessary to follow our work. The reader with previous
knowledge about such topics may safely skip the section.

A. SPATIAL INDEXES
A spatial index is a data structure designed to answer dif-
ferent types of spatial queries. Here we review three of the
most used spatial indexes, which are also components of the
spatio-textual indexes described in Section IV.

1) R-TREE
The R-Tree is one of the most studied spatial access methods
and also one of the most widely used in practice, as it has been
adopted by several Database Management Systems (DBMS)
such as Oracle and Postgres. It was proposed byGüttman [11]
to dynamically index multidimensional information (points,
polylines and regions in space) and it performs a recursive
partition of the space where spatial objects are located and
organizes such partitions into a balanced tree.

In general, leaf nodes of the R-tree store a simplification
of the actual objects called Minimum Bounding Rectangle
(MBR). Leaves also store a reference ref to the actual object.

3We assume that the region is defined by its bottom-left and top-right
coordinates: (xbl , ybl) and (xtr , ytr), respectively.

VOLUME 8, 2020 98829

C. E. Sanjuan-Contreras et al.: cBiK: Space-Efficient Data Structure for Spatial Keyword Queries

In the particular case of points, the leaves of the tree can
store the actual objects. Internal nodes, on the other hand,
correspond to a disk block and contain entries of the form
〈MBRi, refi〉, where refi is a pointer to the corresponding
child node, and MBRi is the smallest rectangle that covers
all the MBRs associated with the child nodes. The key idea
behind the R-Tree is to store spatially-close objects in the
same block.

Although the R-Tree was initially proposed to solve range
queries, different algorithms have been proposed to solve
varied geometric problems. For example, the k > 0 nearest
neighbors to a given point q [12], the k > 1 pairs of nearest
neighbors between two sets of points [13], or the computation
of the Hausdorff distance between two sets of points [14],
to name a few.

2) QUADTREE
A Quadtree [15], [16] is a multidimensional data
structure used to represent and index point-type objects
in a d-dimensional space. Like the R-Tree, it recursively
decomposes the space by means of iso-oriented hyperplanes
representing the subspaces using a tree data structure, whose
root represents the entire space.

In a space of d dimensions, each internal node of
the quadtree has 2d children, each one representing the
2d subspaces of the space associatedwith the node. The recur-
sive decomposition continues until the number of objects is
below a threshold. A quadtree is not necessarily balanced
because the denser subspaces (i.e. those containing more
objects) can generate nodes much deeper than less dense
subspaces [16]. This is because, unlike the R-Tree, the space
partitioning is oblivious of the actual objects and just depend
on the universe (i.e. the space in which the objects are repre-
sented).

3) KD-TREE
The KD-Tree [17] was proposed to index points in
k-dimensions. It also decomposes the space recursively but,
unlike the Quadtree, the division does not have to gener-
ate two partitions of equal size. An orthogonal hyperplane
aligned with the axes of coordinates is used in the partition-
ing. In each level, the axes alternate; that is, if working with
two dimensions, the plane is first cut by the x axis, then by
the y axis, and in the next level again by the x axis.

The structure is represented as a binary tree in which
each internal node represents a cut in space. To balance the
tree, the points that are lower than the current cut-off point,
which is the median of the subspace in the order of the
corresponding dimension, are stored in the left sub-tree and
the others in the right sub-tree. The leaf nodes represent the
point themselves when there are no more subspaces to divide.

B. TEXT INDEXES
A text index is a data structure particularly designed to answer
text-based queries. Here, we introduce text indexes that are
frequently used to perform efficient keyword-based queries.

1) INVERTED INDEX
An inverted index (also referred to as inverted file) [18] is the
reference index for information retrieval purposes. It is built
over the set of m different words used in a data collection.
An inverted index is composed by two main components (i) a
vocabulary, which encodes the set of m words, and (ii) a set
of m inverted lists (or posting lists), where each one stores
references to all occurrences of a particular word.

Posting lists may encode occurrences information at differ-
ent levels of granularity. According to the scope of this paper,
we consider that each list stores the IDs of the spatio-textual
objects that are described by a given keyword.

Inverted indexes excel at word-based query resolution.
They basically look for the searched word in the vocabu-
lary, and the corresponding inverted list is retrieved. Boolean
AND/OR queries, like the ones required by SKQs, are also
resolved efficiently by manipulating the inverted lists of each
requested keyword.

2) SIGNATURE FILE
A signature file is a text indexing approach [19] that divides
a text collection into logical blocks of D distinct words. Each
word has its signature, a bitstring of size F , whith m bits acti-
vated. F and m are parameters of the file. To encode a block,
the signatures of their words are superimposed (bit OR-ed)
to obtain a single F-bit pattern. The whole text collection is
encoded by concatenating block signatures.

The process is replicated for query resolution. That is,
the signatures of the requested words are first superimposed
and the resulting signature is searched.

In comparisonwith inverted indexes, signature files require
much less storage space but, on the other hand, have
a high processing cost to perform a query due to the
I/O operations [20].

C. COMPACT DATA STRUCTURES
Compact data structures store data using small space while
allow them to be queried with no prior decompression [2].
These structures drastically reduce their memory footprint,
enabling to manage large data collections at the top levels of
the memory hierarchy, and also avoiding costly I/O opera-
tions. Regardless of the type of structure being implemented,
most compact data structures are built on top of particular
configurations of bitvectors. A bitvector is a bit array B[1, n]
that provides three main operations:

• access(B,i) returns the bit B[i], for any 1 ≤ i ≤ n.
This operation is similar to that provided by traditional
bitmap indexes.

• rankv(B,i) counts the number of times that the bit
v ∈ [0, 1] occurs in B[1, i], for any 0 ≤ i ≤ n (note that
rankv(B,0)=0).

• selectv(B,j) returns the position of the j-th occur-
rence of the bit v ∈ [0, 1] in B, for any j ≥ 0 (note that
selectv(B,0)=0).

98830 VOLUME 8, 2020

C. E. Sanjuan-Contreras et al.: cBiK: Space-Efficient Data Structure for Spatial Keyword Queries

There are several implementations that provide a
space-time trade-off to support such operations. To ensure
constant time performance for these operations, it is nec-
essary to enhance bitvectors with some additional struc-
tures that add extra bits on top of the bit array. In this
paper, we will use the bit_vector implementation from
SDSL [21], which uses 64dn/64+ 1e bits.
Some other approaches leverage bit redundancy to com-

press bitvectors, ensuring efficient performance. In this
paper, we use an implementation4 of the sparse array
(SD-array) [22] to exploit the sparseness of the cBiK
bitvectors. This structure excels when the proportion of
1s in the bitvector is below 5%, providing (very) effi-
cient select(B,1) in constant time, and rank(B,1) in
O(log(n/m)), where m is the number of 1-bits.

IV. RELATED WORK
As shown above, different indexes have been proposed to
solve spatial and textual queries independently, but solving
spatio-textual queries implies the combination of both types
of indexes. In this section, we review the main approaches in
the literature to solve the three types of queries described in
Section II-A.
Most of the proposed indexes focus on efficiently process-

ing the corresponding queries, but do not consider the large
storage requirements to achieve such goal. It is worth noting
that all approaches described in the following are based on
data structures that reside in secondary memory and have
large space requirements.

The first approaches to solve bRS-SKQ kept the spatial
index apart from the textual index. For example, [23] pro-
poses two approaches using a Quadtree and an Inverted File.
As the indexes are independent, one is used to filter the
candidate results, and the other one to refine the result. The
main advantage of this approach is its simplicity, but the
efficiency is lower when compared with hybrid approaches.

One of the first hybrid approaches was proposed in [24],
which combines an R*-tree [25] and an Inverted File in
different ways. The best results were obtained by the IF-R*,
which builds an Inverted File for each term, which is also
associated with an R*-Tree containing all the corresponding
points. To perform a query, the Inverted File is used to filter
the keywords and then, spatial range queries are performed in
each candidate R*-tree, which implies additional disk costs
due to the access to independent trees. Later, the KR*-tree
(Keyword R*-tree) [26] reduced the I/O costs thank to an
efficient pruning of the tree traversal.

De Felipe et al. [27] described the first approach for
BkSKQ queries: the IR2-Tree, which stores a signature
file [19] in each node of the tree to summarize the pres-
ence/absence of keywords. Our proposal of using compact
bitmaps to represent the keywords that are present in each
subspace is inspired in such work. However, there are several
important differences, such as the use of compact bitmaps

4The sd_array implementation from the SDSL library [21].

(instead of signature files), the use of an implicit KD-tree,
and the support for the three types of queries described in
Section II-A.
Later, [8] proposed a new kind of top-k query that takes

into account both location proximity and text relevancy
(RkSKQ), the IR-tree (combines an Inverted File and an
R-Tree in which each node is augmented with a summary
of the textual information). Similar proposals can be found
in [28]–[30].

