
Received May 6, 2020, accepted May 12, 2020, date of publication May 25, 2020, date of current version June 8, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2997002

Load Frequency Stability Analysis of
Time-Delayed Multi-Area Power Systems
With EV Aggregators Based on Bessel-Legendre
Inequality and Model Reconstruction Technique
SHA-JUN ZHOU, HONG-BING ZENG , AND HUI-QIN XIAO
School of Electrical and Information Engineering, Hunan University of Technology, Zhuzhou 412007, China

Corresponding authors: Hong-Bing Zeng (9804zhb@163.com) and Hui-Qin Xiao (xiaohq_610@126.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 61703153, and in part by the Natural
Science Foundation of Hunan Province under Grant 2018JJ2096 and Grant 2018JJ4075.

ABSTRACT This paper investigates the stability of time-delayed load frequency control (LFC) systems
with electric vehicles (EV) aggregators based on Lyapunov theory and linear matrix inequality (LMI)
technology. A novel Lyapunov-Krasovskii functional (LKF) is constructed. Then, based on Bessel-Legendre
(B-L) inequality and model reconstruction technique, two stability criteria are derived, respectively. Some
simulations are carried out to verify the effectiveness of the proposed methods. And the interaction of
time-delays between areas and the effect of gains of EVs on delay margins are discussed.

INDEX TERMS Electric vehicles, load frequency control, Bessel-Legendre inequality, model reconstruction
technique.

I. INTRODUCTION
Whether it is the traditional power system under the vertical
integration mode, or deregulated power system composed of
different market players, the stability of load frequency is
one of the most important indexes to measure the normal
operation of the power grid [1]. For interconnected power
systems, LFC is the most commonly used approach to keep
the load frequency stable or changing at a small range.
Besides, it can also regulate the tie-line powers exchanges
within a desired value [2].

Nowadays, with the increasingly serious energy crisis,
new energy has been vigorously developed to improve
the structure of energy. As EVs becoming power sources
relying on electric energy, and the EV’s power storage
battery technology growing maturity, the number of EVs will
continue to increase [3]. EV will bring a huge development
potential for power grid because of its less contamination,
the ability to improve energy consumption structure and the
characteristic for energy saving. Certainly, with those social
advantages and environmental benefits, considerable public
attention has been paid to the development of EVs. Under
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the concept of V2G, EVs are not only the users of power
grid, but also the participants maintaining the stability of
power grid, which realizes the two-way interaction between
energy storage system and power grid. By V2G technology,
EV can play roles of peak shaving and valley filling for the
load of power grid. In addition, EVs can be participants of
LFC [4]. As a kind of mobile energy storage equipment, EVs
can control the balance of supply and demand by controlling
the charge and discharge of electricity. Due to this, EVs are
able to control the system frequency fluctuation caused by
load disturbance rapidly [5].

Communication networks have been applied to LFC
systems for many years to transmit control signals. The
existence of time-delays is inevitable because of the network
bandwidth capacity. These time-delays may deteriorate the
performance of power systems like instability or oscillation,
or at least, cause the load frequency to deviate from the
desired value [6], [7]. With regard to stability research
of time-delay systems, there are two main methods [8].
One is frequency domain method which can obtain the
sufficient and necessary conditions for the system stability
but it can only deal with systems with constant time-
delays. Another method most commonly used now is the
time domain indirect method based on LKF and LMI
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technology. This method can only obtain the sufficient
conditions for the system stability, so how to reduce the
conservativeness has become a hot topic recently [9]–[12].
Thus, numerous inequalities have been proposed in the recent
years such as Jensen inequality, Wirtinger inequality [13],
Free-matrix-based inequality [14], [15], B-L inequality [26]
and so on. These methods are widely used in stability
analysis of time-delayed LFC systems and have achieved
remarkable results. Jensen inequality was applied to stability
analysis of time-delayed multi-area LFC systems [16], while
Wirtinger inequality reduced the conservativeness and gave
a more accurate delay margin than Jensen inequality [17].
In [18], a new auxiliary-function-based double integral
inequality is proposed for stability analysis of one-area and
multi-area LFC systems with time-varying delays. In [19],
a delay-dependent robust controller is designed for multi-area
LFC systems.

