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ABSTRACT The security of Public-Key Infrastructure (PKI) for Internet-based communications has
lately attracted researchers’ attention because of Certification Authorities (CAs) crashes and consequent
attacks. Google Certificate Transparency and subsequent log-based PKI proposals (e.g., AKI and ARPKI)
have succeeded in making certificate-management processes more transparent, accountable, and verifi-
able. However, those proposals failed to solve the root CA generous delegation of trust to intermediate
CAs, non-conformant certificate-issuance by them, and lack of rigorous authentication of domain own-
ership during certificate-issuance problems. This study presents Attack-Resilient TLS Certificate Trans-
parency (ARCT) based on log servers to address these problems. ARCT enables root CA to enforce
intermediate CAs to follow community standards through leveraging a log server at each root level. It also
introduces a collaborative domain ownership verification method that deters false certificate-issuance and
ensures that a set of CAs validates every certificate before any client will accept it. A certificate collectively
approved by a set of CAs assures users that the certificate has been seen, and not instantly detected
malicious, by a group of CAs. Finally, formal security and performance evaluations prove the reliability
and effectiveness of ARCT.

INDEX TERMS TLS, PKI, log server, delegation of trust, collaborative identity verification.

I. INTRODUCTION
Transport Layer Security (TLS) is the backbone and tremen-
dous success in securing Internet-based communications.
Virtually all online purchase transactions are secured and
protected by TLS. Although TLS was primarily designed to
secure web traffic, today, most financial and non-financial
communications depend on TLS for their security. TLS is
highly reliant on the PKI for the secure connection estab-
lishment, in which CA-signed certificates are employed for
authentication. CAs play the most critical role in the PKI, and
PKI’s security and defense depend solely on the trustworthi-
ness, honesty, and security of CAs. Stealing secret-keys of
CAs are enough to impersonate domain servers; this makes
CAs’ secret-keys the prime targets for hackers.
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Unfortunately, we have observed notable crashes and
exploits in the CA regime. Although the CA regime pur-
ports to shield and guard clients against Man-in-the-Middle
(MitM) attacks, the current CA trust model is worryingly
brittle. Recent CAs collapses have revealed its vulnerability
in practice [1], [2]. Theweb browsers/operating systems blind
trust in a substantial number of CAs’ certificates is a big
problem of the current TLS ecosystem. In the current CA
model, CAs can issue TLS certificates for domains outside
their scope, representing the idea of weakest-link security [3].

In response, several solutions [3]–[6] have been proposed.
Certificate Transparency (CT) [4], [5] is a scheme pro-
posed by Google to make the problem of false TLS cer-
tificates detection easier by registering all TLS certificates
on a public log maintained in the form of a Merkle Hash
Tree (MHT). However, it cannot guard clients against attacks
when a corrupted CA issues false TLS certificates. Refer-
ences [3] and [6] are another line of proposals that attempts
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to sign the TLS certificates from multiple CAs and frame
certificate-management transparent by maintaining public
Log Servers (LSes) of all TLS certificates. They also acquaint
checks-and-balances to reduce the need to trust any single
party and prevent MitM attacks.

However, the generous-delegation-of-trust by the root CA
still lacks attention from the research community. Root CA
generously delegates their signing authority to intermedi-
ate CAs,1 and these unknown entities are blind as trusted as
the root trust servers. This trust delegation results in a mass
blind chain of trust. Further, intermediate CAs have abused
the delegated power for false certificate-issuance [7]. Both
before and after DigiNotar and Comodo incidents, a series
of lucrative attacks on intermediate CAs came to light [7].
Most small intermediate CAs failed to follow root CAs
and community standards and miss-issued certificates [8].
For example, in 2011, a Malaysian sub-CA was reported to
have issued domain certificates with a key size smaller than
required by the parent CA, and a Swiss intermediate CA
shorter key was used to sign malware [7]. Most sub-CAs’
miss-issuances have gone unmentioned in public forums like
the Mozilla Developer Security Policy (MDSP), but deserve
special attention [8].

Apart from trust delegation, CAs do not conduct
strict validation of the domain identity before certificate-
issuance [9], [10]. For example, in 2018, Birge-Lee et al. [9]
and Brandt et al. [10] showed real-world attacks against top
CAs such as Let’s Encrypt, Comodo, GoDaddy, Symantec,
InstantSSL, CertCom, NetworkSolutions, SSL.com, Net-
Lock, and GlobalSign. They unveiled that the certificate-
issuance process2 is itself defenseless toMitM attacks. Again,
Let’s Encrypt was taken down by Borgolte et al. [11], and
as a result, fake certificates were issued. Fake and mali-
ciously acquired TLS certificates have been used to conduct
cyber-attacks against users of various famous websites such
as Google, Yahoo, and Facebook [12], [13]. A survey showed
that 0.2% of all Facebook users’ connections were attempted
to tamper with malicious TLS certificates [14], and 3 million
forged TLS certificates were identified for the top 10k Alexa
sites [15].

To address these problems, we propose a new log-based
PKI for managing domain certificates, called Attack-
Resilient TLS Certificate Transparency. This new PKI
scheme has verifiable distributed parties and makes four
primary contributions.
• Root CA’s generous-delegation-of-trust is an impor-
tant problem for certificate-issuance in the current CA
model, and this area has yet not received research atten-
tion. ARCT is the first architecture to resolve the prob-
lem by giving root CA active control over their delegated
power and enabling root CA to restrict intermediate CAs
from abusing and misusing the delegated authority.

1In this article, intermediate CA and sub-CA are used interchangeably.
2In this article, we will focus on Domain Validation (DV) certificates

because DV supporting CAs dominate certificate market shares and control
over 99% of the shares [10].

• We explore attacks on CAs and certificate transparency.
ARCT mitigates the attacks by introducing a collabo-
rative certificate-issuance mechanism that enforces the
rigorous identity verification of the domain to counter
malicious certificate-issuance (see V). It introduces an
improved revocation mechanism that keeps a record of
all revoked certificates as well as efficient in terms of
communication cost (see VII).

• A thorough security analysis of ARCT is conducted,
which shows that ARCT can prevent impersonation
attacks, even in the face of a strong adversary who is
capable of compromising CA and LS simultaneously
(see VI).

• A prototype of ARCT is built to evaluate the feasibility
of the collaborative identity verification process. Lastly,
ARCT is compared with some leading log-based PKI
schemes using various performance metrics (see VII).

II. RELATED WORK
Prior works can be broadly classified into traditional PKI
schemes, blockchain-based PKI schemes, and log-based PKI
schemes.

Traditional PKI Schemes: The X.509 standard PKI
deployment includes CRL [16] that is periodically dissemi-
nated by CAs to prevent revoked certificates being used in
TLS connections. This approach can only mitigate attacks if
clients possess an updated CLR copy. Otherwise, attackers
have an opportunity to launch cyber-attacks against clients
using already revoked certificates [6]. On the other side,
CLR is quite expensive in terms of communication costs.
OCSP [17] servers are deployed to reduce CRL costs and
enable real-time certificate revocation status. Short-lived Cer-
tificates [18] eliminates the need for checking the revocation
of a certificate. However, the main issue of CRL, OCSP, and
SLC is their heavy dependency on web browsers to iden-
tify and blacklist spurious certificates endorsed by dishonest
CAs [3].