Rocha-Junior Nørvåg [31] proposed the Spatial Inverted
Index (S2I) to solve RkSKQ queries using an R-tree and
an Inverted File. S2I uses different strategies to index fre-
quent and infrequent keywords. Hence, S2I maps each
keyword t to an aggregated R-tree (aR-tree) or to a block
storing spatio-textual objects that contain t . The most fre-
quent keywords are stored in the aR-tree using a tree for
each keyword. The less frequent ones are stored in blocks in
a file, one block per keyword (similar to the Inverted File).
In the aR-Tree, each node stores an aggregate value that
indicates the maximum impact (in terms of the punctuation
of the textual relevance) of the keyword in the objects of the
tree. The aR-Tree can be devised as an IR-tree [8], [29] for
a single keyword. For queries with a single keyword, only
a small tree or a block is accessed, in general. For queries
with several keywords, some nodes of a small set of trees or
blocks are accessed leading to efficient execution of queries.
The potential of S2I is demonstrated in the experimental
evaluation of [7], which compares the best 12 spatio-textual
indexes to date for the three types of queries described in
Section II-A. Although S2I originally responds only RkSKQ,
it is easily modifiable to answer the other types of queries.
The experimental results show that, in general, it is always
among the best indexes for the three types of queries. Taking
the S2I as a basic component, some other indexes have been
proposed in [32]–[34].

If we classify spatio-textual indexes regarding the text
index they use, two main categories arise. On the one
hand, [8]–[10], [23], [24], [26], [28], [35], [36] use an
Inverted File [18] that orders the objects by their IDs.
On the other hand, bitmaps [19] are also used to index
textual information contained in the sub-trees. In this case,
each bit represents the presence or absence of a key-
word in the object. Note that, unlike the ones used in
our approach, these are plain bitmaps without support for
rank/select operations. The use of sparse bitmaps with sup-
port for rank/select operations is a distinguishing idea of our
work.

All the approaches described above are based on disk
resident data structures and therefore are always penalized
by I/O costs. A recent work in [37] evaluates solutions
for main memory. However, it focuses on the streaming
model. Hence, it adapts the data structures to support data
arriving at high speed rates. Also, the temporal dimen-
sion plays a more important role in such a model, defin-
ing different types of queries from the ones studied in our
work.

VOLUME 8, 2020 98831

C. E. Sanjuan-Contreras et al.: cBiK: Space-Efficient Data Structure for Spatial Keyword Queries

FIGURE 2. Example of a balanced iKD-Tree with 15 points. The number of leaves is a power of two for visualization purposes, but this is not a restriction
of the data structure.

V. cBiK - COMPACT DATA STRUCTURE FOR
SPATIO-TEXTUAL DATA
In this section we introduce the data structure cBiK (compact
Bitmaps and implicit KD-Tree) to represent spatio-textual
datasets. The main components of this data structure are:
i) a balanced implicit KD-Tree (iKD-Tree) and ii) two
compact bitmaps that represent the keywords. We describe
both components below and the query algorithms
in Section VI.

A. iKD-TREE
The iKD-Tree is based on the KD-Tree proposed in [38] for
a static set of points of size n. The KD-Tree is a balanced
binary tree that uses pointers to link its nodes. Unlike the
KD-Tree, the iKD-Tree does not use pointers and stores the
points directly in an array, which we call nodes. Like the
KD-Tree, the iKD-Tree is a balanced tree and its height is
bounded by O(log n).

To construct the iKD-Tree, the spatial objects are first
sorted in each of the dimensions (two in this case). Then,
according to the coordinate selected to perform the par-
tition, the element in the middle of the array is the root
of the tree. For example, in Fig. 2(a) if x is consid-
ered as the partitioning coordinate, the point (5, 3) is
stored in the middle of the array (see Fig. 2(c)). Then
we proceed recursively with each subarray by alternat-
ing the coordinate that guides the subspace partition.
Fig. 2(b) shows the partitions of the space generated by the
iKD-Tree in Fig. 2(a). The construction of the
iKD-Tree takes time O(dn log n), with d the number of
dimensions [38].

FIGURE 3. Bitmap for the iKD-Tree in Fig. 2. The first half, bounded by a
green rectangle, identifies the leaf nodes (0) and the internal nodes (1) of
the tree. The second half, in blue, indicates all the internal nodes that
have an explicit summary.

Associated with the iKD-Tree, the bitmap BM of size 2n
is used. The first n bits in Fig. 3 indicate whether a node of
the iKD-Tree is internal (1) or a leaf (0). The second half of
BM indicates if the internal node has an explicit summary
(1 if it does, and 0 otherwise) of the T keywords in each of
the subspaces generated by the node (see Section V-B2 for
more details).

The functional support of the bitmap BM is critical since
it helps to build part of the cBiK structure and also facil-
itates many calculations used in the query algorithms. For
example, by using BM it is possible to know, using operation
rank1(BM , i), which internal nodes of the iKD-Tree exist up
to a certain position i.

It is possible to traverse the iKD-Tree through the variables
start and end , which store the position in the nodes array of
the first and last point, respectively, in a subspace generated
by the iKD-Tree. If start = 0 and end = n − 1, then the
algorithm is considering the whole space. The position j of
the root node of the subspace delimited by start and end can
be obtained as j =

⌊ start+end
2

⌋
. If access(BM , j) = 0, then j

is a leaf node, otherwise it is an internal node. Left and right
children of node j are at positions

⌊
start+j−1

2

⌋
and

⌊
j+end+1

2

⌋
,

respectively.

98832 VOLUME 8, 2020

C. E. Sanjuan-Contreras et al.: cBiK: Space-Efficient Data Structure for Spatial Keyword Queries

FIGURE 4. Conceptual view of the iKD-tree and the bitmaps BK (inside
the nodes) and RL (next to the nodes).

B. KEYWORDS REPRESENTATION
Our structure uses two bitmaps, one to represent the keywords
of each point and the other to indicate the keywords belonging
to the left and right subspaces of the internal nodes of the
iKD-tree.

1) BITMAP KEYWORDS (BK)
BK is a bitmap of size n ·m used to indicate the keywords that
correspond to each of the nodes or points of the iKD-Tree (see
the bitmaps inside the nodes in Fig. 4). If the i-th keyword is
present at a point j, with 0 ≤ i < m, the i-th bit of j is set to 1,
and to 0 otherwise. For 0 ≤ j < n, the keywords of node j are
represented by the bits [j · m . . . (j+ 1) · m− 1] of BK .
Bitmaps BK are encoded using the SD-array [22] to exploit

their sparseness. Thus, each bitmap is encoded in space pro-
portional to the number of keywords that describe a particular
point, and not to the number of different keywords used in
the collection. This ensures the effectiveness of cBiK even
for collections that use a large set of keywords.

2) BITMAP SUMMARY (BR)
This bitmap represents the keywords that are in any of the
points of each subspace generated by the iKD-Tree (see the
bitmaps next to each internal node in Fig. 4). Conceptually,
each internal node p is augmented with a bitmap of size 2 ·m
called local summary (RL). The first m bits of a bitmap RL
represent the keywords that are located in any of the points
belonging to the subspace to the left of p (in our algorithmswe
refer to these conceptual bitamps as LS), and them remaining
bits represent the keywords of the points belonging to the
subspace to the right (we refer to them as RS).
We distinguish two types of internal nodes: i) nodes whose

children are leaves, and ii) nodes whose children are internal
nodes. Let p be an internal node with left child l and right
child r , if p is a node of type i), then its RL is calculated
by concatenating the bits [l · m . . . (l + 1) · m − 1] and
[r ·m . . . (r+1)·m−1] of BK . On the other hand, if p is of type
ii) its construction can be described as an inorder traversal
of the sub-tree induced by p that recursively accumulates the
positions of the keywords in such sub-tree as follows: The
first m bits of RL of p are obtained by performing the bitwise

FIGURE 5. Summary Bitmap of the internal nodes with i equals 3, 7 and
11 of the iKD-Tree in Fig. 4.

or operation (∨) between the first m bits of the bitmap RL
associated to l with the m bits of the bitmap RL associated
to r . The remaining m bits are obtained in a similar way.
In BR, only the RL’s of type ii) nodes are stored (in a compact
form), as shown in Fig. 5. The RL’s of type i) nodes are
computed online when necessary.

The procedure to retrieve the bitmap RL of an internal node
p indexed by j in the array nodes is as follows. First, we need
to know the type of node p. Let i1 = access(BM , j) and
i2 = access(BM , n+j). If i1 = i2 = 1, then p is of type ii) and
its RL is computed as follows. First, we obtain the number
of internal nodes of the iKD-Tree as ni = rank1(BM , n),
and then we count the number of type ii) nodes as k =
(rank1(BM , n + j) − ni). Finally, the RL of node p is in the
range of positions [2 · k ·m . . . 2 ·m · (k + 1)− 1], with k ≥ 0
of bitmap BR. If i1 = 1 and i2 = 0, then node p is of type i)
and its associated RL is obtained as explained above.
Note that the BR bitmap plays an important role in

the processing of spatio-textual queries since it allows the
index cBiK to prune entire branches using both spatial
and textual dimensions at the same time. As BK , BR is
also implemented using sparse arrays [22] to optimize the
number of bits required to encode each effectively used
keyword.