As to the time-delayed power system with EV aggregators,
there are not many researches for it. In [20], a stabil-
ity analysis for the time-delayed LFC system with EV
aggregators is presented, where the detailed relationship
between PI controller gains and delay margins is provided.
In [21], a parameter uncertain model is proposed and
the corresponding delay-dependent controller is designed.
In addition, a novel distributed control strategy of high
voltage direct current links for time-delayed LFC systems
with EVs is presented in [22], which reduces the differences
in frequencies between the connected power areas. In [23],
a reference model of EVs’ battery system and functions
which describe battery state of EVs are presented. However,
there are few researches considering the interrelation and
interaction of time-delays between areas. Furthermore, how
to obtain more accurate delay margins with less computa-
tional complex is still a difficult problem.

This paper gives a load frequency stability analysis of
time-delayed multi-area power systems with EV aggregators
based on B-L inequality and model reconstruction technique.
The main purpose of this paper is to achieve more accurate
delay margins of time-delayed multi-area LFC systems with
EV aggregators. The main contents and contributions of this
paper are as follows: Firstly, a novel LFK based on B-L
inequality for stability analysis of LFC systems with EV
aggregators is established. Secondly, an improved criterion
is given based on model reconstruction technique that helps
a lot to reduce the computational complexity. Thirdly, some
case studies are presented including effectiveness of the
proposed method, relationship between gains of EVs and
delay margins, interaction of time-delays between two areas,
and the compare of the two proposed criteria.

The remaining of this paper is organized as follows.
In Section II, a dynamic model of time-delayed LFC
system with EV aggregators is presented. In Section III,
two improved criteria are proposed based on B-L inequality
and model reconstruction technique, respectively. Section IV
gives some case studies based on the presented model and
Section V concludes this paper.

FIGURE 1. i -th area of time-delayed LFC system with EV aggregators.

II. MODEL OF TIME-DELAYED LFC SYSTEM
WITH EV AGGREGATORS
Different from the traditional time-delayed power sys-
tems [24], EVs participating in LFC in time-delayed
power system with EV aggregators. We consider N areas
time-delayed LFC systems, and each one consists of m
governors and turbines and n EVs. Fig. 1 describes the
i-th area of time-delayed LFC system with EV aggregators.
e−sτi describes the time-delay of signal transmission. 1fi,
1Ptie−i, 1Pmmi, 1Pvmi are the deviation of frequency,
tie-line power exchange, mechanical output of generator,
and valve position, respectively; Mi, Di, TGmi, Ttmi, Rmi
denote the inertia constant, load damping coefficient, speed
governor constants, turbine time constants and governor
droop characteristic, respectively; βi, αmi, α(m+n)i denote the
frequency bias constant, participation ratio of governors and
turbines, participation ratio of EV aggregators, respectively.
The dynamic model of an EV battery system is described
by [20]:

Gevn,i (s) =
Kevn,i

1+ Tevn,i
(1)

where Kevn,i and Tevn,i denote the gain and time constant
of the EV, respectively; ρni and 1Pevn,i are the EV droop
characteristic and the deviation of power output in the EV,
respectively. ACEi is the control error of the i-th area and
usually described as:

ACEi = βi1fi +1Ptie−i (2)

and a PID-type LFC controller is designed as follows:

ui (t) = −KpiACEi − KIi

∫
ACEi − KDi

dACEi
dt

(3)

Then, the closed-loop model of the time-delayed LFC
system with EV aggregators can be expressed as:

ẋ (t) = Ax (t)+
N∑
i=1

Adi(t − τi)+ Bwω (4)
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where

x = [x̄T1 , x̄
T
2 , . . . , x̄

T
N ]

T , x̄i = [x̂Ti ,
∫
yTi ]

T , yi = ACEi

x̂i = [1fi,1Ptie−i,1Pm1i, . . . ,1Pmmi, . . . ,1Pv1i,

. . . , 1Pev1,i, . . . ,1Pevn,i]T

A =

 Ā11 . . . Ā1N
...

. . .
...

ĀN1 . . . ĀNN


Adi =

 0(i−1)(2m+n+3)×N (2m+n+3)
Ādi1 Ādi2 . . . ĀdiN

0(N -i)(2m+n+3)×N (2m+n+3)


Bw = diag

{
B̄w1, B̄w2, . . . , B̄wN

}
ω = diag

{
ω1, ω2, . . . , ωN

}
Ādii = −B̄iKiC̄i, Ādij = −B̄iKiC̄ij, B̄wi = F̄i − B̄iKiD̄i

Āii =
[
Ai 0(2m+n+2)×1
Ci 0

]
Āij =

[
Aij 0(2m+n+2)×1

01×(2m+n+2) 0

]

