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ABSTRACT In recent years, correlation filter based trackers have seen widespread success because of their
high efficiency and robustness. However, a single feature based tracker cannot deal with complex scenes
such as serious occlusion, motion blur and illumination variation. In this paper, we develop a novel tracking
method combining color feature, Hog feature and motion feature. The motion feature is estimated between
adjacent frames by large displacement optical flow. Besides, in order to cope with boundary effect existing in
traditional correlation filter based trackers, an adaptive cosinewindow is introduced in ourmethod, which can
highlight the target region, suppress the background region and enlarge search region. Meanwhile, a novel
judge scheme combining Hog correlation response and color response is adopted to evaluate the reliability
of tracking result. Finally, inverse sparse representation is presented to locate coarse positions of target in
case of tracking failures. Extensive experiments on five famous tracking benchmarks including OTB100,
TColor-128, UAVDT, UAV123 and VOT2016 demonstrate our proposed method outperform other sate-of-
the-art methods in terms of robustness and accuracy.

INDEX TERMS Visual tracking, correlation filter, motion feature, adaptive cosine window, reverse sparse
representation.

I. INTRODUCTION
Visual object tracking, one of the classical and funda-
mental research topics in computer vision, has long been
widely used in traffic monitoring, medical image processing,
automatic driving and video surveillance. Although great
breakthrough has been made in the past decade [1]–[13],
designing a general and robust tracker remains a challenging
task, due to many unpredictable factors including illumina-
tion change, scale variation, serious occlusion, motion blur,
and so on.

Recently, trackers based on correlation filter (CF) have
been proposed and obtained promising performance on many
challenging benchmarks. The core of CF trackers is to train
a discriminative classifier to separate the target from its
surrounding background [14]–[16]. Through exploiting Fast
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Fourier Transform (FFT) on the circulant shifted training
samples, the target in a new frame is able to be located at
a very low computational complexity. Although CF trackers
have achieved promising performancewith an extremely high
speed, there still exist some factors which severely hamper
the tracking performance. First, there are undesired boundary
effects in CF trackers due to periodic assumption. Discrim-
inative correlation classifiers are trained with the circulant
shifted version of the target and only the detection scores near
the center of searching region are accurate. Therefore, only
a restricted search area is used to train the correlation filter,
which makes CF trackers easily drift to the background in the
presence of heavy occlusion and motion blur. Second, histor-
ical information of target in video frames is not considered
in most CF trackers. The position of target from continuous
frames rarely changes greatly which can be used to improve
tracking accuracy. Third, there is no re-detection scheme in
traditional CF trackers in case of tracking failures. When the
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target is heavily occluded or is out of view, most CF trackers
are not able to locate the position of target again.

In this paper, we address the above-mentioned problems
by several aspects. First, in order to solve the boundary
effect, we introduce an adaptive cosine window to enlarge
search region, which is composed of a traditional cosine
window and an adaptive target likelihood map. The target
likelihood map is computed for each frame and can estimate
the probability of each pixel belonging to the target or the
background. Thus, this scheme can highlight the target and
suppress the background. Second, we use large displacement
optical flow to estimate the motion feature in adjacent frames.
Then we combine Hog correlation response, response from
color feature and motion feature to obtain a robust response
of target. Finally, we use a re-detection module to judge the
reliability of tracking result. If the tracking result is regarded
as unreliable, we introduce reverse sparse representation to
refine the candidates and get coarse locations of target. The
flowchart of our proposed method is shown in FIGURE 1.

The main contributions of this paper are summarized as
follows,

- We combine traditional fixed cosine window and the
target likelihood map of each frame to form an adaptive
cosine window, which can effectively cope with bound-
ary effect.

- We introduce large displacement optical flow to pre-
dict the motion feature of adjacent frames, which can
enhance the robustness of final response of target.