VI. ALGORITHMS FOR SPATIAL KEYWORD QUERIES
Let q = 〈l, t〉 be a SKQ query. Hereinafter, all the algorithms
assume a folklore hash-based mapping approach to obtain a
numerical identifier for each keyword t to be used to access
bitmaps BK and BR. Also, all the algorithms assume that
the array nodes and the bitmaps BM , BK and BR are global
variables.

The traditional approach to find the k nearest neighbors
in a KD-Tree is used in our solution. That is, from the root
of the tree, the algorithm descends to the leaves alternating
the axis used for the partition of the subspaces. Both in
the descent (leaf nodes) and in the return of the recursion
(internal nodes) the points associated with the nodes are used
to improve the solution and then, it suffices to determine if
the candidate point contains the searched keywords. Param-
eters like q are also considered, which represents the query
variable and has a spatial attribute q.l, a textual attribute q.t ,
and an attribute q.k that indicates the number of requested
results; start and end define the range in nodes where to
continue the traversal in the iKD-Tree; initially start = 0
and end = n − 1. The variable depth indicates the depth in
the iKD-Tree and determines the direction of the subspace
partitions.

VOLUME 8, 2020 98833

C. E. Sanjuan-Contreras et al.: cBiK: Space-Efficient Data Structure for Spatial Keyword Queries

FIGURE 6. BkSKQ query example given q and the search path on the
conceptual tree of the structure cBiK. Each node contains the spatial
information, the keywords of the point, and the summary bitmap for an
efficient pruning.

A. EVALUATION OF BkSKQ QUERIES
The general idea of the algorithm is to traverse the tree from
the root to the leaves creating and adjusting the solution by
simultaneously taking into account the euclidean distance and
the searched keywords. To do that, the summary bitmaps are
used to determine the subspaces that the algorithm should
keep exploring in the traversal. In this way, some complete
subspaces can be pruned when the algorithm detects that a
searched keyword is not present in the subspace even when
there are some points inside it that are close to the query
location. Recall that all the results to this type of query must
contain all the keywords.

To illustrate the procedure of BkSKQ, we use Fig. 6 with
a query q that has three parameters: the query point (2, 8),
the keywords that are represented by the bitmap 0100, and
the value of k = 1.

The query algorithm starts from the root and evaluates
the partition in the direction of the x axis. Since the value
of the x coordinate of the query point is less than the one
of the evaluated point (2 ≤ 5), then the left path, to node
(2, 4), is followed since its RL (the first half of bits) indicates
that the keyword searched is present in that subspace. The
traversal continues to the point (2, 7), as the value of the
query coordinate is less than or equal to the one of the point
(2 ≤ 2), the algorithm should follow the left side. However,
the summary of the point indicates that the keyword is not
present in any subsequent subspace, therefore, the traversal is
completed and the point is evaluated as a candidate solution.
In the return of recursion, the points visited are still evaluated
to improve the solution, if appropriate.

Algorithm 1 receives five parameters in addition to those
described at the beginning of the section. The variable heap,
corresponds to a Max-Heap of size k that is used to maintain
the candidate points of the solution. At the end of the algo-
rithm, the solution is also stored in heap. Note that it may be
impossible to obtain k objects that satisfy all the keywords
defined in q.t and therefore, the number of objects contained
in heap may be less than k .

The algorithm begins by obtaining the position in the
array nodes of the root of the sub-tree that is between start
and end (line 1). In lines 3-26, the case of the internal
nodes is solved using a depth-first search (DFS) traversal.
Lines 4 and 5 retrieve the coordinate values corresponding
to the direction of the partition according to the depth in
the iKD-Tree, both for the point q.l and for the point p of
the node. In lines 6-15 the algorithm processes the case in
which the point q.l is to the left of the point p, since the
value of cq is less than or equal to that of cp. Then, function
checkLS(., ., ., .) (line 7) verifies if the bitmap BR associated
to the left subspace of the node contains all the keywords
indicated in q.t , that is, if q.t is a subset of the union of the
keywords of all the points located in the left subspace. If so,
the traversal is continued by recursively accessing the first
half (sub-tree) of the subarray of nodes between start and
end (line 8). If it does not contain them, the other branch
of the iKD-Tree is processed (lines 12-14). Then, function
existsRight(., .) (explained below) verifies if it is necessary
to explore the points of the subspace to the right of p with
the goal of finding out if they may improve the best solution
achieved so far. Analogously, lines 16-25 process the case
when the path must continue on the right side of p.

Lines 27-29 process the case in which the depth traversal
has reached a leaf node, which must be revised, or when the
algorithm has returned from recursion and the solution must
be improved. In such cases, the function checkKeywords(., .)
(explained below) verifies if the point contains all the key-
words specified by q.t . If so, the point is considered a can-
didate and it is used to update the heap using the function
updateCandidate(., ., ., .).

The algorithm uses the following non-trivial functions:
• checkKeywords(q.t, pos) verifies if the keywords in the
query q.t exist in the visited point pos.

• checkLS(q.t, pos, start, end) and checkRS(q.t, pos,
start, end) verify if the keywords in the query q.t exist in
the left (conceptual bitmap LS), resp. right (conceptual
bitmap RS), subspace of the visited point pos.

• updateCandidate(heap, p, q.l, q.k) is used to add point
q to the candidates heap. It is assumed that p is also
a candidate, that is, it contains all the keywords of the
query. The function decides wether to insert p to heap
or not. To do this, it verifies if the size of the heap is
less than k , if so, p is inserted. Otherwise, it is verified if
the euclidean distance between p and q.l is less than the
distance between q.l and the point in the root of heap.
If so, the point on the root is removed and p is inserted.

• existsLeft(heap, q.l) and existRight(heap, q.l) are used
to decide, when returning from recursion in the internal
nodes, if it is necessary to continue the traversal through
the subspace opposite to the one already accessed. If the
size of the heap is less than k the traversal is carried
out anyway. Otherwise, it is verified if the circumference
centered on the point c of the root of the heap and radius
equal to the distance between q.l and c intersects the
subspace not explored by the recursion.

98834 VOLUME 8, 2020

C. E. Sanjuan-Contreras et al.: cBiK: Space-Efficient Data Structure for Spatial Keyword Queries

Algorithm 1 searchBkSKQ(q, start , end , depth, heap)

1: mid ← (start+end)
2

2: p← nodes[mid]
3: if (start 6= end) {Internal node} then
4: cq← getCoordinate(depth, q.l)
5: cp← getCoordinate(depth, p)
6: if (cq ≤ cp) {Search left} then
7: if (checkLS(q.t,mid, start, end)) then
8: searchBkSKQ(q, start,mid − 1, depth+ 1, heap)
9: if existsRight(heap, q.l) ∧ checkRS(q.t,mid, start, end) then
10: searchBkSKQ(q,mid + 1, end, depth+ 1, heap)
11: end if
12: else if (checkRS(q.t,mid, start, end)) then
13: searchBkSKQ(q,mid + 1, end, depth+ 1, heap)
14: end if
15: end if
16: if (cq ≥ cp) {Search right} then
17: if (checkRS(q.t,mid, start, end)) then
18: searchBkSKQ(q,mid + 1, end, depth+ 1, heap
19: if existsLeft(heap, q.l) ∧ checkLS(q.t,mid, start, end) then
20: searchBkSKQ(q, start,mid − 1, depth+ 1, heap)
21: end if
22: else if (checkLS(queryKey,mid, start, end)) then
23: searchBkSKQ(q, start,mid − 1, depth+ 1, heap)
24: end if
25: end if
26: end if
27: if checkKeywords(q.t,mid) then
28: updateCandidate(heap, p, q.l, q.k)
29: end if

B. EVALUATION OF RkSKQ QUERIES
In this section, we describe an algorithm to compute the
RkSKQ queries defined in Section II-A2. In a nutshell,
the strategy consists of searching for the spatio-textual objects
that are closer to the query point, ranking the results by the
weighted sum (score) (1) of the spatial proximity (euclidean
distance) and the textual relevance (number of keywords
associated with the object).

The algorithm is based on branch and prune, and it is
similar to classical algorithms for K nearest neighbors. The
main difference is that we use the score instead of just
the euclidean distance or any other spatial distance. When
branching, the algorithm evaluates the score of each subspace
by using conceptual bitmaps LS and RS, and the boundaries
of the subspace associated with the visited node. Then, it pro-
ceeds to the node with highest score. The same score is also
used to prune the traversal. If the score of a subspace does
not improve the best known solution so far, the subspace is
discarded. A particular case is when none of the searched
keywords is presented in the subspace. In such case, the score
is zero and the subspace is discarded.

