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ABSTRACT In this paper, we present an in-vehicle people localization technique using a deep neural
network (DNN) model that is trained by the experimental data. First, an impulse radio ultra-wide band (IR-
UWB) radar is installed inside the vehicle, and received signals are acquired by changing the arrangement of
people sitting. Then, on the acquired data, we apply the DNN to train a classifier, which can predict whether a
person is sitting or not in each seat. To design a network suitable for our system, we evaluate the performance
by changing the type of activation function, the number of layers, and the number of nodes in each hidden
layer of the DNN. In addition, we compare the performance of the proposed method with conventional
machine learning algorithms such as support vector machine (SVM) and decision tree-based methods. From
our measured signals, the proposed DNN-based method can classify all possible cases according to the
location and number of people with an accuracy of 99%. Moreover, the advantage of our proposed method
is that there is no need to extract features from a given radar signal.

INDEX TERMS Deep neural network, impulse radio ultra-wide band (IR-UWB) radar, people localization.

I. INTRODUCTION
In recent years, there has been a growing interest in enhancing
transportation safety and providing convenience to the gen-
eral public. Especially, the use of sensors inside vehicles have
been actively carried out by a number of scholars to improve
the safety of drivers and passengers. For instance, the authors
in [1]–[4] proposed a method for detecting driver drowsi-
ness through sensors. The methods included using cameras
to detect abnormal behaviors, or using electrodes to detect
physiological signals such as eye movement or heart rate. In
addition, hand-based gesture recognition technique inside a
vehicle was suggested by [5]–[7] to help the driver perform
various tasks while driving. In these works, sensors such as
radio-frequency identification (RFID), radar, and data-gloves
were used to identify specific hand gestures.

According to EuroNCAP 2025, detecting the position of
passengers inside a vehicle is considered essential because
accidents occur by leaving a baby or pet inside a locked
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car [8]. To solve this problem, a thermal camera-based
method was proposed in [9] to detect seat occupancy inside
a vehicle. The thermal image was used as an input to the
convolutional neural network and the number of people was
estimated with a high accuracy. However, the main drawback
of this approach is that the performance of temperature-based
sensors can be degraded when the temperature inside the
vehicle is too high. In addition, there are privacy issues when
vision sensors such as camera are used.

Unlike camera sensors, the radar shows robust perfor-
mance in a lightless environment and does not invade the
privacy of individuals [10]. Also, radars using high frequency
bands can be miniaturized and have a high range resolution,
making it suitable for indoor detection purposes. In particular,
the impulse radio ultra-wide band (IR-UWB) radar has been
in the spotlight due to its excellent range resolution and
immunity to external noise [11]. Several studies have been
conducted to detect people indoors using an IR-UWB radar
[12]–[14]. However, few studies have focused on in-vehicle
environment. The authors in [15] estimated the location of
people sitting inside the vehicle by using an IR-UWB radar
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sensor, but the method required extracting features from the
received data.

In this paper, we propose a deep learning-based method
for estimating the location of people inside vehicle using
a single IR-UWB radar sensor. First, an IR-UWB radar is
mounted on the rear view mirror position inside the vehicle.
Then, we conduct radar signal measurements by changing the
subject, the number of subjects, the location of subjects, and
the type of car. In the case of a five-seater vehicle, there are
a total of 32 possible cases depending on the number and
location of people. To distinguish these 32 different experi-
mental cases, we use a deep neural network (DNN) structure
to design a classifier. The application of deep learning for
the classification of radar sensor data have been reported in
[16]–[18]. In our study, pre-processed time-sampled radar
signals are used as the input to the DNN. At this time, the
pre-processed signal itself becomes the input to the classifier
without extracting any features from it. Then, to find an
appropriate network structure for classification, we evaluate
the performance by changing the number of hidden layers,
the number of nodes in each hidden layer, and the type of
activation function. We use 70%, 15%, and 15% of the total
data as training, validation, and test sets to verify the perfor-
mance of the proposed method. Our proposed method shows
remarkable performance in recognizing the arrangement of
people sitting inside the vehicle with an accuracy of 99%. In
addition, we also compare the performance of our proposed
method with conventional machine learning algorithms such
as support vector machine (SVM) and decision tree-based
methods. The classification results show that our proposed
method outperforms the conventional methods. Unlike the
method of [15], because our proposed method is not based
on feature extraction, we do not need a deep understanding
of radar signals. Also, it has the advantage of being able
to monitor people inside the vehicle without compromising
people’s privacy.