- We adopt a novel judgement scheme to estimate the
reliability of tracking results. If the reliability of track-
ing result is considered to be unreliable, we propose a
reverse sparse representation scheme to locate coarse
positions of target in case of tracking failures.

- We conduct extensive experiments on OTB100 [17],
TColor-128 [18], UAVDT [19], UAV123 [20] and
VOT2016 [21] to demonstrate the superiority of our
method.

The remainder of this paper is organized as follows.
In section II, we give a brief description of related work on
visual tracking. Section III describes the detailed introduction
of our proposed method. In section IV, we report the experi-
mental results and discussions. Finally, we draw conclusions
of this paper in section V.

II. RELATED WORK
A. TRACKERS BASED ON CORRELATION FILTER
CF trackers have obtained promising tracking results owing
to the dense sampling and efficient computation in the Fourier
domain. Bolme et al. [22] firstly applied correlation filter
into the field of visual tracking using minimum output sum
of square error (MOSSE). MOSSE attracted a huge amount
of interest with a tracking speed of more than 600 fps. Hen-
riques et al. [23] exploited the circulant structure of training
samples in the kernel space (CSK). Later, Henriques et al.
[24] further extended CSK tracker from one channel fea-

ture to multiple features, named kernelized correlation filter
(KCF). In order to deal with scale variation, Danelljan et al.
[25] proposed a discriminative scale space tracker (DSST)
to accurately estimate the scale of target. Li and Zhu [26]
developed a scale adaptive tracker with multiple features
(SAMF) including Hog and color-naming. To alleviate the
adverse effect of boundary effect, Danelljan et al. [27] pre-
sented a spatially regularized discriminative correlation fil-
ter (SRDCF) tracker, which can train correlation filter on
a huge set of negative training samples. Galoogahi et al.
[28] developed background aware correlation filters which
are trained with real background patches instead of shifted
patches. Li et al. [29] proposed spatial-temporal regularized
correlation filters (STRCF) which can be solved via the
alternating direction method of multipliers. Inspired by the
successful application of features from convolutional neural
networks (CNN) in image classification [30], image seg-
mentation [31] and image denoising [32], [33], Ma et al.
[34] utilized hierarchical convolutional features instead of
handcrafted features in the framework of correlation filter
to improve tracking performance. Qi et al. [35] developed a
novel adaptive weighted method to hedge each weak CNN
based tracker into a stronger one. Danelljan et al. [36] pre-
sented a unified learning framework for down-weighting the
corrupted training samples and up-weighting the accurate
ones. Furthermore, Danelljan et al. [37] developed a generic
formulation to learn discriminative convolution operators for
visual tracking in the continuous spatial domain. Efficient
convolutional operators (ECO) is developed by Danelljan
et al. [38] to reduce the computation complexity.

B. TRACKERS BASED ON SPARSE REPRESENTATION
Sparse representation is widely used in the field of computer
vision, such as face recognition, image classification, object
detection and so on. Motivated by the successful application
in face recognition, Mei and Ling [39] firstly introduced
sparse representation into visual tracking, called `1 tracker.
Each candidate in `1 tracker is linearly represented by both
target template and trivial template. The candidate with the
least reconstruction error is chosen as tracking result of cur-
rent frame. However, the sparse coefficients corresponding
to each candidate need to be computed by `1 minimiza-
tion, which makes `1 tracker quite computational expensive.
In order to accelerate the tracking speed of `1 tracker, Bao
et al. [40] proposed an improved `1 norm using an effi-
cient gradient descent optimization approach. Xiao et al. [41]
found that tracking methods with `2-regularized least square
are able to achieve almost the same performance as methods
with `1-regularized least square, but the computational com-
plexity is much lower. To improve the tracking performance
of tracker based on sparse representation, Zhong et al. [42]
builded a sparse collaborative tracking model which takes
account of both holistic templates and local representations.
An efficient and robust tracking method is developed by
Jia et al. [43], which considers both structural and partial
information of target object. Zhuang et al. [44] developed a
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FIGURE 1. The flowchart of our proposed method.

novel reverse sparse representation formulation, which allows
multiple templates to be reconstructed simultaneously by
the whole candidate set. Wang et al. [45] proposed a novel
inverse sparse tracer which uses a locally weighted distance
metric to replace traditional Euclidean distance metric. Sun
et al. [46] viewed visual tracking as a two-stage optimization
problem which taking account of both temporal discontinuity
and continuity information of target appearance.