B̄i =
[
Bi
0

]
, F̄i =

[
Fi
0

]
, C̄i =

 Ci 0
01×(2m+n+2) 1

CiAij 0


C̄ij =

01×(2m+n+2) 0
01×(2m+n+2) 0

CiAij 0(2m+n+2)×1

 , D̄i =

 Di
0

CiFi



Ai =


A11i A12i A13i A14i
A21i A22i A23i A24i
A31i A32i A33i A34i
A41i A42i A43i A44i


Aij =

 0 0 01×(2m+n)
−2πTij 0 01×(2m+n)
0(2m+n)×1 0(2m+n)×1 0(2m+n)×(2m+n)


A11i =

 −
Di
Mi

−
1
Mi

2π
∑N

j=1,j 6=i
Tij 0


A12i =

 1
Mi

. . .
1
Mi

01×m

 , A13i =
[
02×m

]

A14i =

 1
Mi

. . .
1
Mi

01×n

 , A21i =
[
0m×2

]
A22i = −A23i = diag

{
−

1
Tt1i

, . . . , −
1
Ttmi

}

A24i =
[
0m×n

]
,A31i =

− 1
TG1iR1i

. . . −
1

TGmiRmi
01×m

T

A32i =
[
0m×m

]
, A33i = diag

{
−

1
TG1i

, . . . , −
1

TGmi

}

A34i =
[
0n×m

]
, A41i =

−ρ1Kev1,iTev1,i
. . . −

ρnKevn,i
Tev1,i

01×n



A42i = A43i =
[
0n×m

]
A44i = diag

{
−

1
Tev1,i

, . . . , −
1

Tevn,i

}
, Bi =

02×1
0m×1
B3i


Fi =

 −
1
Mi

0(2m+n+1)×1

 , Ci = [βi, 1, 01×(2m+n)
]

B3i = [
α1i

TG1i
, . . . ,

αmi

TGmi
,
α(m+1)iKev1,i

Tev1,i
,

. . . ,
α(m+n)iKevn,i

Tevn,i
]T

According to [25], external disturbances are not taken into
consideration when analyzing the internal stability of the
system. Such that, by reordering the time-delays in system
(4) like:

0 = τ0 6 τ1 6 . . . 6 τN , (5)

system (4) can be rewritten as following without external
disturbances:

ẋ (t) =
N∑
i=0

Aix (t − τi) (6)

where A0 = A, Ai = Adi.

III. IMPROVED STABILITY CRITERIA BASED
ON B-L INEQUALITY AND MODEL
RECONSTRUCTION TECHNIQUE
Two novel stability criteria are proposed in this section based
on B-L inequality and model reconstruction technique to
obtain more accurate delay margin and to reduce the compu-
tational complexity, respectively. The following lemma will
be helpful to derive the new criteria.
Lemma 1 [26]: Let x : [a, b] → Rn be a differentiable

function and M be any natural number. For any given matrix
Z
(
∈ Rn×n

)
> 0, the following inequality holds:

−

∫ β

α

ẋT (u)Zẋ (u)

≤−
1

β − α
ζ TM
[∑M

k=0 (2k+1)$
T
M (k)Z$M (k)

]
ζM (7)

where

ζM

=

[x
T (β),xT (α)]T , M=0,

[xT (β),xT (α),
1

β−α
2T

0 , . . . ,
1

β − α
2T
M−1]

T , M>0,

$M (k)

=

{
[I ,−I ], M = 0,
[I , (−1)k+1 I , θ0Mk I , . . . , θ

M−1
Mk I ], M > 0,

θ
j
Mk

=

{
(2j+ 1)

(
(−1)k+j − 1

)
, j ≤ k,

0, j > k,
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Fk (u)

= (−1)k
k∑
i=0

[
(−1)i

(k
i

)(k+i
i

)] (u− α
u− β

)i
,

2k

=

∫ β

α

Fk (u)x(u)du.

Remark 2: This inequality is called B-L inequality and
the binomial coefficients n!

m!(n-m)! is presented by
(n
m

)
. The

right term of the inequality sign is used to estimate the
left integral term and with M going to infinity, the right
term is approximately equal to the left term. B-L inequality
helps a lot to reduce conservativeness in stability analysis
of time-delayed systems, but the larger M will bring more
complex calculations.

The next stability criterion for system (6) is derived based
on Lemma 1 as follows:
Theorem 3: For given scalars τi, i = 0, 1, . . . , N ,

satisfying (5), system (4) is asymptotically stable, if there
exist symmetric matrices P > 0, Qi > 0, Ri > 0,
i = 0, 1, . . . ,N , such that the following LMI holds:

8 = �+�T
+

N∑
i=1

9i < 0 (8)

where

� =



e1
(τ1 − τ0) eN+2

...