The remainder of this paper is organized as follows. In
Section II, the basic principles of IR-UWB radar system
are discussed along with some signal processing techniques.
Then, in Section III, we introduce our experiment environ-
ment for measuring the radar signals. Next, our proposed
DNN-based people localization method and its results are
presented in Section IV. Additionally, we compare the classi-
fication performance with other machine learning algorithms.
Finally, we conclude our work in Section V.

II. ANALYSIS OF RECEIVED SIGNALS IN IR-UWB RADAR
SYSTEM
A. BASIC PRINCIPLES OF IR-UWB RADAR
In an IR-UWB radar system, the radar transmits a sequence of
narrow pulse signals that occupy a wide frequency spectrum.
The main advantages of this system is the improved range
resolution by using short pulses, and immunity to external
narrowband noise by using a wide frequency spectrum [19].
The transmitted signal can be written as

s(t) = x(t) cos(2π fct), (1)

FIGURE 1. (a) Time-domain Gaussian pulse signal (b) Frequency-domain
Gaussian pulse signal.

where x(t) is the complex envelope of the pulse signal and
fc is the carrier frequency. Among the various types of pulse
waveforms, the Gaussian pulse is most widely used due to its
relative ease of implementation and excellent time-frequency
product [20]. A modulated Gaussian pulse signal is shown in
Fig. 1, for both time-domain and frequency-domain.

When the transmitted signal is incident on the target, the
signal is backscattered and then received at the receiver. The
received signals can be expressed as

r(t) =
M∑
m=1

am s(t − τm)+ n(t)

=

M∑
m=1

am x(t − τm) cos{2π fc(t − τm)} + n(t), (2)

where am and τm are the attenuation coefficient and time delay
of the mth path, M is the number of paths, and n(t) is the
noise added on the receiving antenna, respectively. Then, the
received signals are digitalized through a sampling process,
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FIGURE 2. Block diagram of parallel sampling.

FIGURE 3. Signal pre-processing of IR-UWB radar signal.

which can be expressed as

r[n] = r(nTs) (n = 1, 2, · · · ,N ), (3)

where Ts is the sampling period and N is the number of
samples. Since the duration of a pulse is very short, sampling
needs to be performed very quickly in an IR-UWB radar sys-
tem. For example, if the duration of a signal is 1 ns, sampling
needs to be performed every 3.9 ps to obtain 256 samples per
signal, which is extremely difficult to implement in real time.
To solve this issue, a parallel sampling is performed, which
means that multiple samplers are used to sample the signal in
parallel. The block diagram of parallel sampling is shown in
Fig. 2. In Fig. 2, each sampler samples the signal every NsTs
seconds, while the sampling offset between adjacent samplers
is Ts seconds. By combining the results from each sampler, it
has an equivalent effect of sampling per Ts seconds and fast
sampling can be achieved.