An example of the RkSKQ algorithm can be seen in the
conceptual tree of Fig. 7. For a better understanding of each

FIGURE 7. Example of a RkSKQ query showing the traversal over the
conceptual tree of the cBiK structure. Each node contains the spatial
information, the keywords of the point, and the summary bitmap for an
efficient pruning.

step, we provide Table 1. The figure shows a query q with
four parameters: the query point (2, 8), the keywords that are
represented as a bitmap, the weight α = 0.3 that indicates
that the total score is 30% due to spatial proximity and 70%
due to textual relevance, and the value of k = 1.

VOLUME 8, 2020 98835

C. E. Sanjuan-Contreras et al.: cBiK: Space-Efficient Data Structure for Spatial Keyword Queries

TABLE 1. Step by step execution of the RkSKQ query in Fig. 7.

Note that the traversal path is determined by the classifi-
cation score of the summaries. At iteration 4, the point (1, 3)
corresponds to a leaf node (i.e. it does not have a summary)
so the process is completed and the point is considered as
a candidate solution. Then, for each point on the recursion
backtrack, the algorithm tries to improve the solution. Note
that when backtracking to the point (2, 4), the other subspace
is revised since RS estimates that there may be better candi-
dates having a score higher than the current best and, indeed,
the best solution becomes the point (2, 7).
Since the summary score of the root node is equal in both

sides, the algorithm should keep looking for candidate points,
in step 9, the final solution is reached at point (6, 8) with a
total score 0.894. Note that point (2, 7) is the closest to the
query point q, but as the textual component has been given
greater importance (α = 0.3), the final solution corresponds
to a point a little farther away, but containing a better match
of the searched keywords.

This procedure is synthesized in Algorithm 2, which
receives five parameters: q, start , end , which were described
at the beginning of the section, together with a variable h
that corresponds to a Min-Heap of size k used to keep the
candidate points ranked by score from lowest to highest, and
the variable α that weights the importance of the spatial and
textual scores.

The algorithm first obtains the median of start and end
(line 1), corresponding to the position of the point to be
evaluated in the array nodes. Then in lines 2-4, the spatialS,
the textualS, and the totalScore of the accessed point with
respect to the query point are computed.

Then, lines 5-23 correspond to the case when the accessed
point is an internal node of the tree, and it is necessary to
determine to which subspace the traversal should continue.
Line 6 obtains the textual scores of the left (textualScoresLS)
and right (textualScoresRS) summaries to, then, obtain the
total scores (scoreLS and scoreRS). The traversal uses this
information to decide which subspace should visit next.

Lines 9-14 are related to the case in which there are more
keyword matches in the left subspace than in the right sub-
space (scoreLS > scoreRS), hence the traversal process such
subspace in line 10. In the backtrack of the recursion, function
goToR(., ., .) determines if it is necessary to access the other
subspace in order to improve the solution. If necessary, this is

accessed on line 12. Analogously, lines 14-19 are related to
the opposite case in which the right subspace has a greater
score. In lines 19-22, the case when both subspaces have
the same score is processed by recursively traversing both of
them.

Finally, lines 24-26 are related to the case in which the
traversal has either reached a point corresponding to a leaf
node, or it is returning from the recursion and the current point
has to be considered as a candidate to improve the solution.

The non-trivial functions used inAlgorithm 2 are explained
as follows:

• summaryTextualScores(q.t, pos, start, end): returns
an object with two attributes, the textual score (3) of
the left and right summary, i.e. textualScoresLS and
textualScoresRS , respectively.

• updateCandidate(heap, p, totalScore, q.k): is similar
to the function used in Alg. 1, and it decides the insertion
of p into the heap depending on its score. As heap is a
Min-Heap, the points with higher scores will be kept in
the heap.

• goToL(heap, scoreLS , q.k) and goToR(heap, scoreRS ,
q.k): Similar to functions existsLeft(., .) and
existsRight(., .) used in Alg. 1. It decides, depending
on the score of the received summary and that of the
point in the root of the heap, if it is necessary to continue
the traversal in the subspace opposite to the one already
traversed (i.e. if there may be candidates with better
scores in such subspace).

C. EVALUATION OF bRS-SKQ QUERIES
The general idea is to traverse down the tree until the specified
range is located. The access to the corresponding child is done
as long as the RL reports that all the searched keywords are
present in the corresponding subspace, stopping the traversal,
otherwise. The navigation ends when a leaf node is reached,
then, in the return of the recursion, it is checked if the visited
nodes are contained in that region and if they contain an exact
match of the requested keywords, if so, the point is added to
the result list.

Fig. 8 illustrates this procedure with a query q that has
three parameters: the two endpoints of the spatial region
in Fig. 8(a), and the searched keyword represented by its
bitmap 0100. The traversal is shown in Fig. 8(b), starting from
the root node and continuing until point (2, 7) that intersects
the query region. Hence, candidate points may exist in both
subspaces and they must be visited. However, as RL indicates
that the searched keyword is not present in any of the children,
the traversal backtracks and checks if the visited points are
contained in the query region. The final result only contains
the point (2, 7). Note that point (3, 7) is contained in the
range, but it does not contain the searched keyword.

Algorithm 3 shows the procedure of the bRS-SKQ. The
function receives 4 parameters, q contains the query informa-
tion with attributes q.l1 and q.l2 the query points and q.t the
searched keywords. Before solving the query, the coordinates

98836 VOLUME 8, 2020

C. E. Sanjuan-Contreras et al.: cBiK: Space-Efficient Data Structure for Spatial Keyword Queries

Algorithm 2 searchRkSQK(q, start , end , h, α)

1: mid ← (start+end)
2

2: spatialS ← δ(nodes[mid].l, q.l) {see (2)}
3: textualS ← θ (nodes[mid].t, q.t) {see (3)}
4: totalScore← totalScore(spatialS, textualS, α) {implements (1)}
5: if (start 6= end) then
6: textualScores← summaryTextualScores(q.t,mid, start, end)
7: scoreLS ← totalScore(spatialS, textualScoresLS , α)
8: scoreRS ← totalScore(spatialS, textualScoresRS , α)
9: if (scoreLS > scoreRS) {Search left} then

10: searchRkSQK (q, start,mid − 1, h, α)
11: if goToR(h, scoreRS , q.k) then
12: searchRkSQK (q,mid + 1, end, h, α)
13: end if
14: else if (scoreRS > scoreLS) {Search right} then
15: searchRkSQK (q,mid + 1, end, h, α)
16: if goToL(h, scoreLS , q.k) then
17: searchRkSQK (q, start,mid − 1, h, α)
18: end if
19: else if (scoreRS 6= 0) {Same score but 6= to zero, search both sides} then
20: searchRkSQK (q, start,mid − 1, h, α)
21: searchRkSQK (q,mid + 1, end, h, α)
22: end if
23: end if
24: if (totalScore 6= 0) {At least one keyword found} then
25: updateCandidate(h, p, totalScore, q.k)
26: end if

FIGURE 8. Example of bRS-SKQ query with q = {(1,6), (4,8), (0100)}.

are ordered so that q.l1 is the lower left point and q.l2 the
upper right point of the determined region. The variables
start , end and depth are used as in previous algorithms. Note
that there is a result list as a global variable in which the

objects that satisfy the requested spatial and textual condi-
tions are stored.

The algorithmfirst obtains themedian of the values of start
and end (line 1), which corresponds to the position of the

VOLUME 8, 2020 98837

C. E. Sanjuan-Contreras et al.: cBiK: Space-Efficient Data Structure for Spatial Keyword Queries

Algorithm 3 rangeSearching(q, start , end , depth)

1: mid ← b start+end2 c

2: p← nodes[mid]
3: if (start 6= end) then
4: cM ← getCoordinate(depth, q.l2) {Right upper coordinate}
5: cm← getCoordinate(depth, q.l1) {Lower left coordinate}
6: cp← getCoordinate(depth, p)
7: if (cM ≤ cp)) {Search left} then
8: if checkLS(q.t,mid) then
9: rangeSearching(q, start,mid − 1, depth+ 1)

10: end if
11: else if (cm > cp) {Search right} then
12: if checkRS(q.t,mid) then
13: rangeSearching(q,mid + 1, end, depth+ 1)
14: end if
15: else
16: if checkLS(q.t,mid) then
17: rangeSearching(q, start,mid − 1, depth+ 1)
18: end if
19: if checkRS(q.t,mid) then
20: rangeSearching(q,mid + 1, end, depth+ 1)
21: end if
22: end if
23: end if
24: if containsPoint(q, p) ∧ checkKeywords(q.t,mid) then
25: result.insert(p)
26: end if

point accessed in the array nodes. Then, the point is retrieved
and stored in variable p.

Lines 3-23 evaluate the case when the revised point is an
internal node. First, in lines 4-6 the value of the coordinate
according to the partition is revised, cm and cM correspond to
the lower left and upper right corners of the region, and cp is
the actual value of the evaluated point. In order to determine
to which subspace the search should continue, the following
three cases are evaluated:

• Case 1: When cM ≤ cp, the partition of the point is
located to the right (or above) the query region (line 7),
the search continues to the left subspace.