III. PROPOSED METHODS
A. RESPONSE FROM CORRELATION FILTER
A standard tracker based on correlation filter learns a dis-
criminative classifier to estimate the position of target by
finding the maximum value of response map. The classifier
w is trained using an image patch x with the size of M × N .
All the training samples are centered around the target image
patch x. Each training sample xm,n(m, n) ∈ {0, 1, . . . ,M −
1}× {0, 1, . . . ,N − 1}, corresponding to a Gaussian function

label y(m, n) = e−
(m−M/2)2+(n−N/2)2

2σ2 , is derived from the cir-
cularly shifted version of image patch x along the horizontal
and vertical directions. The classifier w is derived from the
solution of the following minimization function:

w∗ = min
w

∑
m,n

‖ϕ(xm,n) · w− y(m, n)‖2 + λ‖w‖22 (1)

where ϕ(·) means the mapping from the linear feature space
to the nonlinear one and λ > 0 is a regularization parameter.
Using a kernel κ(x, x′) = 〈ϕ(x), ϕ(x′)〉, the classifier w can
be expressed as

w =
∑
m,n

α(m, n)κ(xm,n, x) (2)

Here α is the dual coefficients of w and can be learned by

α̂∗ =
ŷ

k̂xx′ + λ
(3)

where α̂ means the fast Fourier Transform (FFT) of α and
α̂∗ denotes the complex-conjugate of α̂. kxx

′

stands for a
Gaussian kernel and is defined as

kxx
′

= exp
(
−

1
σ 2

(
‖x‖2 + ‖x′‖2 − 2F−1

(
x̂∗ � x̂′

)))
(4)

where F−1 means the inverse FFT transform and � denotes
element-wise product. Given an new image patch z in the next
frame, the correlation response map fh is calculated by

fh = F−1
((

k̂xz
)∗
� α̂

)
(5)

The tracking result in new frame can be located by search-
ing for the maximum value of correlation response map fh
using Hog feature. In order to improve tracking performance,
the model is online updated by the following formulation,

x̂t = (1− η1)x̂t−1 + η1x̂′t (6)

α̂t = (1− η1)α̂t−1 + η1α̂
′

t (7)

where η1 means the learning rate and the subscript t is the
index of current tracking frame.

B. RESPONSE FROM MOTION ESTIMATION
Optical flow scheme, estimating the motion feature of objects
from consecutive frames, is widely applied in computer
vision, such as image understanding, image analysis and
image registration. Motion estimation, in the form of optical
flow, can be used to estimate the motion information of
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target across frames. In this section, we use large displace
optical flow estimation scheme [47] to estimate the motion
information of target in consecutive frames to promote the
tracking performance.

Let It , It+1 be the t-th and the (t+1)-th frame, s : (sx , sy) is
the location in a rectangular image domain and u := (u, v)T

be the searched optical flow between the t-th frame and the
(t+1)-th frame. Then, the optical flow field can be calculated
by minimizing the following energy functional:

E(u) = Ecolor (u)+ γEgradient (u)+ ζEsmooth(u)

+βEmatch(u,ut )+ Edesc(ut ) (8)

where γ , ζ and β are tuning parameters. Ecolor (u)
encodes color constancy, Egradient (u) encodes gradient con-
stancy, Esmooth(u) encodes robust smoothness constraint,
Ematch(u,u1) and Edesc(u1) bias the displacement field.
Ecolor (u) assumes that the color value of a pixel is not

changed over time by the displacement. The formulation of
Ecolor (u) is expressed by

Ecolor (u) =
∫
�

9
(
|It+1(s+ u(s))− It (s)|2

)
ds (9)

where 9(s2) =
√
s2 + ε2, ε = 0.001.