(τN − τN−1) e2N+1
(τ1 − τ0) e2N+2

...

(τN − τN−1) e3N+1



T

P



es
e1 − e2
...

eN − eN+1
e1 + e2 − 2eN+2

...

eN + eN+1 − 2e2N+1


,

9i = eTi Qiei − e
T
i+1Qiei+1 + (τi − τi+1)

2 eTs Ries

−

 ei − ei+1
ei + ei+1 − 2eN+i+1
ei − ei+1 − 6e2N+i+1

T

×R̃i

 ei − ei+1
ei + ei+1 − 2eN+i+1
ei − ei+1 − 6e2N+i+1

 ,
R̃i = diag

{
Ri, 3Ri, 5Ri

}
, es =

N∑
j=0

Ajej+1,

ei =
[
0n×(i−1)n, In×n 0n×(3N+1−i)n

]
,

i = 1, 2, . . . , 3N + 1, n = N (2m+ n+ 3)− 1.

Proof: Choose the following LKF candidate:

V (t)

= κT (t)Pκ (t)+
N∑
i=1

∫ t−τi−1

t−τi
xT (s)Qix (s) ds

+

N∑
i=1

(τi − τi−1)
2
∫
−τi−1

−τi

∫ t

t+θ
ẋT (s)Riẋ (s) dsdθ, (9)

where

κ (t) =



x (t)∫ t−τ0

t−τ1
x (s) ds

...∫ t−τN−1

t−τN
x (s) ds∫ t−τ0

t−τ1

(
2
s− t + τ1
τ1 − τ0

− 1
)
x (s) ds

...∫ t−τN−1

t−τN

(
2
s− t + τN
τN − τN−1

− 1
)
x (s) ds


and then applying Lemma 1 with M = 2 to estimate the
integral term −

∫ t−τi−1
t−τi

ẋT (s)Riẋ (s) ds in the derivative of
V (t), yields

V̇ (t) ≤ ξT (t)8ξ (t) (10)

where

ξ (t) =



x (t − τ0)
...

x (t − τN )
1

τ1 − τ0

∫ t−τ0

t−τ1
x (s) ds

...

1
τN − τN−1

∫ t−τN−1

t−τN
x (s) ds

1
τ1 − τ0

∫ t−τ0

t−τ1

(
2
s− t + τ1
τ1 − τ0

− 1
)
x (s) ds

...

1
τN − τN−1

∫ t−τN−1

t−τN

(
2
s− t + τN
τN − τN−1

− 1
)
x (s) ds


It is obvious that V (t) > 0 and V̇ (t) < −ε ‖x (t)‖2 for a
sufficient small scalar ε > 0, which guarantees the asymp-
totical stability of system (6) if (8) holds. By employing B-L
inequality with M = 2, we can reduce the conservativeness
to a great extent. The delay margin we can obtain from the
LMI toolbox in Matlab software is closer to the true value
than Wirtinger inequality [17] and Jensen inequality [16],
and this compare will be shown in the next section.
However, the use of B-L inequality increases computational
complexity and with the increasing of dimensions of system
matrices, the increasing of computational complexity will
become more obvious. A model reconstruction technique
was provided in [17], which helps a lot to reduce the
computational complexity. It separates the states in x (t)
into n1 delay-related states and n2 delay-free states. The n1
delay-related states and n2 delay-free states forms x1 (t) and
x2 (t) respectively. The smaller n1 is, the less computational
complexity can be obtained. This technique is very suitable
for the model of Fig. 1 which also supports us to establish the
next stability criterion for system (6).
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Theorem 4: For given scalars τi, i = 0, 1, . . . ,N ,
satisfying (5), the system (6) is asymptotically stable, if there
exist symmetric matrices P1 > 0, Ui > 0,Zi > 0, i =
0, 1, . . . ,N , such that the following LMI holds:

4 = 1+1T
+

N∑
i=1

ϒi < 0 (11)

where

1 =



ē1
ē0

(τ1 − τ0) ēN+2
...

(τN − τN−1) ē2N+1
(τ1 − τ0) ē2N+2

...

(τN − τN−1) ē3N+1



T

P1



ēs1
ēs0

ē1 − ē2
...

ēN − ēN−1
ē1 + ē2 − 2ēN+2

...