• Case 2: When cm > cp, the partition of the point is
located to the left (or under) the query region (line 11),
the search continues to the right subspace.

• Case 3: In other case (line 15), the partition of the point
intersects the query region, hence, the search continues
in both subspaces.

Note that in all cases, in order to make the recursive
call, it is necessary to verify that the subspace contains the
requested keywords using the functions checkLS(., .) and
checkRS(., .), according to the case. If the subspace contains
them, the traversal continues as there are candidate points
within the range of queried positions.

Finally, lines 24-26 evaluate if the point is contained
in the query region using function containsPoint(q, p).

Moreover, function checkKeywords(q.t,mid) determines if
the searched keywords completely match the keywords of the
point. In such case, the point is added to the list result .

D. ANALYSIS OF THE TEMPORAL/SPATIAL COMPLEXITY
OF THE ALGORITHMS
In this section we explain the temporal complexity of
the algorithms to find the nearest neighbor (BkSQK and
RkSKQ), and also the range searching (bRS-SKQ). In addi-
tion, the spatial complexity is analyzed to determine the
amount of memory (RAM) required by the structure of cBiK.

For all algorithms, the construction of cBiK considering
n nodes and m keywords. The worst case happens when all
the n points have all the m existing keywords and, therefore,
the memory used is represented by (4), which includes the
substructures used in cBiK. It is important to emphasize
that this is a worst case analysis and, as it can be seen in
Section VII, in practice the space is much lower due to the
effectiveness of the SD-array to encode sparse bitmaps as BK
and BR:

Storage = Spoints + Skeys + Ssummary + Smap + Shashing (4)

• Spoints: Corresponds to the totality of the spatial points
(coordinates x and y) that are stored with variables of
type double (8 bytes). Hence, the memory consumption

98838 VOLUME 8, 2020

C. E. Sanjuan-Contreras et al.: cBiK: Space-Efficient Data Structure for Spatial Keyword Queries

is given by (5).

Spoints = n · (16 bytes) (5)

• Skeys: It refers to the storage of Bitmap Keywords (BK),
which represents the keywords associated with each
point. As in the worst case all n points have m bits, then
the memory used is shown in (6).

Spoints = n ·
(m
8
bytes

)
(6)

• Ssummary: Equation (7) shows the bytes used by the
Bitmap Summary (BR). As just the explicit summaries
are stored, the nodes of the last two levels of the tree
have to be omitted. Such nodes are represented as the
following summation

∑h−3
i=0 2i, with h the height of the

tree.

Ssummary =

explicit RL ′s︷ ︸︸ ︷(
2[log2 n]−2 − 1

)
·2 ·

(m
8
bytes

)
(7)

• Smap: Represents the storage of the Bitmap Map (BM),
which considers twice the number of nodes, as shown
in (8).

Smap = 2 ·
(n
8
bytes

)
(8)

• Shashing: Equation (9) corresponds to the mapping
hash-structure used to transform keywords into their
corresponding numeric identifiers, being li (with i > 0)
the length of the keyword.

Shashing = O
(

m∑
i=1

size(li)

)
(9)

where size(li) is the length of string in bytes.
For all the above, the spatial complexity corresponds to

O(n · m), in the worst case.
Regarding the temporal complexity of the algorithms,

we can review the following two cases:

1) THE k NEAREST NEIGHBORS (kNN)
If k = 1 and k � n, the worst case to find the nearest
neighbor (1NN) happens if all the points contain all the
searched keywords and, at the same time, they are located in
a circle centered in the query point q. This layout forces the
traversal of all the nodes of the tree as all the distances to the
point q are equal. Hence, the temporal complexity is O(n).
On the other hand, if the points are uniformly distributed,

the worst case to find the 1NN is O(log n) on average.
If k > 1 and k � n, the operations in the heap to deliver

the results have to be also considered, which has size at
most k .

Nodes processing︷ ︸︸ ︷
O(n · log k) +

Bitmap processing︷ ︸︸ ︷
O(n · |q.t|)

Hence, the temporal complexity for the kNN in the worst
case is shown in (10), being |q.t| the cardinality of the
searched keywords.

O(n · (log k + |q.t|)) (10)

2) RANGE SEARCHING
For this type of query, the worst case occurs when all the
points inside the query region R, contain all the requested
keywords. To obtain the temporal complexity of the balanced
iKD-Tree, with height h = dlog2 ne, we must determine
which is the maximum number of subspacesQ(n) intersected
in the KD-Tree by cutting the plane with a line l. For this,
the key idea is to consider two levels of the tree at the same
time. If you consider first a vertical cut and then a horizontal
one, 4 subspaces are obtained, each with n

4 points. Then,
the line will intersect two subspaces and the remaining sub-
spaces will be outside or completely within R. The recurrence
that expresses the above is the following:

Q(n) =

{
1 if n = 1

2Q(
n
4
)+ 2 if n > 1

This recurrence is resolved to Q(n) = O(
√
n). Also,

the total time to report all the points P contained in the
region Q contributes with O(P) time. Finally, the temporal
complexity for the range query in theworst case isO(

√
n+P).

VII. EXPERIMENTAL EVALUATION
This section provides a comprehensive evaluation of cBiK
that analyzes its space consumption and its performance to
resolve the three different queries proposed in this paper:
BkSKQ, RkSKQ, and bRS-SKQ. Our prototype5 is coded in
C++, and uses different bitmap implementations available in
the SDSL [39] to build the corresponding bitmaps of cBiK.

We compare cBiK to S2I [9], one of the most competitive
approaches in the state of the art [7] for the current scenario.
S2I is a disk-oriented index, in contrast to cBiK,which resides
on main-memory. Although this fact penalizes S2I, which
always pays I/O costs, the following experimentation enables
disk and memory-based solutions to be effectively compared.
Note that I/O is one of the main bottlenecks of geo-textual
indexes competitive approaches in the state of the art [7],
and our approach tries to overcome it by using succinct data
structures that are more likely to fit in main memory. The S2I
prototype6 is coded in Java.

a: DATASETS
We consider two different datasets7 for our experiments, both
used in [40]:
• The POI’s dataset contains 1.1million real-world points
of interest (POI) obtained from the social network
Foursquare. Each POI provides its geographical coordi-
nates and a short description.

• The Twitter dataset is a collection of 20 million
geo-tagged tweets, each one containing a short text and
a geographical description of the location from which
the tweet was published. It is worth noting that S2I is

5https://github.com/csanjuanc/cBiK
6The S2I prototype has been kindly provided by its author.
7Datasets available at http://www.ntu.edu.sg/home/gaocong/datacode.htm

VOLUME 8, 2020 98839

C. E. Sanjuan-Contreras et al.: cBiK: Space-Efficient Data Structure for Spatial Keyword Queries

TABLE 2. Dataset description.

not able to index the whole dataset, forcing us to work
with smaller data. We divide the Twitter dataset into four
smaller ones, namely Twitter1M, Twitter3M, Twitter5M
and Twitter10M, that contain 1, 3, 5, and 10 million
tweets.

Table 2 summarizes the most relevant features of all these
datasets. Note that the average number of words per object
is quite similar in all cases (between 4 and 4.7), so the
number of total words is proportional to the dataset size.
On the other hand, the number of different words also
increases with the dataset size, ranging between 261, 212
and 1, 364, 787, for POI’s and Twitter10M, respectively.
Note that the number of different words is an important
metric for cBiK because it determines the size of the
bitmaps.

b: QUERIES
We designed a testbed of randomly generated queries for each
dataset in our setup. For BkSKQ and RkSKQ, we generated
five sets of 1,000 queries, each one providing a point (x, y)
and a list of k keywords (1 ≤ k ≤ 5). Latitude and
longitude values were randomly generated at the [−90, 90]
and [−180, 180] intervals, respectively, while the keywords
were also randomly chosen from the collection of different
words used in each dataset. This decision ensures that all
queries return, at least, one result.

Queries for bRS-SKQ follow a similar pattern, but regions
were queried instead of points. Each region is defined around
an existing point in the dataset, which is randomly chosen.
The corresponding region is the (squared) bounding box that
has the selected point as its center.

We consider five different-size regions according to
the length of the diagonal of the bounding box: 1km,
2km, 5km, 10km, and 20km. The POI’s dataset describes
points that cover almost half of the Earth (note that the
distance between its farthest points is 18, 909.6 kilome-
ters), so regions of 1Km diagonal are just 0.005% of the
whole area of the dataset, while regions of 20Km cover
0.106% of this area. Twitter datasets cover smaller areas,
so the query regions are proportionally larger in these
cases.

The performance of our solution is benchmarked in the
following sections. Note that all experiments were run on an
Intel R© Core

TM
i5@3.4GHz (4 Cores), 8GB of RAM, and a

1TB SATA disk, over Ubuntu 16.04 LTS (64 bits).

TABLE 3. Dataset construction time in seconds.