Egradient (u) allows slight changes in the color value and can
decide the displacement vector by a rule that is invariant under
color value changes. The expression ofEgradient (u) is given by

Egradient (u) =
∫
�

9
(
|∇It+1(s+ u(s))−∇It (s)|2

)
ds (10)

where ∇ = (∂sx , ∂sy )
T stands for the spatial gradient.

Esmooth(u) takes account of interaction between neighbour-
ing pixels and introduces the smoothness of the flow field.
The formulation is described as

Esmooth(u) =
∫
�

9
(
|∇u(s)|2 + |∇v(s)|2

)
ds (11)

To enforce the smooth flow, the termEmatch(u) is integrated
from descriptor matching into the variational formulation,
which is described by

Ematch(u) =
∫
�

δ(s)ρ(s)9
(
|u(s)− ut (s)|2

)
ds (12)

where δ(x) is a delta function indicating. δ(x) is 1 if a
descriptor match is available in location s. ρ(x) describes the
confidence of match.

Assuming the descriptors have beenmatched, thematching
task can be formulated by Edesc(ut ),

Edesc(ut ) =
∫
�

δ(s)|ft+1(s+ ut (s))− ft (s)|2ds (13)

where ft (s) and ft+1(s) mean the field of feature vectors in
frame t and frame t + 1, respectively.

C. RESPONSE FROM COLOR HISTOGRAM
To effectively copewith shape deformation, a color histogram
model is introduced in this section. Including the correct
position as a positive example, the color histogram score
can be learnt from a huge set of rectangular image patches
x extracted from each frame. Then the histogram weight
vector β should be obtained by solving the following ridge
regression problem,

β∗ = min
β

∑
(x,`)∈W

(
βT

[∑
τ∈H

ψx(τ )

]
− `

)2

+ %‖β‖2 (14)

where ψx(τ ) denotes the feature pixels of image patch x
in finite region H, W represents a set of pairs (x, `) and `
denotes the labels of image patch x. Then, histogram score
can be regarded as an average vote and can be calculated by

min
β

1
|O|

∑
τ∈O

(
βTψ[τ ]− 1

)2
+

1
|B|

∑
τ∈B

(
βTψ[τ ]

)2
(15)

where O denotes the object region and B means the back-
ground region. By introducing the one-hot assumption,
the above objective can be decomposed into the following
independent terms

M∑
j=1

[
N j(O)
|O|

· (β j − 1)2 +
N j(B)
|B|

· (β j)2
]

(16)

here N j(O) denotes the number of pixels belonging to the
regionO for which feature j 6= 0. Then, the solution of above
ridge regression problem is

β j =
pj(O)

pj(O)+ pj(B)+ %

=

N j(O)
|O|

N j(O)
|O| +

N j(B)
|B| + %

(17)

After getting the histogram weight vector, the response
from color histogram of an image patch x can be achieved
by an integral image. For a new image, the color histogram
over the target areaO and background area B are recomputed
and linearly updated as follows,

pt (O) = (1− η2)pt−1(O)+ η2p′t (O)

pt (B) = (1− η2)pt−1(B)+ η2p′t (B) (18)

where pt (O) and pt (B) are the vectors of pjt (O) and pjt (B) for
j = 1, 2, . . . ,M, respectively.

D. ADAPTIVE COSINE WINDOW
Recently, CF trackers have been reported efficient and excel-
lent tracking performance. However, due to the underly-
ing boundary effect produced by the periodic assumption,
the detection scores of CF trackers are only accurate around
the center of target. Thus, boundary effect easily leads to a
restricted searching area and hampers the tracking perfor-
mance. In order to alleviate the adverse effect of boundary
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effect, a fixed cosine window C is introduced in the traditional
CF trackers. Though the fixed cosine window C can suppress
the some contamination of background region, it also shrinks
the searching area when finding the true position of target.