B. PRE-PROCESSING OF IR-UWB RADAR SIGNALS
The time-sampled signal r[n] in (3) is the raw signal that con-
tains undesired components such as DC bias, low-frequency
noise, and clutters. To suppress these undesired components
and to extract the signals from desired targets, signal pre-
processing has to be performed. The block diagram of the
overall signal processing procedure is shown in Fig. 3. First,
the DC bias of the signal is removed by subtracting its mean
value, which results in

r̂[n] = r[n]−
1
N

N∑
k=1

r[k]. (4)

Then, the signal is passed through a bandpass filter to remove
the undesired frequency components. The bandpass filter

FIGURE 4. Effect of applying the matched filter.

is designed by calculating the half-power bandwidth of the
transmitted signal from Fig. 1, and then passing only those
frequency components. The bandpass filtering operation can
be expressed as

r̂BPF [n] = F−1
{
F {r̂[n]} · H [z]

}
, (5)

where F and F−1 denote the Fourier transform and inverse
Fourier transform operation, and H [z] denotes the bandpass
filter in the frequency domain. Finally, a matched filter is
applied on the resulting signal to extract the desired target
signal. This is done by convolving the received signal with a
conjugated, time-reversed version of the transmitted signal,
which can be expressed as

p[n] = r̂BPF [n] ∗ s∗[−n] (6)

where ∗ denotes the convolution operation. The effect of
applying the matched filter is shown in Fig. 4. As can be seen
from the figure, the amplitude of the target signal becomes
much higher, making it easily distinguishable from noise.
Therefore, we used the processed radar signal p[n] for in-
vehicle people localization.

III. EXPERIMENT ENVIRONMENT
In our measurement, we use the NVA-R661 radar module
manufactured by Novelda, which is shown in Fig. 5. The
radar is connected to laptop via SPI to USB cable (C232H)
to store the data. The radar has one transmit antenna and one
receiving antenna, which are 15 cm apart. In addition, each
antenna has a dielectric lensmounted on it to narrow the beam
pattern and increase the antenna gain. The specifications
of the radar system are summarized in Table 1. The pulse
repetition frequency is set as 100 MHz, which means that
the radar transmits a pulse every 10 ns. However, the actual
data capture rate, denoted as the frame rate, is only 120 Hz
which is much slower than the pulse repetition frequency.
This is due to coherent processing, where multiple pulses are
combined and averaged to increase the processing gain. In
addition, the time it takes to transfer the data over SPI to USB
link further limits the frame rate. Moreover, the sampling
period is set as 26 ps, so the time difference between adjacent
samples is 26 ps. Since the time delay τ can be expressed
as 2R/c where R is the distance and c is the velocity of
light, the distance difference between adjacent samples is
cτ/2 ≈ 4mm. Therefore, by using a total of 512 samples,
we can observe a distance of 4mm× 512 ≈ 2m.
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TABLE 1. Specifications of the radar system.

FIGURE 5. IR-UWB radar module (NVA-R661).

We placed the radar at rear view mirror to simultaneously
monitor all seats inside the car, as shown in Fig. 6. The
distance between the radar and leg room of the car is approx-
imately 1m, and the distance between the radar and side
rear seat is about 1.6m. In addition, the seats are labeled
from 1 to 5, as shown in Fig. 6. Since each seat has two
possible outcomes (sitting or not sitting), there are a total
of 25 different scenarios. Therefore, we conducted measure-
ments by changing the arrangement of people for 32 different
scenarios. These 32 measurement scenarios are labeled from
class E1 to E32. For example, class E1 indicates the case
when no one is inside the vehicle, and class E32 indicates
the case when 5 people are sitting inside the vehicle.

Furthermore, we conducted measurements by switching
the experiment participant and the order of sitting because
each subject has a different body shape and composition. In
addition, we performed an additional experiment by changing
the type of car to strengthen the generality of our proposed
method. Therefore, measurements were conducted on two
different vehicles and the total number of measurements was
434. Since one measurement contains more than 500 raw
radar signals, we obtained more than 220, 000 radar signals.