TABLE 4. Storage usage.

A. CONSTRUCTION TIME AND STORAGE USAGE
Table 3 shows construction time in seconds of both the base-
line, S2I, and our proposal, cBiK, for all the datasets used in
the experiments. From these results, we can conclude that our
proposal clearly outperforms the baseline in several orders
of magnitude. Taking as an example the dataset Twitter5M,
S2I requires about a week to be built, whereas our proposal
can be built in a couple of minutes. For the largest dataset,
we were not able to build the baseline as the process exceeded
the maximum secondary memory available (1TB) after three
weeks of computation. Even for this dataset, our proposal can
be built in about 20 minutes. This is an important result for
the scalability of our proposal.

The space complexity measures the amount of storage
space used by each index. As showed in Table 4, S2I uses
more space than cBiK to index each dataset (2.61 times
more space, on average). In quantitative terms, cBiK saves
841.9 MB to index Twitter5M with respect to S2I, and this
improvement remains proportional for the other datasets.

Although space savings are expected due to the use of suc-
cinct data structures in cBiK, this improvement is noticeable
in practical terms because it enables larger datasets to beman-
aged in main memory, avoiding costly I/O operations. Thus,
managing smaller indexes also improves query performance,
as shown below.

An interesting result regarding our structure is that most
of the space is used by bitmap BR. Hence, a simple tech-
nique to reduce the space even further is not to store these
bitmaps in all the levels but every x levels. This technique
obviously impacts in the time performance, so parameter x
would provide a time-space trade-off. To further explore this
idea is proposed as an open problem.

B. QUERY PERFORMANCE
This section presents and discusses performance figures for
the three different queries considered in our setup: BkSKQ,
RkSKQ, and bRS-SKQ. In all cases, averaged query times

98840 VOLUME 8, 2020

C. E. Sanjuan-Contreras et al.: cBiK: Space-Efficient Data Structure for Spatial Keyword Queries

FIGURE 9. BkSKQ performance according to the number of keywords provided by the query (top− 5 queries).

FIGURE 10. BkSKQ performance according to the number of requested results (all queries provide 3 different keywords).

are reported; i.e. the corresponding query set (of 1, 000
queries) is executed, and the total running time is divided
by 1, 000. All times are reported in milliseconds per
query.

1) BOOLEAN TOP-k SPATIAL KEYWORD QUERY
BkSKQ is a boolean query that retrieves the Top-K closest
locations (to the query point) that match all required key-
words. Thus, the performance of this query is affected by
the number of requested results, and the number of keywords
provided by the query.

Fig. 9 reports query times as a function of the number
of keywords provided by the query: from 1 to 5 keywords.
Note that all of these queries ask for the corresponding
top-5. cBiK is more than 1 order of magnitude faster than
S2I, but the improvement is almost of 2 orders of magnitude
for the smallest datasets: POI’s and Twitter1M. S2I reports
query times between 10 and 68ms per query, and cBiK ≈
0.08− 1.5ms per query. Note that query times increase with
the number of keywords because more comparisons must
be done to evaluate each candidate. However, S2I performs
better for 5 than for 4 keywords, in the POI’s dataset. This
is because many objects are described with few keywords
(note that each point in POI’s has 4 keywords on average,
and the S2I prune algorithm is able to exploit this fact in this
particular case.

Varying k barely affects query times, as showed in Fig. 10.
In this case, all queries provide 3 different keywords and ask
for the best 1, 5, 10, 15, and 20 results. Note that query times
remain stable for all datasets and all top-k queries. As in the
previous case, cBiK is more than one order of magnitude
faster than S2I, but the difference is larger for the smallest
datasets.

2) RANKED TOP-k SPATIAL KEYWORD QUERY
RkSKQ performance is also measured according to the num-
ber of keywords and the requested results, but it also considers
the value of α.

We fixed k = 5 and α = 0.3 to measure the effect
of the number of keywords (we consider queries including
from 1 to 5 keywords). It means that the score algorithm
weights text relevance with 0.7 and spatial proximity with
0.3, in the corresponding Top-5 queries. Fig. 11 reports query
times for this experiment. Although cBiK is still faster than
S2I, the difference decreases with the number of keywords.
S2I reports similar numbers than for BkSKQ, but cBiK pays
an important overhead due to its pruning algorithm, which is
less effective when not all the requested keywords must be
present in the point description, and more candidates must be
checked to obtain the best k results.
The experiment varying the number of k requested results

draws similar conclusions than for BkSKQ. As showed
in Fig. 12, query times remain quite stable from k = 5 to
k = 20, although cBiK reports a small increase from k = 1
to k = 5. In any case, cBiK is 1 order of magnitude faster for
all datasets, reporting times of ≈ 0.5 − 6.2 miliseconds per
query for all datasets.

Finally, the effect of α is evaluated. This experiment
measures the impact of combining spatial and text filters
in the query. We consider five different values for α =
{0.1, 0.3, 0.5, 0.7, 0.9} to analyze whether query perfor-
mance varies when one of the components is more relevant
than the other. The case of α = 0.5 is particularly interesting
because it weighs similarly both the spatial proximity and the
text relevance. All these queries ask for the corresponding
Top-5 and provide three different keywords.

Fig. 13 shows that cBiK and S2I report very stable numbers
for all datasets. Thus, we can conclude that α barely affects

VOLUME 8, 2020 98841

C. E. Sanjuan-Contreras et al.: cBiK: Space-Efficient Data Structure for Spatial Keyword Queries

FIGURE 11. RkSKQ performance according to the number of keywords provided by the query (top− 5 queries, α = 0.3).

FIGURE 12. RkSKQ performance according to the number of requested results (3 different keywords per query and α = 0.3).

FIGURE 13. RkSKQ performance varying α (Top-5 queries providing 3 different keywords).

FIGURE 14. bRS-SKQ performance according to the number of keywords provided by the query (all queries ask for regions of 10 Km).

query performance, and cBiK is again one order of magnitude
faster than S2I, reporting times from 1.3 to 5.5 milliseconds
per query, while S2I performs at the level of dozens of mil-
liseconds per query.

3) BOOLEAN RANGE SEARCHING SPATIAL KEYWORD
QUERY
Finally, the bRS-SKQ performance is analyzed. In this case,
we consider two parameters: the number of keywords and the
size of the requested region.

Fig. 14 reports query times in function of the number of
keywords. In this case, we fix query regions of 10Km and

evaluate queries providing from 1 to 5 keywords. S2I reports
similar figures than for BkSKQ (see Fig. 9), so it behaves
similar when a reference point or a region are queried.
On the other hand, cBiK reports competitive numbers from≈
0.017−0.29miliseconds per query. Note that its performance
runs in parallel with S2I one, but it is two orders of magnitude
faster, in all cases. It shows that cBiK is very efficient to
resolve range-based queries.

Fig. 15 analyzes the effect of querying by different-length
regions (1, 2, 5, 10, and 20Km of diagonal length), fixing
3 different keywords per query. Query times remain stable
for all region lengths and all datasets, both for S2I and
cBiK. Assuming that the longer the region, the greater the

98842 VOLUME 8, 2020

C. E. Sanjuan-Contreras et al.: cBiK: Space-Efficient Data Structure for Spatial Keyword Queries

FIGURE 15. bRS-SKQ performance according to the length of the queried region (all queries provide 3 different keywords).

FIGURE 16. Scalability for queries BkSKQ with key = 3 and k = 5, RkSKQ (α = 0.3) and RS-SKQ with key = 3 and d = 10Km.

FIGURE 17. BkSKQ performance varying keywords (Top-5 queries).

number of points matching the query, this result means that
bRS-SKQ performance does not depend on the number of
retrieved points. cBiK also outperforms S2I in this scenario,
but the improvement is higher, reaching up to 3 orders of
magnitude for Tweets 1M.

Finally, Fig. 16 shows the scalability of the data struc-
tures with respect to the set size, defined as the number of
spatio-textual objects. Both data structures present a linear
behaviour with respect to the set size. However, the cBiK
keeps it advantage of one to three orders of magnitude.
The curve for S2I is not shown for the 10M set, because
it was not possible to build such index with the available
resources.

C. PLACING THE S2I IN MAIN MEMORY
In this section we show complementary experiments that
compare our solution with the S2I when both solutions run
in main memory. To do that, we use a Warm-up with the
S2I. The idea of this technique is to run each query at least
twice and just report the time of the second execution, which
ensures that the part of the data structure involved in the
running query is already in main memory, hence avoiding

I/O operations. Although this kind of comparison is not com-
pletely fair (because it also favours cache-behaviour, making
the data structure even faster than a main memory resident
one), it provides a roughly estimation of the performance of
the structure in main memory.