To empower clients, some proposals delegate the power
of accepting or rejecting certificates to clients based on
either their defined local policies [19] or comparison with
the information stored in the repository [20]–[22]. Likewise,
other proposals [23]–[25] empower domains to shield their
keys despite CAs crashes by allowing them to announce
their public-keys such that users can pin their keys. How-
ever, these approaches are vulnerable to MitM attacks on
‘‘first connection to a domain.’’ DNS-based Authentication
of Named Entities (DANE) [26] sanctions domains to assert
their key-related information in their DNS security extension
(DNSSEC). CA Authentication (CAA) [27] lets domains to
explicitly define a list of qualified CAs that can endorse
certificates for them. Reference [28] analyzed that a small
set of CAs issue certificates of top-level domains (TLDs).
Using the TLDs analysis of [28], CAge [29] restricts the set
of TLDs, for which a specific CA is trusted to issue TLS cer-
tificates. While CA-TMS [30] and [31] collects information
about CAs reputation from users, and they restrict CAs’ scope
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using the reputation data gathered from their clients. Refer-
ences [9], [10] successfully attacked several eminent domain
validation-based commercially used CAs and showed that
their certificate-issuance process itself is exposed to MitM
attacks. References [9], [10] suggested several recommenda-
tions to mitigate attacks against the domain validation-based
certificate-issuance process. The proposals are defenseless
against attackers capable of compromising CAs’ private-key.

Blockchain-based PKI Schemes: This class of sche-
mes [32]–[36] tried to propose decentralized solutions based
on blockchain for public-key management. SCPKI [33] inte-
grated the web of trust with smart contracts to identify false
certificates in the communication. Reference [34] managed
.bit addresses (DNS) on a public ledger, which is forked
of Bitcoin. In [34], self-signed certificates are inserted into
DNS addresses as auxiliary data. Certcoin [37] extended [34]
and further eliminated the need for using third-parties (CAs).
Certcoin includes identity registration, verification, search,
and revocation phases. PB-PKI [38] resolved the identity
linking and privacy concerns of Certcoin [37]. However,
the authors in Blockstack [39] identified that a single miner
in [34] holds over 51% of computation power and clients are
exposed to 51% attacks. Wang et al. [40] presented a PKI
framework to manage TLS certificates and their revocation
on a blockchain medium. In this blockchain-based PKI, each
domain server has two key-pairs, namely, publishing key-pair
and TLS key-pair. The publishing is endorsed by a group
of web servers, which is used to publish transactions to the
blockchain. While the TLS key-pair, which is approved by
a CA and published on blockchain medium, is used in TLS
communications. It is vulnerable to cyber-attacks where an
attacker can communicate with a client through a revoked
certificate whose transaction is still valid [41].

Yakubov et al. [42] proposed a decentralized PKI scheme
to handle TLS certificates on a blockchain platform.
In this scheme, a smart contract is created for each CA,
which comprises the CA certificate, hash values of the
CA-signed end-entities certificates, and certificate revoca-
tion information. Blockchain-related metadata are inserted
into X.509 extension fields of each TLS certificate. In this
framework, the hash values of domains’ certificates are only
stored, which makes it impracticable for domain owners to
watch their certificates [41]. CertChain [43] proposed a novel
data structure called CertOper for TLS certificates audit-
ing. The proposed data structure comprises certificate-related
data and related procedures such as registration, renewal,
and revocation. CertChain adopted the Ouroboros [44] as a
consensus algorithm, which relies on CA and bookkeeper’s
reputation for a leader selection. PBCert [45] identified
shortcomings in CertChain and proposed enhancement to
mitigate the issues. CertLegder [41] presented a PKI frame-
work where all certificate-related operations and data are
handled on a blockchain medium. It eliminates the key store
maintained by clients and makes key revocation transpar-
ent. The major problem with blockchain-based PKI frame-
works is scalability issues, and they substantially alter the

underlying infrastructure of TLS PKI [46]. Second, synchro-
nizing full-node takes considerable time (e.g., synchronizing
full-node of Bitcoin with 145 GB ledger size takes three
days [47]).

Log-based PKI Schemes: Unlike blockchain-based PKI
approaches, log-based PKI proposals do not substantially
alter the underlying architecture of certificate management.
They enable anyone to monitor and audit CAs opera-
tions and detect their misconduct. Google Certificate Trans-
parency (CT) gained widespread adoption, which will be
reviewed in the next section. Peter Eckersley presented a
new public-key framework called Sovereign Key (SK) [48]
that is designed to securely verify the domains TLS certifi-
cates more robustly than the existing CAs model. In SK,
a domain generates a sovereign key-pair to endorse a TLS
certificate and register the public part of the key-pair on an
append-only log called timeline servers. SK can guard against
an impersonation attack even when CA gets compromised.
However, in SK, domains and clients have to blindly trust
mirrors of timeline servers, as mirrors are unable to generate a
verifiable proof for the certificate included in the append-only
log. Unfortunately, in SK, a client also requires querying to
a timeline server, increasing latency, and sacrificing client
privacy.

AKI [3] is a log-based proposal for transparent certifi-
cate management that distributes trust over multiple anchors.
AKI has built-in support for revocation and enables domain
owners to specify a list of trusted CAs and LSes. It uses
the checks-and-balances mechanism to reduce trust in any
party, resulting in the mitigation of MitM. ARPKI [6] is
a refinement of AKI. In ARPKI, certificate registration
requires a domain owner to designate a certain number of
service providers (n) and contact one of them to moni-
tor multi-signature certificate (ARCert) registration in LSes.
It offers robust security against powerful adversaries and
can protect clients from attacks, even when an adversary
subverts n-1 service providers. However, ARPKI has no sup-
port for multi-domain certificates, and it has an extra delay
because of the involvement of all designated parties in all
processes [49]. TriPKI [50] utilized a threshold-signature
scheme among a list of trusted CAs, trusted DNSes, and
trusted LSes to distribute trust and assure secure communi-
cation. Reference [50] substitutes third-party validators with
DNSes and adopts checks-and-balances among the trusted set
of CAs, DNSes, and LSes to watch each other behavior.

DTKI [49] is another PKI framework that combines CT,
AKI, and SK, where the sovereign key-pair (renamed as a
master-key in DTKI) is used to restrict the CA’s role while
LS is maintained using a pair of chronological and lexi-
cal MHTs to have benefits of CT with revocation support.
Unfortunately, in DTKI, everyone must trust a single log
maintainer called Mapping Log Maintainer (MLM). DTKI
has extra latency as clients must visit MLM before every
connection, putting their privacy in danger. Policert [13] tries
to give more control to domain owners over their TLS cer-
tificate and TLS connection by specifying detailed policy.
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In Policert, a domain needs to register the Subject Certificate
Policy (SCP) and multi-signature certificate (MSC) on LS.
The domains present SCP, MSC, and their presence proof
in LS to clients during the TLS connection. This scheme
also supports TLS certificate revocation. However, in this
proposal, the mechanism for disseminating and detecting LS
misconduct is not specified [6]. ATCM [12] explores MitM
attacks on Policert and mitigates the attacks by leverag-
ing checks-and-balances and making the life cycle of TLS
certificate transparent. ATCM provides stout security and
can defend clients against an active adversary compromising
most of the trusted servers. They also validated the security
features that their scheme supports using the automated veri-
fication tool Tamarin prover [51].