IV. PROPOSED DNN-BASED PEOPLE LOCALIZATION
A. INPUT AND STRUCTURE FOR DATA LEARNING
Multi-layer perceptron (MLP) is one of the simplest class of
DNN, in which each layer is fully connected to its neighbor-
ing layers [21]. The general structure of the MLP network
is shown in Fig. 7. It consists of an input layer, multiple
hidden layers, and an output layer. In addition, each layer
is comprised of multiple nodes and nodes are connected to
each other through edges. The network is trained through
a repeated process of forward propagation and backward
propagation. In the forward propagation stage, each layer
passes its value to the following layer by using weights and
an activation function. Let x(k) and y(k) denote the input and

FIGURE 6. Measurement set-up inside a vehicle.

FIGURE 7. General structure of MLP network.

output vector at layer k , and W(k) denote the weight matrix
between layer k and k+1. Then, the input vector at layer k+1
can be expressed as

x(k+1) = f (W(k)y(k)), (7)

where f denotes the activation function that gives nonlinearity
to the network. In the backward propagation stage, the weight
values are updated by computing the gradient of the loss
function with respect to each weight. If the weight value
before backward propagation is Wbefore, the updated value
after backward propagation is

Wafter =Wbefore − α
∂J

∂Wbefore
, (8)

where α is the learning rate that determines the speed of the
learning process and J is the loss function that indicates the
error between the estimated and true values. In this paper,
we used the cross entropy as the loss function, which is
commonly used in classification problems [22]. This process
of forward and backward propagation, denoted as an epoch,
is repeated multiple times to train the weight parameters
properly.

In our system, we used the processed radar signal p[n]
in (6) as the input to the network. Thus, each time-sampled
points of p[n] becomes the input to our network, and the
number of nodes in the input layer is 512. Also, the number
of nodes in the output layer was set as 32 to classify the 32
different scenarios. We used the one hot encoding method,
which means that class E1 corresponds to [1000 · · · 0], class
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FIGURE 8. Classification accuracy by changing the number of nodes in a
hidden layer (number of hidden layers: 1).

E2 corresponds to [0100 · · · 0], and so on. The important
parameters that determine the performance of the network are
the number of hidden layers, the number of nodes in each
hidden layer, and the type of activation function. Therefore,
we compared the classification accuracy by changing the
above-mentioned parameters to find an appropriate network
structure for our system.

B. LOCALIZATION RESULTS USING DNN
In this paper, we randomly selected 15% of the total data to
avoid the data being biased. This resulted in 35,981 processed
signals among a total of more than 220,000 signals. Then,
we used 70% of the data as training set, 15% of the data
as validation set, and 15% of the data as test set. The input
is a 512 × 1 vector and the output is 32 × 1 vector, as
mentioned in the previous section. The number of epochs
was set as 1000, and the learning rate was set as 0.01. In
addition, we considered two types of activation functions: the
sigmoid function and the hyperbolic tangent function. The
sigmoid function can be expressed as 1/(1 + exp(−x)) and
the hyperbolic tangent function can be expressed as (exp(x)−
exp(−x))/(exp(x)+ exp(−x)).
Fig. 8 shows the classification accuracy as a function of

the number of nodes in a hidden layer. The number of nodes
in a hidden layer was increased from 10 to 100 in intervals
of 10, while the number of hidden layers was fixed as 1.
As can be seen from the figure, the classification accuracy
generally increases with an increase in the number of nodes.
However, when the number of nodes is higher than 50, there is
no prominent increase of classification accuracy regardless of
the type of activation function. Therefore, we set the number
of nodes in a hidden layer as 50. Moreover, since the classifi-
cation accuracy is generally higher when hyperbolic tangent
function is used, we used this type of activation function
for our network. Next, we examined how the classification
ccuracy changes according to the number of hidden layers,
while maintaining the number of nodes in a hidden layer as 50
and using hyperbolic tangent activation function. As shown

FIGURE 9. Classification accuracy by changing the number of hidden
layers (number of nodes: 50).

FIGURE 10. Classification accuracy by changing the number of nodes and
hidden layers.

in Fig. 9, the classification accuracy was highest when the
number of hidden layers was 3. Therefore, we set the number
of hidden layers as 3, and this resulted in a high classification
accuracy of 99.5%.