The results of these experiments are shown in Fig. 17, 18
and 19. In these figures, we label the S2I that uses the
Warm-up technique as S2I-WU. First, it is important to
observe the impact of the warm up technique in the S2I. As it
can be observed, this technique reduces query times about one
or two orders of magnitude, depending on the type of query.
Second, Fig. 17 and 19 show that, even in this scenario, cBiK
is faster than S2I-WU for the queries of type BkSKQ and
bRS-SKQ. On the other hand, Fig. 18 shows that S2I-WU is
faster than cBik for RkSKQ queries. This is not a surprising
result because: i) S2I is a data structure designed ad-hoc to
efficiently solve this specific type of query and ii) it is a well
known result in compact data structures that they are usually
slower than classical data structures when running in the same
level of the memory hierarchy. Overall, we can conclude that
cBiK is a scalable solution to efficiently solve the three types
of queries studiend in this work.

VOLUME 8, 2020 98843

C. E. Sanjuan-Contreras et al.: cBiK: Space-Efficient Data Structure for Spatial Keyword Queries

FIGURE 18. RkSKQ performance varying keywords (Top-5 queries and alpha 0.3).

FIGURE 19. bRS-SKQ performance varying keywords (10 Km).

VIII. CONCLUSION AND FUTURE WORK
This paper proposes cBiK, the first compact data structure
that manages geo-tagged datasets and allows spatial key-
word queries to be resolved in main memory. Although this
type of indexes performs more computations than traditional
disk-based ones, they are more efficient by avoiding costly
I/O operations.

Our experimentation verifies this fact using a selected
testbed of real-world datasets, including points of interest
descriptions and geo-located microposts from Twitter. cBiK
is able to compact these datasets up to 35− 40% of the space
used by a state-of-the-art index (S2I), while solving the three
types of SKQs up to two orders of magnitude faster than S2I.
Whenwarming-up the S2I, to simulate another main-memory
resident solution, both approaches are comparable in query
times. Regarding construction time, our approach also scales
much better with the number of objects to index. These num-
bers endorse our approach, and consequently an emergent
line of research focused on the use of compact data structures
for managing and querying big geo-tagged datasets.

We plan to enhance cBiK to support additional search capa-
bilities, as part of our future work. On the one hand, we can
replace the current mapping, which transforms keywords
into integer identifiers, by a powerful compressed string
dictionary that allows inexact text queries. More concretely,
we plan to use the compressed FM-index dictionary [41]
because it can be tuned to perform approximate string
matching, with different string similarity measures [42],
on the Burrows-Wheeler transform [43]. On the other hand,
another interesting line of work is to provide semantic spa-
tial keyword queries in cBiK. Based on the experiences of
Tekli et al. [44], [45], we can add a compressed seman-
tic index [46] that allows efficient semantic relationships
between keywords to be efficiently navigated. In both types of
searches, the additional indexes will be first queried to obtain

the corresponding set of queries that are evaluated from the
spatial perspective.

From a more applied perspective, the application of this
approach in low memory devices, such as smart-phones,
is promising. In such scenario, not just the space usage, but
also the battery consumption must be reduced.

ACKNOWLEDGMENT
The authors would like to thank José R. Paramá (University
of A Coruña, Spain) for his helpful advice and the original
ideas that motivated this article.

REFERENCES
[1] A. Tabarcea, N. Gali, and P. Fränti, ‘‘Framework for location-aware search

engine,’’ J. Location Based Services, vol. 11, no. 1, pp. 50–74, Jan. 2017.
[2] G. Navarro, Compact Data Structures—A practical approach. Cambridge,

U.K.: Cambridge Univ. Press, 2016.
[3] G. de Bernardo, ‘‘New data structures and algorithms for the efficient

management of large spatial datasets,’’ Ph.D. dissertation, Dept. de Com-
putación, Univ. da Coruña, Coruña, Spain, 2014.

[4] F. Claude, ‘‘Space-efficient data structures for information retrieval,’’
Ph.D. dissertation, Dept. de Computación, Univ. da Coruña, Coruña, Spain,
2013.

[5] J. C. Carlos San, R. G. Gutierrez, and M. A. Martinez-Prieto, ‘‘A compact
memory-based index for spatial keyword query resolution,’’ in Proc. 37th
Int. Conf. Chilean Comput. Sci. Soc. (SCCC), Nov. 2018, pp. 1–8.

[6] X. Cao, L. Chen, G. Cong, C. S. Jensen, Q. Qu, A. Skovsgaard, D. Wu, and
M. L. Yiu, ‘‘Spatial keyword querying,’’ inProc. 31st Int. Conf. Conceptual
Model. (ER), 2012, pp. 16–29.

[7] L. Chen, G. Cong, C. S. Jensen, and D. Wu, ‘‘Spatial keyword query
processing: An experimental evaluation,’’ Proc. VLDB Endowment, vol. 6,
no. 3, pp. 217–228, 2013. [Online]. Available: http://dl.acm.org/citation.
cfm?doid=2535569.2448955

[8] G. Cong, C. S. Jensen, and D. Wu, ‘‘Efficient retrieval of the top-k
most relevant spatial Web objects,’’ Proc. VLDB Endowment, vol. 2,
no. 1, pp. 337–348, Aug. 2009. [Online]. Available: http://portal.acm.org/
citation.cfm?id=1687666

[9] J. B. Rocha-Junior, O. Gkorgkas, S. Jonassen, and K. Nørvåg, ‘‘Efficient
processing of top-k spatial keyword queries,’’ in Advances in Spatial and
Temporal Databases (Lecture Notes in Computer Science), vol. 6849.
Berlin, Germany: Springer, 2011, pp. 205–222, doi: 10.1007/978-3-642-
22922-0_13.

98844 VOLUME 8, 2020

http://dx.doi.org/10.1007/978-3-642-22922-0_13
http://dx.doi.org/10.1007/978-3-642-22922-0_13

C. E. Sanjuan-Contreras et al.: cBiK: Space-Efficient Data Structure for Spatial Keyword Queries

[10] M. Christoforaki, J. He, C. Dimopoulos, A. Markowetz, and T. Suel, ‘‘Text
vs. Space: Efficient Geo-search query processing,’’ in Proc. 20th ACM Int.
Conf. Inf. Knowl. Manage., 2011, pp. 423–432.

[11] A. Guttman, ‘‘R-trees: A dynamic index structure for spatial searching,’’
ACM SIGMOD Rec., vol. 14, no. 2, p. 47, Jun. 1984. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=971697.602266

[12] N. Roussopoulos, S. Kelley, and F. Vincent, ‘‘Nearest neighbor queries,’’
ACM SIGMOD Rec., vol. 24, no. 2, pp. 71–79, May 1995, doi: 10.1145/
568271.223794.

[13] A. Corral, Y. Manolopoulos, Y. Theodoridis, and M. Vassilakopoulos,
‘‘Closest pair queries in spatial databases,’’ ACM SIGMOD Rec., vol. 29,
no. 2, pp. 189–200, Jun. 2000, doi: 10.1145/335191.335414.

[14] S. Nutanong, E. H. Jacox, and H. Samet, ‘‘An incremental hausdorff
distance calculation algorithm,’’ Proc. VLDB Endowment, vol. 4, no. 8,
pp. 506–517, May 2011, doi: 10.14778/2002974.2002978.

[15] H. Samet, ‘‘The quadtree and related hierarchical data structures,’’ ACM
Comput. Surv., vol. 16, no. 2, pp. 187–260, Jun. 1984. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=356924.356930

[16] V. Gaede and O. Günther, ‘‘Multidimensional access methods,’’ ACM
Comput. Surv., vol. 30, no. 2, pp. 170–231, Jun. 1998. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=280277.280279

[17] J. L. Bentley, ‘‘Multidimensional binary search trees used for associative
searching,’’ Commun. ACM, vol. 18, no. 9, pp. 509–517, Sep. 1975.
[Online]. Available: http://portal.acm.org/citation.cfm?doid=361002.
361007

[18] J. Zobel and A. Moffat, ‘‘Inverted files for text search engines,’’ ACM
Comput. Surv., vol. 38, no. 2, p. 6, Jul. 2006. [Online]. Available: http://
portal.acm.org/citation.cfm?doid=1132956.1132959

[19] C. Faloutsos and S. Christodoulakis, ‘‘Signature files: An access method
for documents and its analytical performance evaluation,’’ ACM Trans. Inf.
Syst., vol. 2, no. 4, pp. 267–288, Oct. 1984.

[20] Y. Chen and Y. Shi, ‘‘Signature files and signature file construction,’’
in Encyclopedia of Database Technologies and Applications. Hershey,
PA, USA: IGI Global, Jan. 2005, pp. 638–645. [Online]. Available:
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-
%1-59140-560-3.ch105

[21] S. Gog, T. Beller, A. Moffat, and M. Petri, ‘‘From theory to practice: Plug
and play with succinct data structures,’’ in Proc. 13th Int. Symp. Experim.
Algorithms (SEA), 2014, pp. 326–337.