A. CERTIFICATE TRANSPARENCY OVERVIEW
We review CT [4], [5] in detail for two main reasons:
(1) ARCT is motivated by CT’s architecture and utilizes some
of its concepts; (2) ARCT resolves several problems that
remain despite the CT model deployment. The main aim of
CT is to mitigate the problem of fake and fraudulent TLS cer-
tificates by introducing an auditable public log of all issued
certificates. Eventually, browsers would accept a certificate
only if it had an inclusion proof in a public log. In CT,
when a CA wants to issue a TLS certificate for a domain,
it selects an LS and delivers the TLS certificate data to the LS.
The LS generates signed-certificate-timestamp (SCT) for the
certificate, which guarantees that the LS will insert the TLS
certificate to its database within the maximum merge delay
(MMD). The CA embeds the SCT as an X.509 extension in
the signed TLS certificate or sends it with the certificate in
OCSP extension after receiving SCT from the LS. The CT
operates with the following main entities.

• Log Server (LS). Log servers are maintained using
MHT in chronological form. All issued TLS certificates
are stored in one of many LSes.

• Monitor. Monitors check the LSes for suspicious TLS
certificates by examining all log entries.

• Auditor. Auditors verify that the LSes are behaving
correctly, detect miss-issued TLS certificates based on
partial information from the LSes, and check that SCTs
they encounter are in the logs.

LSes are maintained in the form of MHT, where each leaf
node of MHT is a hash of the TLS certificate, and internal
nodes of MHT are a hash of two child nodes, enabling the
LS to generate inclusion and extension proofs efficiently. The
root of the MHT, which is signed and broadcasted by LS,
is called a signed-tree-head (STH).

B. REMAINING CHALLENGES
We briefly highlight several issues that motivated this work
and remained despite the prior works.

Root CA’s generous-delegation-of-trust is a significant
problem of the current CA model, where the parent CA
delegates certificate-issuance authority to several sub-CAs

that can issue TLS certificates to any domain without any
restriction. After delegation, the root CA loses control over
the delegated authority and cannot prevent sub-CAs from
abusing and misusing the delegated power. Further, the root
CA fails to enforce sub-CAs to comply with the community
standards, whereas most erroneous certificates are issued by
the intermediate CAs [8]. For example, Comodo CA has
29 sub-CAs, and most unsound and non-conformant cer-
tificates are signed by just one sub-CA (COMODO RSA
DV Secure Server), which totals for 85% of the erroneous
certificates [8].

CT and previous solutions (e.g., AKI, DTKI, and ARPKI)
assume that CAs’ certificate-issuance process is secure, and
they perform rigorous verification of domain ownership.
However, CAs use a vulnerable certificate-issuance process,
and the process itself is exposed to MitM attacks [9].

Besides these issues, CT left revocation as an open problem
and still relies on existing methods for revocation. Propos-
als like revocation transparency [52], CIRT [53], CT with
Enhancements and Short Proofs [54], and PKI safety net
(PKISN) [55] have been suggested to solve CT’s revoca-
tion problem, but none has been incorporated in CT yet.
While existing certificate revocation schemes CRL [16] and
OCSP [17] are still unsatisfactory.

C. GENERAL NOTATIONS
Table 1 shows the important symbols and notations used in
ARCT.

TABLE 1. Important Symbols and Notations.

III. PRELIMINARIES
A. MERKLE HASH TREE
We formally define MHT.
Definition 1: (Merkle Hash Tree (MHT)) MHT is con-

structed according to the following rules: for any list L with
length n, if length of L is 1 then MHT (L) = H (0||L[0]),
otherwise MHT (L) = H (1||MHT (L[0 : m])||MHT (L[m :
n])). Here H(.) is collision-resistance hash function and || is
concatenation operator.
The MHT has the following algorithm
• MHT (L) → TH : Deterministic tree hashing algorithm
that accepts as an argument a list of members (elements)
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L and yields a tree head (root hash) TH that is a commit-
ment to the list.

• AuthenPath(elmnt,L) → AP: A deterministic algo-
rithm that takes a list L and an element elmnt as inputs
and outputs an authentication path AP representing the
membership.

• VerifyAuthenPath(elmnt,TH ,AP)→ 0/1: It accepts an
element elmnt and authentication path AP as inputs and
outputs either 1 or 0 (true or false).

• ExtenProof (m, n,L) → EP: It takes as inputs an L,
and two indices 0 ≤ m ≤ n ≤ |L|, and generates an
extension proof consisting of a sequence of hashes. The
proof provides evidence that the current tree consisting
of entries (0 : n) is extending the previous one, consist-
ing of entries (0 : m).

• VerifyExtenProof (THi,THj,EP) → 0/1: It takes as
inputs proof of extension EP, two root hashes THi, and
TH ′j and verifies that the tree corresponding to THj is an
extension of the MHT corresponding to THi. VerifyEx-
tenProof(.) either returns true or false.

Definition 2: (MHT Collision)MHT collision is a pair of
two distinct MHTs corresponding to two lists L, and L ′ such
that MHT (L) = MHT (L ′) and L 6= L ′.
Lemma 1: (Collision-resistance of MHT). If H is

collision-resistant hash function, then the MHT is
collision-resistant.

Proof: This follows from the work by [56], [57].
Lemma 2: (Collision-resistance of Authentication path of

MHT). If H is a collision-resistant, then an authentication
path in MHT is collision-resistant.

Proof: This follows from the work by [56]–[58].

B. AUTOMATIC CERTIFICATE MANAGEMENT
ENVIRONMENT (ACME)
ACME [59] protocol is proposed by the Internet Secu-
rity Research Group (ISRG) to automate interactions
between CAs and domain servers, allowing automated
certificate-issuance and deployment at a low cost. The
ACME protocol supports domain validated (DV) certificate-
issuance, where the ownership of a domain is validated
through a challenge/response process. The ACME protocol
supports a DNS- and HTTPS-based challenge/response pro-
cess to verify control over a domain. The validation mech-
anism of the ACME protocol comprises three main steps:
(1) When a CA receives a certificate signing request from a
domain owner, the CA sends a set of challenges to the domain
owner. (2) The domain owner replies with a set of responses to
complete the set of challenges. (3) The CA validates the set of
responses, and once the challenges are correctly completed,
the CA issues a DV TLS certificate for the domain.

IV. SYSTEM AND THREAD MODEL
To build a PKI that is immune to the compromise of several
parties and can recover from catastrophic casualties, we base
ARCT on verifiable LSes. In the proposed PKI, we achieve
strong security by introducing one more layer of transparency

and validation at the root CA. At this layer, each root CA
in collaboration with intermediate CAs inspects all newly
issued certificates by performing the identity verification of
the domain once again to prevent fake and false certificate-
issuance. The parent CA also monitors that intermediate CAs
follow best-practices, according to the root CA’s and com-
munity requirements (e.g., Baseline Requirement and Root
Program Owner) specifications. The root CA blacklists inter-
mediate CAs for malpractice and erroneous issuance, such as
issuing certificates with a key size smaller than the required.
Next, we introduce themain entities and their responsibilities.
• Root CA: It is the main trust anchor whose certificate is
shipped in clients’ web browser’s root stores. Each root
store can contain several root CAs’ certificates, and each
root CA issues certificates only for intermediate CAs.