In this section, we proposed an adaptive cosine window
to overcome the harmful effect of boundary effect, which can
highlight target region and suppress background region better
than traditional cosine window. The formulation of adaptive
cosine windowWadap is given by

Wadap = (1− η3)C + η3W (19)

where W is target likelihood map and is computed by equa-
tion (17) in section C. The target likelihood map is able to
effectively distinguish target region and background region.

E. TARGET LOCATION
In this paper, we use the combination of correlation response
of Hog feature fh, the response from color histogram fc and
the motion map fm to locate the position of target, which can
enhance the robustness of our method. The final response is
a weighted linear combination of fh, fc and fm,

f (t) = ζ1 · f
(t)
h + ζ2 · f

(t)
c + ζ3 · f

(t)
m (20)

where the superscript t is the frame index, ζ1, ζ2 and ζ3 are
weighted paramters. The position of the t-th frame can be
searched by finding the maximum value of the final response
f (t).

F. RE-DETECTION MODULE
In this section, we first check the reliability of tracking results
using correlation response of Hog feature and response of
color histogram. Then, if the current tracking result is consid-
ered to be unreliable, we will launch the re-detection module
to refine the target location.

For the response map of Hog feature, we define S ih =
max(f ih)−µ

i
h

σ ih
be the i-th peak-to-sidelobe ratio (PSR). f ih denotes

the i-th correlation response of Hog feature,µih and σ
i
h are the

i-th mean and standard deviation of f ih , respectively. We also
define the PSR ensemble pool Ch = {S2

h ,S
3
h , . . . ,S

i
h} with

its mean value Mh. For the response map from color his-

togram, we define S ic =
∑
τ βTψi(τ )∑
τ βTψ1(τ )

be the color score of
i-th frame. We also define the color score ensemble pool
Cc = {1,S2

c ,S3
c , . . . ,S ic} with its mean value Mc. If S ih <

oh ·Mh or S ic < oc ·Mc, we consider tracking result of the
i-th frame is unreliable and we will launch the re-detection
module. At the same time, S ih or S ic will not be put in the
ensemble pool Ch and Cc, respectively. oh and oc are constant
parameters forMh andMc, respectively.

If S ih or S ic are discarded, we first coarsely locate the
position of target based on multitask reverse sparse represen-
tation scheme. Then we use CF tracker with multiple features
mentioned in our above paper to refine the tracking results.

In order to obtain reliable candidates, a discriminative
reverse sparse representation based method is adopted to

determine the rough scope efficiently. We construct the pos-
itive template sets Tpos = [t1, t2, . . . , tp] around the object
within a small circular area and the negative template sets
Tneg = [tp+1, tp+2, . . . , tp+n] far away from the object within
an annular region. p and n are the number of positive and
negative templates, respectively. If the current tracking result
is considered to be unreliable, each template is represented
by the candidate set Y with coefficients c, which can be
computed by Eq.(21).

argminc1 ‖t1 − Yc1‖22 + τ‖c1‖1,
. . . . . .

argmincp ‖tp − Ycp‖22 + τ‖cp‖1,

argmincp+1 ‖tp+1 − Ycp+1‖22 + τ‖cp+1‖1,

. . . . . .

argmincp+n ‖tp+n − Ycp+n‖22 + τ‖cp+n‖1,

(21)

where ci denotes the nonnegative sparse coefficients of the
i-th template and reflects the similarity between candidate
and the corresponding template. We construct similarity map
matrix C = [c1, . . . , cp+n], which can be computed as a
whole. Then, Eq.(21) is reformulated as the following equa-
tion.

argmin
C
‖T−YC‖22 + τ

∑
i

‖ci‖1 +
δ

2

∑
ij

‖ci−cj‖2Bij (22)

where δ
2

∑
ij ‖ci − cj‖2Bij is the customized Laplacian regu-

larization term. δ is the regularization parameter and B is a
binary matrix.