ēN + ēN+1 − 2ē2N+1


ϒi = ēTi Uiēi − ē

T
i+1Uiēi+1 + (τi − τi−1)

2 ēs1Ziēs1 − ēi − ēi+1
ēi + ēi+1 − 2ēN+i+1
ēi − ēi+1 − 6ē2N+i+1

T Z̃i
 ēi − ēi+1
ēi+ēi+1 − 2ēN+i+1
ēi − ēi+1 − 6ē2N+i+1

 ,
Z̃i = diag

{
Zi, 3Zi, 5Zi

}
, ē0 = [0n2×(3N+1)n1 , In2×n2 ],

ē1 = [0n1×(i−1)n1 , In1×n1 , 0n1×(3N+1−i), 0n1×n2 ],

i = 1, 2, . . . , 3N + 1,

ēs0 = A21ē1 + A22ē0 +
N∑
i=1

Adiēi+1, ēs1 = A11ē1 + A12ē0.

Remark 5: Theorem 4 is established based on Lemma 1
(M = 2) and model reconstruction technique but the proof
of it is omitted here due to the space limitation. It should
be noted that separating x(t) into x1(t) and x2(t) makes the
choice of LFK to prove Theorem 4 different from (9). The
dimensions of the positive matrices in Theorem 4 (P1, Ui, Zi)
are smaller than those in Theorem 3 (P, Qi, Ri) which make
the number of variables that Theorem 4 brings are quite
smaller than the one that Theorem 3 brings and the com-
parison will be given in the next section. At last, [17] gives
detailed procedures of how to set n1, n2,A11,A12,A21,A22
and Adi which also helps to prove Theorem 4.

IV. CASE STUDIES
Some case studies are presented in the following subsec-
tions including the effectiveness of the proposed method,
interaction of time-delays between areas, effect of gains of
EVs and the compare between Theorem 3 and Theorem 4.
System parameters are given in Tab. 1. Only two areas with
1 governor and turbine and 1 EVs aggregator (N = 2,m =
1, n = 1) are considered in order to improve the program
running speed in Matlab LMI toolbox.

The whole analysis steps are summarized in [16] which
are of great assistance in obtaining the following tables and
figures.

TABLE 1. System parameters.

TABLE 2. Delay margins derived by different methods
(KP = 0.4, KI = 0.2, KD = 0).

FIGURE 2. Stability regions derived by different methods
(KP = 0.4, KI = 0.2, KD = 0).

A. EFFECTIVENESS OF THE PROPOSED METHOD
To show the effectiveness of Theorem 3, we compare it
with Theorem 1 in [16] and Lemma 1 in [17]. Besides,
we use Matlab Simulink to evaluate the frequency deviation
of area 1 to verify the accuracy of delay margins obtained by
Theorem 3, which is also compared with Lemma 1 in [17].

For the two-area time-delayed LFC system with one
governor and turbine and one EVs aggregator, the gains
of the PID controllers are set to (0.4, 0.2, 0). The delay
margins calculated by Theorem 3, Theorem 1 in [16] and

Lemma 1 in [17] are listed in Tab. 2, in which τ =
√
τ 21 + τ

2
2

and θ = arctan (τ2/τ1) [12]. The boundaries of stability
regions based on the delay margins are shown in Fig. 2. The
time domain response of frequency deviation of area 1 with
a step load disturbance appearing at 10s is shown in Fig. 3
where the gains of the PID controllers are set to (0.4, 0.2, 0).
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FIGURE 3. Frequency deviation of area 1 with different
time-delays(KP = 0.4, KI = 0.2, KD = 0).

From the results that shown in the Tab. 2 and Fig. 2,
it is easy to find out that the delay margins derived
by Theorem 3 are more accurate than which derived by
Theorem 1 in [16] and Lemma 1 in [17]. Comparing
Theorem 3 with Lemma 1 in [17], the calculation results are
very close when θ is around 45◦, which means the results
calculated by the two methods are both almost the true value
of delay margins in this range. To verify the accuracy of delay
margins that Theorem 3 brings, frequency deviation of area
1 with τ set to 0s, 12.7s and 14s and θ set to 24◦ is shown
in Fig. 3. τ = 12.7s is calculated by Lemma 1 in [17] while
τ = 14 is calculated by Theorem 3 which can be found in
Tab. 2. It is obvious that the frequency deviations are both
stable under the time-delays of 12.7s and 14s, but the later one
shows less conservative than the former one, which explains
the effectiveness of the proposed method.