• Intermediate CA: This component endorses certificates
to domains, and the root CA delegates this power to
intermediate CA.

• Exclusive Log Server (ELS): This LS is a publicly
auditable log of all certificates issued by the intermediate
CAs of the concerned root CA. There is one ELS per root
CA in the proposed PKI. The database of ELS is main-
tained as a pair of MHTs. The first tree is maintained
as ChronTree [53]. To address the revocation problem,
we additionally manage the revocation information as
another MHT, maintained as in [60], which we call a
revocation tree. The revocation tree is a hash tree with
leaf nodes corresponding to a set of statements about
the certificate’s serial numbers. The set of statements is
generated from revoked certificates and provides infor-
mation about the certificate revocation status. The root
of the revocation tree is inserted as the last node in the
ELS ChronTree.

• Shared Log Server (SLS): This LS is a public log of all
issued TLS certificates, as in CT. However, the database
of SLS is extended and is maintained as a pair of MHTs.
Both MHTs are kept in chronological form. The first
tree maintains a database of certificates that we call
certificate tree (CertTree), while the other tree maintains
a database of ELSes’ STHs, which is referred to as a
witness tree (WitTree). Here the SLS acts as a witness
for ELS and prevents ELS from split-world attacks.

• Monitor: Monitors regularly watch and scan the LSes
(ELS and SLS) for malicious certificates by examining
all their records as in CT.

• Auditor: Auditors verify that LSes (ELS and SLS) are
behaving correctly as in CT, detect malicious certificates
based on partial information from the LS, and check
that the SCTs they encounter are in the logs. They
are lightweight software and an integral part of client
software.

• Domain: Each domain3 has an ICA-signed certifi-
cate that is presented to its client during connection
establishment.

3In this article, domain and domain server are used interchangeably
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FIGURE 1. An overview of ARCT architecture. Here RCA and ICA stands for root and intermediate CA
respectively.

• Client: A user agent (e.g., a web browser) that uses
services offered by domain servers securely.

Figure 1 portrays the architecture of the ARCT scheme.
Alice owns domain server D.com and wants to acquire a
certificate from an intermediate CA to shield her clients
against rogue and false certificates. Alice forwards certificate
signing request to an intermediate CA, which upon successful
D.com identity verification, requests parent CA to approve
the certificate for logging in ELS. The ELS sends an SCT to
the intermediate CA (or domain owner) if the certificate exists
in the final list of certificates approved by the parent CA.
The SLS only accepts a certificate for registration from the
submitter (intermediate CA or domain) if it carries an SCT
from the corresponding ELS. Alice now addendums her cer-
tificate with the SCTs from both LSes and non-revocation
proof from ELS after registration with them. When clients
open connections to D.com via HTTPS, the server sends
the certificate along with the SCTs and proof to clients. For
certificate validation and verification, the web browser uses
the certificate chain ending at trusted root CA’s certificates
and pre-installed LSes’ public-key on the browser to validate
the LSes’ information. The clients can occasionally confirm
the validity of the LSes’ STHwith monitors and other clients.

A. ADVERSARY MODEL
We consider an adversary whose primary aim is to
impersonate domain servers using HTTPS. To accomplish
this aim, the adversary can steal CA (e.g., intermedi-
ate CA) private-key to acquire the malicious certificates
and LS (e.g., ELS) private-key to log malicious certifi-
cates. We assume that the cryptographic building blocks that
we use, such as the hash function and signature schemes,

are secure. The hash function H is resistant to collision and
pre-image attacks, and the signature scheme cannot be forged
(EUF-CMA secure).

B. DESIRED PROPERTIES
• Complete audit: All entities taking part in certificate-
issuance should be liable. They (e.g., sub-CAs) should
be audited and compliant with standards at the same
level as a root CA, none of their violation should go
unnoticed.

• Low cost: The scheme should not tectonically expand
the TLS handshake message size and should have
an insignificant effect on processing time. Moreover,
no extra delay should be added to the TLS connection
establishment in particular round-trip time to external
servers.

• Resilience against attacks: Building a complete secure
infrastructure that can eliminate attacks in catastrophic
failure is impossible. However, the system must have a
brief system attack window.

• Privacy: Public-key infrastructure (PKI) must not reveal
the clients’ connection information.

• Checks and Balances: Root CAs should limit blind trust
in sub-CAs, and limited trust should be given to partici-
pating parties (e.g., LSes) to mitigate the weakest-link
security. Furthermore, participating parties should be
able watch each other to detect misconduct.

V. ATTACK-RESILIENT TLS CERTIFICATE TRANSPARENCY
First, we discuss in detail the algorithms executed by ELS,
SLS, monitors, and auditors to generate and verify proofs.
The following are the main algorithms run by ELS and SLS.
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GenSCT (cert, t, skELS )→ SCT : It takes as inputs
a certificate cert , current time t , and private-key to
generate SCT.
GenSTH (TH , t, sk) → STH : A randomized algo-
rithm that takes TH , time t , its private-key sk as
inputs and return sign-tree-head (STH ).
PresentLogEntries(st, STH ) → L/error : A deter-
ministic algorithm taking current st and STH as
input arguments and returns an order list L or an
error.
GenPoP(st, cert, STH ) → PoP/error : A deter-
ministic algorithm that for certificate cert executes
AuthenPath(cert, st) procedure to generate authen-
tication path. Let the authentication path consist of
(h1, hi, . . . , hn) then PoP = (h1, hi, . . . , hn) where
hi represent hash values.
GenPoE(st, STH , STH ′) → PoE/error : To prove
that the prover (e.g., ELS and SLS) is an
extension of its previous version, an LS sends
one node per level to the prover by calling
ExtenProof (m, n,L) → EP, which generates
extension proof. If the current tree extends the pre-
vious one, then the previous tree is a sub-tree of the
current tree.

The GenPoN (.) given below is executed by ELS only.
GenPoN (st, cert, s(i, j), STH ) → PoN/error :
To prove that a certificate cert is not revoked,
the prover searches for the range that bracket the
serial number such that xi < x < xi+1, where
xi is the serial number of certificate. It executes
AuthenPath(cert, st) that generates the proof and
forwards to the verifier.

To validate that both classes of LSes are working correctly,
monitors and auditors execute the following algorithms.

CheckSCT (SCT , pk) → 0/1: It validates that the
SCT is issued for the corresponding certificate and
endorsed by a trusted LS.
CheckSTH (STH , pk) → 0/1: It takes SHT and
public-key pk of a concerned LS and returns either 1
or 0.
CheckPoP(cert, STH ,PoP, pk) → 0/1: A deter-
ministic algorithm which executes CheckSTH
(STH , pk) and VerifyAuthenPath(cert,TH , PoP))
to validate that the certificate cert is logged or not
in the LS.
CheckPoN (cert, s(i, j), STH ,PoN , pk) → 0/1:
It first checks that cert serial number is greater than
i but less than j. After verifying the serial, it then
computes root hash from the authentication path.
If the computed hash is equal to the published root
hash, then it is accepted, otherwise rejected.
CheckLogEntries(L, STH , pk) → 0/1: Let
e1, e2, . . . , en be the list of elements of L, then the
algorithm checks wether H (H (H (e1)||H (e2)) . . . .
h(H (e(n−1)||H (en))

?
= TH .