Furthermore, we investigated the performance of the net-
work by changing both parameters, the number of hidden lay-
ers and the number of nodes, since fixing one parametermight
lead to inaccurate results. The number of hidden layers was
changed from 1 to 10 and the number of nodes in each hidden
layer was changed from 10 to 100 in intervals of 10, resulting
in a 10×10 combination of the network structure. The results
are shown in Fig. 10. In deriving the classification accuracy,
a Monte Carlo technique was used to average the results for
multiple iterations. In other words, a pseudorandom gener-
ator was used to extract 35,981 processed signals randomly
and this process was repeated 10 times, which results in 10
data sets. Then, each data set was used to train the network
in parallel, and the classification accuracy was derived by
averaging the results. From the figure, we confirmed that
the classification accuracy showed a similar trend regardless
of the number of hidden layers. Since the computational
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TABLE 2. Performance of various machine learning Algorithms and DNN.

complexity increases when more nodes and layers are used,
we concluded that setting the number of hidden layers as 3
and the number of nodes as 50 is appropriate for our network.

Moreover, we compared our proposed method with other
machine learning algorithms such as decision tree, support
vector machine (SVM), and bagging with decision tree. The
decision tree is a simple classification algorithm that uses a
set of hierarchical rules [23]. The model is trained by dividing
the data into smaller subsets based on the features of the data.
The SVM is a method that divides the input data by finding
the maximum margin hyperplane [24]. It can be applied to
nonlinear classification problems by using kernel trick, in
which the input data is mapped into high-dimensional feature
space. Baggingwith decision tree combinesmultiple decision
trees and makes a decision by aggregating the prediction
results from each decision tree [25]. The variance of the data
is reduced through the bagging algorithm, making it robust to
over-fitting problem. These algorithms have a similar prop-
erty in that they all require extracting meaningful features
from the data.

The comparison results are summarized in Table 2. A sin-
gle decision tree was not effective in classifying the data due
to its simple structure. The SVMwith a Gaussian kernel func-
tion also showed poor performance because the dimension of
the data is high. When bagging with decision tree is used, it
resulted in a relatively high classification accuracy of 91.3%,
but our proposed DNN method showed the most superior
performance of all algorithms. Our proposed DNN method
also has advantages from other machine learning algorithms
because it does not require extracting features from the data.

Furthermore, we investigated how the classification accu-
racy changes by reducing the size of the input. To reduce the
input size by half, we collected only the odd index data from
the processed radar signal p[n] in (5). In other words, we used
the signal p′[n] = [p[1], p[3], · · · , p[511]] as input to our
network, which has the same effect as doubling the sampling
period of the radar system. The other parameters and settings
were the same as before; only the input size was changed
from 512 × 1 to 256 × 1. As a consequence of reducing the
input size, the classification accuracy decreased from 99.5%
to 99.2%. Since sampling is performed very quickly in an
UWB radar system (26 ps), doubling the sampling period did
not seriously affect the performance of the proposed network
model.

V. CONCLUSION
In this paper, we proposed a deep learning-based method
to estimate the location and number of people inside the

vehicle. First, we accumulated the received IR-UWB radar
signals in 32 different measurement scenarios by changing
the subjects, the number of subjects, the location of sub-
jects, and the type of vehicle. Then, we trained the classifier
using the DNN with the received radar signals. Here, pre-
processed radar signals were used as an input to the classifier.
Unlike feature extraction machine learning techniques, our
proposed method does not require a feature extraction stage.
To design a suitable DNN structure for classification, we
evaluated the performance of the network by changing the
number of hidden layers, the number of nodes in each layer,
and the activation function. The classification results showed
that our proposed method can be used as an effective in-
vehicle localization technique. In addition, the classification
performance was improved compared to the conventional
machine learning techniques.
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