For the i-th candidate, by introducing the weighted dis-
criminative sparse similarity map and the additive pooling
scheme [44], the reliability score Ri is calculated by

Ri = si−pos − si−neg (23)

where si−pos and si−neg represent what extent can the i-th
candidate be related to the positive and negative template
sets. The i-th candidate with the higher value of Ri is more
possible to be the target. In order to reduce the computation
cost, we discard 90% of the candidates through the reliability
score. The rest candidates will be put in the correlation filter
framework using multiple features with adaptive cosine win-
dow to refine the tracking result. The position of target will
be located by searching for the maximum value of correlation
response map from all the remaining candidates.

G. UPDATE SCHEME
Inspired by [48], we use the same adaptive update scheme
to adapt to various changes. For the correlation filter based
tracker, the update parameter η1 is set by

η1=

Q, if tracking result is reliable

υ1

(
Sh
Mh

)υ2
Q, otherwise

(24)
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TABLE 1. Parameter setting in our paper.

FIGURE 2. Precision plots and success plots of OPE of our method
against other 10 state-of-the-art methods on OTB100.

whereQ, υ1 and υ2 are constants. For color histogrammodel,
the update parameter η2 is set by

η2 =

{
P, if tracking result is reliable
0, otherwise

(25)

where P is a constant.
As for the positive template sets in coarse location pro-

cess, if the tracking result is reliable, we update the positive
template sets according to a threshold θ . We define the sim-
ilarity vector d = [d1, d2, . . . , dp]. di describe the similarity
between the i-th positive template and the current tracking
result. For the i-th positive template, if max di > θ , (i =
1, 2,. . . ,m), we replace it with the tracking result. Otherwise,
we keep the i-th positive template unchange. For the negative
template set, we sample negative templates around the track-
ing result in the last frame.

IV. EXPERIMENTS
A. EXPERIMENTAL SETUP
In this section, we demonstrate a comprehensive evaluation
of our proposed method. We conduct extensive experiments
on five popular benchmarks, i.e., OTB100 [17], TColor-128
[18], UAVDT [19], UAV123 [20], VOT2016 [21].

1) IMPLEMENTATION DETAILS
Our method is implemented on Matlab 2017 and is con-
ducted on a computer with an Inter(R) Xeon(R) 2.4GHz
CPU and 128G RAM. Table 1 gives some parame-
ters used in our method, which are fixed for all the
experiments.

2) EVALUATION METHODOLOGY
In order to assess different tracking methods fairly, two eval-
uation metrics: precision rate and success rate, are introduced
in this paper. The precision plot is defined as the percentage
of tracking frames whose center location error is less than
20 pixels. Here, the center location error is the difference
between the estimated positions and ground truth. The suc-
cess plot denotes the overlap ratio between the predicted
bounding box and ground truth. The overlap ratio is defined
as S = Area(Rt

⋂
Rg)

Area(Rt
⋃
Rg)

. Here, Rt means the predicted bounding
box and Rg denotes the ground truth.

⋂
and

⋃
are the union

and intersection operators, respectively.

B. RESULTS ON OTB100 DATASET
OTB-100 dataset consists of 100 challenging video sequences
annotated with 11 different attributes, including low resolu-
tion (LR), background clutter (BC), out of view (OV), in-
plane rotation (IPR), fast motion (FM), motion blur (MB),
deformation (DE), occlusion (OC), scale variation (SV), out-
of-plane rotation (OPR), illumination variation (IV).