CheckPoE(STHi, STHj,PoE, pk) → 0/1: To val-
idate that the current version is extended from
the previous one, the verifier executes CheckPoE
(STHi, STHj,PoE, pk) by giving two signed tree
head, proof of extension, and public-key of the LS
as input, then CheckPoE(.) returns either 1 or 0.

In the rest of the section, we describe the proposed scheme in
detail based on fourmain phases, namely certificate-issuance,
certificate registration, certificate revocation, and connection
establishment.

A. CERTIFICATE-ISSUANCE
To start using ARCT, a domain must possess a valid certifi-
cate. To acquire a certificate, the domain owner of a domain
(e.g., D.com) generates a key-pair and forwards Certificate
Signing Request (CSR) to intermediate CA. Upon receiving
a CSR, the intermediate CA must validate that the submitter
is the actual owner of the D.com. To enforce rigorous con-
trol verification, we introduce a new collaborative domain
identity verification method that complements the traditional
certificate-issuance process and ensures verification by mul-
tiple parties (CAs). As shown in Figure 2, the collaborative
process works as follows.

1 A domain owner sends a CSR for her domain, e.g.,
‘‘D.com,’’ to an intermediate CA, e.g., ‘‘ICA(1)’’.

2 The ICA1 issues a challenge to the owner of the
domain, through which ICA(1) requires to accom-
plish to verify ownership of the domain.

3 Once the domain owner receives the challenge, she
hosts the challenge1 signed by its private-key at the
URL, e.g., ‘‘https://D.com’’ to serve as the domain
validation resource.

4 The ICA1 validates the domain by accessing the
challenge1 placed at the URL as well as verify
the signed challenge using the public-key of the
domain.

5 After initial verification of a domain’s identity,
the ICA, e.g., ‘‘ICA(1),’’ forwards approval request
to its parent CA.

6 The root CA selects m numbers of sub-CAs
and multi-casts collaborative identity verification
requests to them, where m is a system parameter
set by the root CA.

7 Each m number of identity validation includes car-
rying out step 7 to step 9, which are the repetition
of step 2 to step 4 but with different challenge types
and from different vantage points.

After collaborative verification, the root CA prepares a list
of certificates that passed the scrutiny and sends the final
approved list to the ELS. Note, each sub-CA can imple-
ment different challenge types (e.g., DNS challenge, see
Sec. VII-C for different challenge types).

B. CERTIFICATE REGISTRATION
Before a certificate can be used in secure communications,
it must be registered at the ELS and at least at one or more
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FIGURE 2. Collaborative domain verification process, where a group of m CAs validate each domain before
certificate-issuance.

than one SLS(es). First, we discuss registration at ELS and
then describe the logging process at SLS.

1) EXCLUSIVE LOG SERVER
After the domain identity validation, each intermediate CA
sends the certificate(s) to the ELS for registration. The cer-
tificate(s) must be present in the final approved list, say Lapp
sent by the root CA to the ELS. The ELS generates an SCT for
each certificate after checking the soundness and correctness
of each TLS certificate (see Algorithm 1), where the SCT acts
as an insurance that the ELS will attach the TLS certificate to
its database in the next update. All erroneous certificates are
filtered out at this stage by the ELS.

2) SHARED LOG SERVER
After receiving an SCT from the ELS, the submitter
(e.g., intermediate CA or domain owner) forwards the cer-
tificate to SLSes for logging the certificate in SLSes. Each
SLS validates the SCT of the ELS, generates an SCT after
performing the necessary checks as given in Algorithm 2, and
sends the SCT back to the submitter.

C. CERTIFICATE REVOCATION
When a domain’s private-key leaks, it generates a signed
Certificate Revocation Request (SCR) and forwards the
SCR to an ELS. The ELS verifies the SCR and checks
whether the certificate is included in its database. If it
exists in its database, then the ELS generates a signed-
revocation-timestamp (SRT) given in Algorithm 3, which
acts as a promise that the ELS will revoke the certificate
in the next update. If an intermediate CA’s private-key is
compromised or an intermediate CA misbehaves, the ELS

Algorithm 1 ELS Certificate Registration
Input: cert , Lapp
Output: SCT , ‘‘unsound certificate’’
begin

if ((verify(cert, certICA[pk]) = true) ∧ cert ∈ Lapp)
then

if ((cert[validity.notBefore] < tnow <
cert[validity.notAfter]) ∧ (cert[pk.lengh] =
‘‘Root − CA− defined − length′′) ∧
(cert[issuer] = certICA[subject]) ∧
(domainName = cert[subject]) ∧
(cert[basicConstriant] = false) ∧
(cert[signatureAlgorithm] =
‘‘Root − CA− defined − algorithm′′) ∧
(cert[keyUsage] = ‘‘digitalsignature′′) ∧
(cert[ExtendKeyUsage] = ‘‘serverAuth′′)) then

GenSCT (cert, t, skELS )
add(cert) to pending registration list.

else
‘‘unsound certificate’’

end
end

adds the intermediate CA certificate in a blacklist and
does not log any TLS certificate signed by the inter-
mediate CA. This action prevents the intermediate CA
from issuing a valid certificate (without causing collateral
damage) for any domain. All previously signed certificates
by the intermediate CA will still be valid until revoked by
the domains.
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Algorithm 2 SLS Certificate Registration
Input: cert , SCT
Output: SCT , ‘‘unsuccessful registration’’
begin

if ((verify(cert, certICA[pk]) = true) ∧
CheckSCT (SCT , pkELS )) then

if ((cert[validity.notBefore] < tnow <
cert[validity.notAfter]) ∧
(cert[issuer] = certICA[subject]) ∧
(domainName = cert[subject]) ∧
(cert[keyUsage] = ‘‘digitalsignature′′) ∧
(cert[ExtendKeyUsage] = ‘‘serverAuth′′)) then

GenSCT (cert, t, skSLS )
add(cert) to pending registration list.

else
‘‘unsuccessful registration’’

end
end

Algorithm 3 Certificate Revocation
Input: cert , SCR
Output: SRT , ‘‘invalid revocation’’

begin
if ((verify(SCR, cert[pk]) = true) ∧ cert ∈ ELS)
then

if ((tnow < cert[validity.notAfter]) ∧
(domainName = cert[subject]) then

SCR← sign({cert, SCR, t}, skELS )
add(cert) to pending revocation list.

else
‘‘invalid revocation’’

end
end

D. CONNECTION ESTABLISHMENT IN ARCT
Every domain periodically fetches proof of non-revocation
from the corresponding ELS after each update. The client
opens an SSL/TLS connection with the D.com server using
Algorithm 4, and the D.com server sends the certificate along
with evidence during the TLS handshake. The certificate
is authenticated using the pre-installed CA’s certificate in
browsers, and SCTs and proof are validated using LSes’
public-keys that are delivered to the browser. The leaf node
of revocation tree s(i,j) represents the range that brackets the
certificate Cert ICAD serial number sn such that i < sn < j
whereas pkRCA represents root CA’s public-key.