B. INTERACTION OF TIME-DELAYS BETWEEN AREAS
Sometimes, the increase of time-delay in one area does not
decrease the stability region of the other area but increase it
slightly. In other words, time-delay will play a positive role
in the time-delayed LFC systems with EV aggregators. The
simulation verifies this interesting finding.

As is shown in Fig. 4, the time-delay in area 1 is 13s
while the time-delays in area 2 are 0s and 6s represented
respectively by different lines in the figure. As the time-delay
in area 2 rises from 0s to 6s, the performance of frequency
deviation of area 1 turns from instable to stable. This is a
good example to show that the time-delay in area 2 has a
positive impact on area 1. While it is also easy to explain this
phenomenon. When τ1 = 13s and τ2 = 0s, τ calculated by

τ =

√
τ 21 + τ

2
2 is 13s (θ = 0◦) and τ now is larger than the

delay margin calculated by Theorem 3 (see Tab. 4), which
causes instability of frequency deviation of area 1. While
τ1 = 13s and τ2 = 6s, τ is calculated equaling to 14.3s
and θ approximately equals to 60◦, and the delay margin
can be found in Tab. 4 is 14.7s which is larger than τ , thus

FIGURE 4. Frequency deviation of area 1 with different time-delays
(KP = 0.2, KI = 0.2, KD = 0).

TABLE 3. Delay margins with different Kev s
(KP = 0.15, KI = 0.2, KD = 0.05).

the frequency deviation of area 1 is stable. Hence one can
see that the interaction of time-delays between areas in the
time-delayed multi-area LFC system with EV aggregators.

C. EFFECT OF GAINS OF EVs
The battery’s state of charge (SOC) is an important feature of
EVs which affects the gains of EVs. Many papers do not take
SOC into consideration and only set Kev = 1, which are not
in conformity with the actual situation. Reference [16] gives
a relationship between SOC and Kev described by:

Kev = K − Kg (t) (12)

where K = 1, g(t) =
(

SOCcurrent−SOClow(high)
SOCmax(min)−SOClow(high)

)v
.

And the range of g(t) is [0, 1], such that Kev varies from
0 to 1. In other words, Kev is a time-varying parameter which
depends on SOC of EVs. Kev is an important factor affecting
the delay margin of the time-delayed LFC systems with EV
aggregators. Datas in Tab. 3 and Fig. 5 derived by Theorem 3
both confirm this finding.

No matter how the gains of the PID controllers change,
the stability region of the time-delayed two-area LFC systems
with EV aggregators decreases with the increase of Kevs,
which means the higher the current SOC is, the larger the
stability region can be obtained.
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FIGURE 5. Stability regions with different Kev s
(KP = 0.5, KI = 0.3, KD = 0.1).

TABLE 4. Delay margins derived by Theorem 3 and Theorem 4
(KP = 0.2, KI = 0.2, KD = 0).

FIGURE 6. Stability regions derived by Theorem 3 and Theorem 4
(KP = 0.1, KI = 0.2, KD = 0).

D. COMPARISON BETWEEN THEOREM 1
AND THEOREM 2
Tab. 4 and Fig. 6 show the delay margins and stability
regions derived by the two proposed theorems, respectively.
The results derived by the two theorems are very close, but
Theorem 3 brings 1804 variables while Theorem 4 brings
only 556 variables. Thus, the computation speed improves
greatly by means of the model reconstruction technique.

Theorem 4 based on model reconstruction technique
can reduce the computational complexity without reducing
conservativeness when PID gains are set to (0.2, 0.2, 0)
or (0.1, 0.2, 0). However, the change of gains of the PID
controllers may increase the computational complexity. For
example, when KD is not set to 0, the number of n1 will
increase that will bring more variables. Furthermore, results
derived by Theorem 4 are not as accurate as Theorem 3 for
some PID gains(see [17] Fig. 2 and Fig. 5). But in general,
model reconstruction technique is very effective to the LFC
systems with EV aggregators due to the high dimensions of
system matrices.

V. CONCLUSION
This paper has investigated the problem of load frequency
stability of time-delayed power systems with EV aggregators.
A dynamic model of time-delayed LFC system with EV
aggregators is presented. Two improved delay-dependent
stability criteria have been proposed based on B-L inequality
and model reconstruction technique, respectively. The delay
margins of the considered systems have been calculated by
Matlab/LMI toolbox. Several case studies are used to show
the effectiveness of the proposed methods, interaction of
time-delays between areas, how gains of EVs affect the delay
margins. In addition, some simulations have been presented
to verify the obtained results.
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