[22] D. Okanohara and K. Sadakane, ‘‘Practical entropy-compressed
rank/select dictionary,’’ Apr. 2006, arXiv:cs/0610001. [Online]. Available:
http://arxiv.org/abs/cs/0610001

[23] S. Vaid, C. B. Jones, H. Joho, and M. Sanderson, ‘‘Spatio-textual indexing
for geographical search on the Web,’’ in Advances in Spatial and Temporal
Databases, vol. 3633. Berlin, Germany: Springer, 2005, pp. 218–235.
[Online]. Available: http://orca.cf.ac.uk/1840/

[24] Y. Zhou, X. Xie, C. Wang, Y. Gong, and W.-Y. Ma, ‘‘Hybrid index
structures for location-based Web search,’’ in Proc. 14th ACM Int. Conf.
Inf. Knowl.Manage. CIKM, 2005, p. 155. [Online]. Available: http://portal.
acm.org/citation.cfm?doid=1099554.1099584

[25] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, ‘‘The R*-tree:
An efficient and robust access method for points and rectangles,’’ ACM
SIGMOD Rec., vol. 19, no. 2, pp. 322–331, May 1990.

[26] R. Hariharan, B. Hore, C. Li, and S. Mehrotra, ‘‘Processing spatial-
keyword (SK) queries in geographic information retrieval (GIR) systems,’’
in Proc. 19th Int. Conf. Sci. Stat. Database Manage. (SSDBM), Jul. 2007,
p. 16.

[27] I. De Felipe, V. Hristidis, and N. Rishe, ‘‘Keyword search on spatial
databases,’’ in Proc. IEEE 24th Int. Conf. Data Eng., Apr. 2008,
pp. 656–665. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=4497474

[28] Z. Li, K. C. K. Lee, B. Zheng, W.-C. Lee, D. Lee, and X. Wang, ‘‘IR-tree:
An efficient index for geographic document search,’’ IEEE Trans. Knowl.
Data Eng., vol. 23, no. 4, pp. 585–599, Apr. 2011.

[29] D. Wu, G. Cong, and C. S. Jensen, ‘‘A framework for efficient spa-
tial Web object retrieval,’’ VLDB J., vol. 21, no. 6, pp. 797–822,
Dec. 2012.

[30] D. Wu, M. L. Yiu, G. Cong, and C. S. Jensen, ‘‘Joint top-K spatial key-
word query processing,’’ IEEE Trans. Knowl. Data Eng., vol. 24, no. 10,
pp. 1889–1903, Oct. 2012.

[31] J. B. Rocha-junior and K. Nørvåg, ‘‘Top-k spatial keyword queries on road
networks,’’ in Proc. 15th Int. Conf. Extending Database Technol., 2012,
pp. 168–179.

[32] D. Zhang, K.-L. Tan, and A. K. H. Tung, ‘‘Scalable top-k spatial key-
word search,’’ in Proc. 16th Int. Conf. Extending Database Technol.
EDBT, 2013, p. 359. [Online]. Available: http://www.scopus.com/inward/
record.url?eid=2-s2.0-84876799315&partn%erID=tZOtx3y1

[33] C. Zhang, Y. Zhang, W. Zhang, and X. Lin, ‘‘Inverted linear quadtree:
Efficient top k spatial keyword search,’’ IEEE Trans. Knowl. Data Eng.,
vol. 28, no. 7, pp. 1706–1721, Jul. 2016.

[34] H.-J. Hong, G.-M. Chiu, and W.-Y. Tsai, ‘‘A single quadtree-based algo-
rithm for top-k spatial keyword query,’’ Pervas. Mobile Comput., vol. 42,
pp. 93–107, Dec. 2017, doi: 10.1016/j.pmcj.2017.09.009.

[35] R. Göbel, A. Henrich, R. Niemann, andD. Blank, ‘‘A hybrid index structure
for geo-textual searches,’’ in Proc. 18th ACM Conf. Inf. Knowl. Manage.
CIKM, 2009, pp. 1625–1628. [Online]. Available: http://portal.acm.org/
citation.cfm?doid=1645953.1646188

[36] A. Khodaei, C. Shahabi, and C. Li, ‘‘Hybrid indexing and seamless ranking
of spatial and textual features of Web documents,’’ inDatabase and Expert
Systems Applications (Lecture Notes in Computer Science), vol. 6261.
Berlin, Germany: Springer, 2010, pp. 450–466.

[37] A. Almaslukh and A. Magdy, ‘‘Evaluating spatial-keyword queries on
streaming data,’’ in Proc. 26th ACM SIGSPATIAL Int. Conf. Adv. Geo-
graphic Inf. Syst., Nov. 2018, pp. 209–218.

[38] R. A. Brown, ‘‘Building a balanced k-d tree in O(kn log n) time,’’ 2014,
arXiv:1410.5420. [Online]. Available: http://arxiv.org/abs/1410.5420

[39] S. Gog, T. Beller, A. Moffat, and M. Petri, ‘‘From theory to practice:
Plug and play with succinct data structures,’’ in Experimental Algorithms
(Lecture Notes in Computer Science), vol. 8504. Cham, Switzerland:
Springer, 2014, pp. 326–337.

[40] L. Chen, G. Cong, X. Cao, andK. L. Tan, ‘‘Temporal spatial-keyword top-k
publish/subscribe,’’ in Proc. Int. Conf. Data Eng., Apr. 2015, pp. 255–266.

[41] M. A. Martínez-Prieto, N. Brisaboa, R. Cánovas, F. Claude, and
G. Navarro, ‘‘Practical compressed string dictionaries,’’ Inf. Syst., vol. 56,
pp. 73–108, Mar. 2016.

[42] N. Gali, R. Mariescu-Istodor, D. Hostettler, and P. Fränti, ‘‘Framework
for syntactic string similarity measures,’’ Expert Syst. Appl., vol. 129,
pp. 169–185, Sep. 2019.

[43] N. Zhang, A. Mukherjee, D. Adjeroh, and T. Bell, ‘‘Approximate pattern
matching using the burrows-wheeler transform,’’ in Proc. Data Compress.
Conf. DCC, 2003, p. 458.

[44] J. Tekli, R. Chbeir, A. J. M. Traina, C. Traina, K. Yetongnon, C. R. Ibanez,
M. Al Assad, and C. Kallas, ‘‘Full-fledged semantic indexing and querying
model designed for seamless integration in legacy RDBMS,’’Data Knowl.
Eng., vol. 117, pp. 133–173, Sep. 2018.

[45] J. Tekli, R. Chbeir, A. J.M. Traina, andC. Traina, ‘‘SemIndex+: A semantic
indexing scheme for structured, unstructured, and partly structured data,’’
Knowl.-Based Syst., vol. 164, pp. 378–403, Jan. 2019.

[46] M. A. Martínez-Prieto, M. A. Gallego, and J. D. Fernández, ‘‘Exchange
and consumption of huge RDF data,’’ in The Semantic Web, Research
and Applications (Lecture Notes in Computer Science), vol. 7295. Berlin,
Germany: Springer, 2012, pp. 437–452.

CARLOS E. SANJUAN-CONTRERAS received
the bachelor’s degree in informatics and the mas-
ter’s degree in computer science from the Uni-
versity of Bío-Bío, Chillán, Chile, in 2014 and
2019, respectively. His research interests include
spatio-textual databases and compact data struc-
tures and algorithms.

GILBERTO GUTIÉRREZ RETAMAL received the
M.Sc. and Ph.D. degrees from the University of
Chile, in 1999 and 2007, respectively. He is cur-
rently an Associate Professor with the Department
of Computer Science and Information Technology,
University of Bío-Bío, Chillán, Chile. His research
interests include data structures and algorithms
and spatial and spatio-temporal databases.

VOLUME 8, 2020 98845

http://dx.doi.org/10.1145/568271.223794
http://dx.doi.org/10.1145/568271.223794
http://dx.doi.org/10.1145/335191.335414
http://dx.doi.org/10.14778/2002974.2002978
http://dx.doi.org/10.1016/j.pmcj.2017.09.009

C. E. Sanjuan-Contreras et al.: cBiK: Space-Efficient Data Structure for Spatial Keyword Queries

MIGUEL A. MARTÍNEZ-PRIETO received the
Ph.D. degree in computer science from the Uni-
versity of Valladolid (UVa), in 2010. He held
a Postdoctoral position with the University of
Chile, from 2010 to 2012. His scientific experience
extends over the last 13 years. He is currently an
Associate Professor with the Department of Com-
puter Science, UVa. His main research interests
include data engineering challenges, more con-
cretely data compression and indexing, semantic
web, and big data.

DIEGO SECO received the M.Sc. and Ph.D.
degrees in computer science from the University
of A Coruña, in 2006 and 2009, respectively. He is
currently an Associate Professor with the Depart-
ment of Informatics Engineering and Computer
Science, Faculty of Engineering, Universidad de
Concepción, Chile. He also participates with the
Millennium Institute for Foundational Research
on Data. His research interests include geographic
information retrieval, geographic information sys-

tems, compressed data structures and algorithms for textual and geographic
data, and bioinformatics.

98846 VOLUME 8, 2020