E. CROSS LOGGING ELS SIGNED TREE HEAD (STH)
Periodically, at a well-known interval, each ELS updates its
database by inserting all new certificates and publishes a
fresh root for the current version of its database, which is
signed by ELS as well as the root CA. The fresh STH is

Algorithm 4 TLS Secure Connection Establishment

Input: Cert ICAD ,STH , SCT , proof (PoN )
Output: ‘‘Connected’’, ‘‘Unsuccessful attempt’’
begin

if ((pre-Validate(Cert ICAD , name) = 0)) then

‘‘Unsuccessful attempt’’
end
if ((CheckSCT (SCT , pkSLS ) = 0) ∧
(CheckSTHT (STHT , pkSLS ) = 0) ∧
(CheckSCT (SCT , pkELS ) = 0) ∧
(CheckSTH (STH , pkELS ) = 0) ∧
(CheckSTH (STH , pkRCA) = 0) ∧
(CheckPoN (Cert ICAD , s(i, j), STH ,PoN , pkELS ) = 0))
then

‘‘Unsuccessful attempt’’
else if (verify(Cert ICAD ,pkICA) = 0) then

‘‘Unsuccessful attempt’’
else

‘‘Connected’’
end

forwarded to SLSes for witnessing, where each SLS gener-
ates signed receipt after performing necessary checks given
in Algorithm 5, which is a cryptographic assurance of insert-
ing to WitTree. This witnessing strengthens security against
forking attack, in which ELS shows different signed versions
of its log (one version for one set of users and another version
another set of users).

Algorithm 5Witnessing STH
Input: STH , PoE
Output: Rcpt , ‘‘invalid STH’’

begin
if (verify(STHj, pkELS ) = true)∧
CheckPoE(STHi, STHj,PoE, pkELS ) = 1 ∧
(STHj.t < tnow) ∧ (STHj /∈ Lwit ) then

Rcpt←sign((STHj, tnow), pkSLS )
add STHj to pending witness list Lwit

end
else

‘‘Invalid STH ′’’
end

VI. SECURITY ANALYSIS
In this section, we conduct an informal and formal security
analysis and verify the main security feature that ARCT
guarantees. Further, the proposed scheme security relies on
the two lemmas for security. First, Table 2 compares secu-
rity of ARCT with the following six log-based proposals:
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TABLE 2. Comparison of ARCT with log-based PKI proposals based on security metric.

SK [48], CT [4], [5], AKI [3], ARPKI [6], DTKI [49], and
Policert [13]. Second, in Theorem 1, we prove that ARCT
thwarts impersonation when at most, one party is honest.

For the ‘‘MitM attack mitigation’’ metric, CT cannot guard
clients against impersonation when a subverted CA issues a
bogus TLS certificate for a domain. In SK and DTKI, each
TLS certificate is cross-signed with a key-pair owned by the
domain, whereas, in AKI, ARPKI, and Policert, a subject
needs to get certified from more than one CA. The proposed
scheme can prevent such attacks as a set of CAs verifies each
domain identity (see Sec. V-A). Root CAs do not endorse
end-entity certificates directly but cryptographically transfer
that power to intermediate CAs. The intermediate CA can
issue certificates (maybe a fake certificate) even for domains
that are outside its scope, and most successful attacks are
also launched against sub-CAs [61]. Compared with the
log-based PKI frameworks, ARCT counters such failures of
intermediate CAs by giving root CA the ability to prevent the
exploitation of signing authority by them.

Log-based PKI proposals are still in infancy, and they
failed to address the problem of non-conformant certificate-
issuance by intermediate CAs. Reference [8] showed that the
majority of small intermediate CAs have a highmiss-issuance
rate. However, the proposed scheme refrain intermediate CAs
from issuing an erroneous certificate, since every certificate
passes through a filtering process where ELS checks each
certificate for soundness and correctness.
Theorem 1: If MHT and its authentication path are

collision-resistant and the signature scheme is unforgeable,
then an adversary A subverting log servers and intermediate
CA cannot impersonate a domain (e.g., D.com) by logging a
certificate cert

′ICA
D for the domain.

Proof: Let intermediate CA issues a fake certificate
cert

′ICA
D for domain D.com. Since cert

′ICA
D must be logged in

the ELS (to be more specialized) to be accepted by a client,
ELS must win the experiments defined in the below cases to
impersonate D.com.

Case 1: IfA wins ExpFake−EntryELS (A) given in Figure 3, then
ELSA(), which runs A, finds a collision in MHT.
We demonstrate that a successful adversary A outputs

two lists under the same root of the MHT used in ELS in
the proposed scheme, which, by lemma 1, results in a hash
collision.

FIGURE 3. Security experiment for generating a fake entry.

Suppose A wins ExpFake−EntryELS (A) by forging MHT.
Then A outputs (L,L ′, STH , pk) such that CheckLogEn-
tries(L, STH, pkELS ) = CheckLogEntries(L ′, STH, pkELS ),
but L 6= L ′. Based on the definition of CheckLogEntries,
this implies MHT collision MHT (L) = MHT (L ′) but
L 6= L ′. By definition 2, this is a collision in MHT, which
by Lemma 1 results in a collision in the hash function H.

Case 2: If A() wins ExpFake−proofELS (A) given in Figure 4
by outputting (cert ICAD ,L, STH ,PoN ′, pkELS ), then ELSA(),
which runs A() and outputs (cert ICAD ,L, STH , PoN ′, pkELS )
breaks collision-resistance of authentication path of MHT.

FIGURE 4. Security experiment for generating a fake PoN.

Suppose A wins ExpFake−PoN
′

ELS (A) by producing a fake
proof of non-revocation and a tuple (cert

′ICA
D ,L, STH ,PoN ′,

pkELS ) such that CheckLogEntries(L, STH, pkELS ) = 1 and
CheckPoN(cert, s(i,j), STH, PoN ′, pkELS )= 1, but s(i, j) /∈ L.
As the proof PoN ′ contains hash values of nodes on the
authentication path from range s(i,j) at some position say,m to
the root, given a valid proof PoN ′ and certificate serial num-
ber range s(i,j), we can also calculate the hash values for the
nodes on the authentication path. Generate an MHT for a list
of series of ranges L, starting from the root node, and consider
the first node at which node hash value in the authentication
path varies from the node in the MHT for the list of series of
ranges L. This breaks collision resistance of authentication
path. By Lemma 2, a break of collision-resistance of authen-
tication path of MHT results in a collision in H.
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FIGURE 5. Security experiment for generating a fake STH.

Case 3: In this case, an ELS acts as an adversary A, and
spawns a new MHT to launch a forking (split-view) attack,
as the clients accept STH if it is signed by the root CA (see
Algorithm 4). IfAwins ExpFake−STHELS (A) given in Figure 5 by
outputting (L ′, STH ,PoN ′, pkRCA), then ELSA(), which runs
A() and outputs (L ′, STH ′,PoN ′, pkRCA) can forge signature
scheme (EUF-CMA secure). For this, we create another sig-
nature forger adversary B, and the attack game.

FIGURE 6. Security experiment for generating a forge signature.

First, we create a signature forgery attacker B given in
Figure 6 against the signature algorithm, which works as
follows. First,B creates a state with an empty set of certificate
ranges. It then simulates the ExpFake−STHELS for A, providing
the root CA public key as input in the game. It furthermore
forms the signatures using its signing oracle when needed
in the simulation of the game and stores all the values in a
list queried to the signing oracle. If B wins by outputting
(L ′, STH ′,PoN ′, pkRCA), at least tree head TH was not out-
putted through theB simulation as we excluded theMHT col-
lision case. Since TH was not contained in the list, B outputs
this as a valid signature forgery.

VII. EVALUATION
To assess the effectiveness of ARCT, we first compare the
revocation method of the proposed approach with state-of-
the-art standardized schemes like CRL, OCSP, and log-based
techniques. We then examine the storage cost of each LS
(ELS and SLS) and also evaluate the performance of ARCT
by building a prototype. At last, we compare the proposed
framework with existing log-based proposals using various
performance metrics.

A. NUMERICAL ANALYSIS
The communication cost of used data for revocation is opti-
mal, and the proof supplied by the ELS is logarithmic in
size, a domain can hold a short proof of non-revocation. The
parameters we considered in evaluation are:

• There are 3.31∗108 domains [62], though only a fraction
has TLS certificates. Estimated total number of domain
TLS certificates (n = 108)

• Estimated average number of domain certificates man-
aged by a root CA (k = 106)

• Estimated certificates revocation rate is 10% (p = 0.1)
• The TLS certificate status querying rate is 108 times per
day (q = 108)

• Revocation update per day (T = 1)
• The hash function is SHA-256 (lhash = 256 bits)
• Length of certificate serial number (lsn = 20 bits)
• Number of bits required to represent the certificate revo-
cation status (lstat = 100 bits)

• In our scheme signature length (lsign = 512 bits).
Values for p, T, lsn, and lstat are taken from [63], lhash,
and lsign, are specific to ARCT as SHA-256 and ECDSA
(SECP256k1) are used as hash function and signature algo-
rithm. While k and q are based on the value of n, which is
taken from [62]. Table 3 summarizes the bandwidth, update,
and query cost of the CRL, OCSP, log-based PKIs, and
ARCT. Log-based PKIs include AKI, ARPKI, DTKI, and
Policert, whereas SK and CT are excluded as they do not sup-
port certificate revocation. The above mentioned log-based
PKIs use the identical kind of data structure to prove that the
certificate is revoked (proof of the absence of a certificate is
provided to prove that the certificate is revoked). Without loss
of generality, we presume that all parties use machines with a
Core i7-8550U CPU @ 1.8, 8GB RAM, Window 10, using
which, we calculate and get the following computational
costs:
• Hash operation takes 4 µs.
• ECDSA (SECP256k1) signature generation takes 0.02 s.
• ECDSA (SECP256k1) verification takes 0.07 s.

We apply these values to Table 3 and get numerical cost,
which is given in Table 4.

Analysis. We can observe from Table 4 that OCSP has
less cost as compared to the other schemes. However, OCSP
has a higher system risk because of heavy reliance on an
online trusted third party and extra additional connection,
which induces significant time overhead and violates user
connection privacy [3]. From Table 4, we can observe that
ARCT has less cost as compared to CRL and log-based PKI,
and is comparable to OCSP in terms of cost. Additionally,
ARCT introduces no extra latency, preserves client connec-
tion privacy, and reduces the need for trust in any trusted
third party. We can conclude that ARCT revocation has a
reasonable cost among certificate revocation schemes.

B. STORAGE COST OF ARCT
1) ELS
Space. The approximate size of a TLS certificate that uses
256 bits public key and signed with ECDSA is 29 [41].
We consider Let’s Encrypt CA that had signed around 70 mil-
lion certificates till July 2018.4 Let’s Encrypt needs storing

4https://letsencrypt.org/stats/
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TABLE 3. Formulaic presentation of bandwidth, update, and query cost on CA, revocation prover, and verifier.

TABLE 4. Numerical presentation of bandwidth, update, and query cost on CA, revocation prover, and verifier.

all 70 × 106 TLS certificates which is approximately in the
order of 70 × 106 × 29 ≈ 35.84 GB, while revocation
information requires storing 70 × 105 serial numbers which
is approximately in the order of 2× 20× 70× 105 ≈ 35MB.
The price of a 1 GB storage space is around 0.054$,5 the cost
of storing an ELS is about 2$, which is a negligible amount.
Again, the number of stored certificates in the log tree and
the hash function used in computing the MHT determines
the proof size. In ARCT SHA256 is used and the number
of certificates is 70 × 106, the proof contains approximately
27 hashes, together with signed root hash; while revocation
tree compromises 70× 105 leaves, the proof contains around
23 hashes, together with signed root hash and leaf node. This
is less than 1 KB in both cases.

Computation. Lookup, insertion, and update on ELS each
involve 70 × 106 ≈ 27 operations (in the worst case).
Similarly, verifying proof requires 70× 106 ≈ 27 hash oper-
ations, which takes a negligible time because SHA256 takes
around 4µs.

2) SLS
Space. We consider the cost of storing the witness tree
(WitTree) as storing TLS certificates by SLS requires space
depending on the number of certificates, as already examined
in the above section. Currently, there are around 122 root
CAs [10] supported by various web browsers/operating
systems. Hence, WitTree requires storing 122 ELS STH,

5https://diskprices.com.

which is in the order of 122×160×365 ≈7MB, per year, and
when ELSes update their database once per day, where STH
size is around 160 bytes. The cost is insignificant in terms of
storage costs. Like in ELS, the number of stored certificates
in the SLS and the hash function employed in yielding MHT
determines the proof size as well as verification cost.

C. EXPERIMENTAL SETUP
To demonstrate the realization of ARCT in practice, we built
a prototype with bare functionality. The prototype consists
of 1) a web server (an ACME client) that requests a cer-
tificate from an intermediate CA, 2) a set of four CAs that
perform collaborative verification. The CAs are implemented
by modifying Pebble Challenge Test Server6 to our require-
ments. On intermediate CA1,7 we have enabledHTTP-01 and
disabled DNS-01 as well as TLS-ALPN-01 challenge types.
Likewise, intermediate CA2 and intermediate CA3 can only
performDNS-01 and TLS-ALPN-01 for domain verification,
respectively. This experiment is conducted on mini-network
with five computers where root CA (fourth CA) can select any
challenge type randomly, and setup is connected to the Inter-
net via 10Mbit/sWiFi. Similarly, an instance of a log server is
implemented by modifying an already existing Merkle tree8

implementation in Python.

6https://github.com/letsencrypt/pebble
7To ensure that CAs verify domain identity using different challenge type.
8https://github.com/jvsteiner/ merkletree
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TABLE 5. Comparison of ARCT with log-based PKI proposals based on security, deployability, efficiency, and monopoly metrics.

Cost and Overhead. In the experiment, the domain server
sends a certificate signing request (CSR) to intermediate
CA1. The CA1 sends an HTTPS challenge to verify the iden-
tity of the domain. Similarly, intermediate CA2 and CA3 send
their challenge to verify the domain identity. The whole pro-
cess takes around 2 minutes, averaged over 100 runs. Going
forward, the challenge verification takes 20 seconds per CA,
averaged over 100 repetitions. From this, we can estimate
that even for Symantec CA having 22 intermediate CAs,
the certificate issuance will take about 7 minutes (if all inter-
mediate CAs perform verification), which currently issues a
certificate in about 6 minutes [9]. This shows that the collab-
orative certificate-issuance process is feasible in practice, and
even [9], [10] suggested inducing delay to Lets Encrypt CA
issuance process to avoid path poisoning attacks against it.

ARCT increases certificate size roughly by 300 bytes
because of sending two or more than two SCTs with each
certificate (embedding in X.509 certificate extension or send-
ing as OCSP extension). Fortunately, it does not induce extra
delay to the TLS handshake. Nevertheless, ARCT requires
about 1KB of additional bandwidth for the TLS connection
set up due to non-revocation proof stapling with each certifi-
cate. We measured the MHT generation, proof generation,
and proof verification in python on a machine with Core
i7-8550U CPU@1.8, 8GBRAM,Window 10, experimented
with a million of revoked certificates logged in ELS. The
MHT generation time averaged 12 s, proof generation time
averaged 15 µs, while verification time-averaged to 240 µs.

D. COMPARISON
Based on deployability, efficiency, and monopoly metrics,
Table 5 compares our scheme with six log-based proposals:
SK [48], CT [4], [5], AKI [3], ARPKI [6], DTKI [49], and
Policert [13].

Deployability. SK, AKI, DTKI, and Policert do not change
the CA business model, as the CA can sign TLS certificates
only, while in ARPKI CAs monitor LSes and other CA’s
behavior on behalf of their clients. In CT and our proposed
scheme, the preferred process for CAs is to embed SCTs

(Other mechanism includes sending them via TLS extension)
received from LSes in the TLS certificates. For the ‘‘Domain
side changes required’’ metric, SK and DTKI require each
domain to generate an SK pair and a master-key pair to
countersign the TLS certificate. In AKI, ARPKI, and Policert
a domain contact multiple trusted CAs and staple their cer-
tificates. In the proposed framework, a domain server needs
to download PoN and staple it with its certificate after each
update of ELSes.

Efficiency. For the ‘‘Extra latency TLS connection setup/
End-user additional action required’’ metrics, in SK and
DTKI, each client must visit timeline and MLM servers,
respectively, before every connection to a domain (web-
server). This extra connection induces additional latency that
is equal to round-trip-time (RTT) as well as violates user
privacy and exposes users to blocking attacks.

Monopoly. The last point we test is the monopoly. DTKI
has more flexibility to add LSes since browsers have to store
only MLM public-key, which lets new LSes to be flexi-
bly added. However, as mentioned earlier, connections with
MLM risks users’ privacy, induces extra latency, and opens
clients to blocking attacks.

VIII. DISCUSSION
Proactive defense. The private keys of CAs are lucrative
targets for adversaries (e.g., criminals, hackers, and spy agen-
cies) to use their keys secretly to compromise domains and
their clients. We envision that in an ARCT in which not just
a single CA but many of them examine and collaboratively
issue a certificate, stolen CA keys (e.g., Comodo and Dig-
iNotar) would not by themselves be useable to sign a fake but
valid certificate for domains that clients would accept.

Deployment aspects. Many CAs, websites, and browsers
have widely adopted CT. Google has also recently begun
mandating CT logging for all TLS certificates. ARCT ELS
could be deployed at each root CA level, and SLS could be
deployed directly on the CT’s server with the least modifica-
tions, given their resemblance.
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While CT’s LSes are optimized for deployability, ARCT
is optimized both for security and deployability. The ARCT
framework is planned to be interoperable with the existing
CT model. CAs also have incentives to deploy ARCT due to
security and transparency reasons. Therefore, we believe that
with the heightened interest in a secure network framework,
CAs and Internet society can deploy ARCT on the top of the
CT with minor changes to the current CT model.

Transitioning, and Tradeoff between security and
delay. One of the most significant issues when introducing
a new method is the transitioning stage. However, for the
adoption of our model, this is not a problem. The collabora-
tive certificate-issuance focuses onACMEprotocol, but it can
be generalized and can be applied to any certificate-issuance
because it involves only repeating the identity verification
from multiple vantage points. Nevertheless, the proposed
method induces extra latency of a few minutes, as discussed
in VII-C.

The delay can be decreased at the cost of security (proac-
tive approach) tradeoff in two ways. First, root CA and
ELS allow logging certificates with one or two authorities
verification, which will strictly decrease security level to
the current certificate-issuance that is vulnerable to MitM
attacks. Another option is to generate two SCTs in parallel:
the first SCT merely attests that CAs and ELS have seen
the certificate, and the second SCT attests that CAs and
ELS have validated the certificate. ELS then provides the
former SCT but withholds the second SCT if the CAs cannot
accomplish their domain’s identity validation in the specified
time interval.

Third-party validator. Root CA determines when to start
a validation round, and multicasts to all CAs the certificate(s)
to be validated. In our collaborative domain’s identity valida-
tion process, root CAs can also take the help of third-party
validators (e.g., Internet Service Providers (ISPs), famous
domains, or any interested party) in a domain’s identity ver-
ification. This type of validation with third-party validators
can decrease the burden over CAs and assure high security.
Similarly, CAs that either issue free certificates (e.g., Let’s
Encrypt) or have less number of intermediate CAs can benefit
from third-party validators directly.

Economic incentive. Root CAs are running businesses
and sell TLS certificates to their clients. Security breaches,
erroneous certificates, and lack of control over their dele-
gated trust have undermined their reputations, which were
challenging to mitigate and control. ELS and collaborative
verification help root CAs to counter these challenges. There-
fore, root CAs understand the lucrative value of ELS that
make controlling their delegated trust and observing their
intermediate CAs operationsmore accessible and transparent.
Further, ELS would make it easier for domain owners to
decide to select which root CA as their root of trust based on
its previous history. Thus, a root CA with high security, qual-
ity certificate-issuance, and internal transparency (making
intermediate CAs and their operation open to public scrutiny)

would gain a competitive advantage, which would cause an
increase in its market share.

IX. CONCLUSION
This article presents a new log-based PKI framework that
leverages a log server (ELS) per root CA tomake intermediate
CA management transparent. The ELS counters the lack of
root CAs control over their delegated trust as well as pre-
vents malformed certificate-issuance. The new collaborative
identity verification of domain offers strong resilience against
adversaries, who can compromise a CA’s private-keys. The
method ensures that adversaries cannot maliciously issue a
fake certificate that clients would accept, without exposing
that certificate to the set of CAs for public scrutiny. The
validation of each certificate by a group of CAs causes a
high probability of immediate detection of malicious certifi-
cates. Security analysis shows that ARCT can successfully
defend against impersonation and forking attacks. Evaluation
results and comparison with log-based PKI schemes prove
that ARCT is cost-effective and practical.
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