1) QUANTITATIVE EVALUATION
We compare our method with other 10 state-of-the-art
trackers including HCFT [49], LCTdeep [50], HDT [51],
MCCT_H [52], RLT [48], Staple [53], LCT [54], SAMF
[26], DSST [25], ECO-HC [38]. FIGURE 2 demonstrates
the precision plots and success plots of one pass evaluation
(OPE) on OTB100. It is obvious that our method achieves the
best tracking performance in both precision and success rates.
Compared with the baseline RLT tracker, our tracker obtains
a concerning improvement (4.1% in precision rate and 2.7%
in success rate). HCFT, LCTdeep, HDT using deep features
can greatly improve tracking performance compared with
trackers using handcrafted features. However, due to the time-
consuming feature extraction process, these trackers can only
run with a speed of about 1fps at the CPU platform, which
can not meet the real-time requirement. Although LCTdeep
and LCT trackers have re-detection module, they use a fixed
threshold to assess the reliability of tracking result, which can
not obtain promising results for all the challenging sequences.
Our method using traditional handcrafted features, with the
help of novel re-detection module, achieves the precision
score of 86.4% and the success score of 65.1%.

In order to further demonstrate the superiority of our pro-
posed method, we report tracking results for eleven challeng-
ing attributes in overlap rates in FIGURE 3. It is obvious that
our method achieves the best tracking performance in almost
all the eleven attributes except for low resolution (ranks sec-
ond), fast motion (ranks second) and scale variation (ranks
second). Besides, the tracking performance of our proposed
method has been greatly improved in occlusion (63.2% vs
54.8%) and out-of-plane rotation (61.9% vs 53.8%) when
compared with Staple tracker. This improvement is mainly
due to the adaptive cosine window scheme, which can
enlarge the searching region to alleviate the adverse effect of
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FIGURE 3. Success plots of OPE with different attributes on OTB100.

boundary effect. Since using multiple features, the tracking
performance of our method under low resolution has been
improved by 2.2% as comparedwith the baseline RLT tracker.
Besides, our method is able to outperform methods using
deep features in all the attributes, such as HCFT, HDT and
LCTdeep.

2) QUALITATIVE EVALUATION
In order to explicitly demonstrate the comparison results
between our method and other 10 state-of-the-art trackers,
we visually show the bounding boxes of 11 trackers on

several key frames of 10 representative video sequences
in FIGURE 4. For both Girl2 and Lemming sequences,
the major challenge is serious occlusion. Since HCFT, HDT,
SAMF, Staple, ECO-HC and DSST do not consider the
re-detection scheme, it can be seen that these methods are
not able to cope with serious occlusion. Although LCT-
deep and LCT have failure recovering mechanism, they
can not deal with full occlusion and background clutter in
Lemming sequence. The targets in Singer1 and Singer2 video
sequences have drastic illumination variation, while scale
variation is included in the Singer1 sequence. It can be
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FIGURE 4. Tracking results obtained by HCFT, HDT, LCTdeep, Staple, SAMF, DSST, LCT, MCCT_H, RLT, ECO-HC and Our method on ten
sequences (From up to bottom: Girl2, Lemming, Singer1, Singer2, Jumping, BlurOwl , Skiing, Deer , CarScale and Human6).
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observed from the Singer2 sequence that LCTdeep, HDT,
ECO-HC and SAMF are sensitive to illumination variation
and drift in frame 100. Our proposed method has strong
robustness to both illumination variation and scale variation.
The sequences in Juming and BlurOwl are low in quality
because of dramatic motion blur. Consequently, MCCT_H,
SAMF, RLT, DSST, Staple and LCT have a strong tendency
to lose the target. Our method with adaptive cosine win-
dow can highlight the target region, suppress the background
region and locate the position of target precisely in the whole
tracking process. The targets in both the Skiing and Deer
sequences undergo large displacement due to fast motion.
SAMF, MCCT_H, RLT, LCT, ECO-HC and Staple learn a
great deal of background features and drift to the surrounding
background in the process of tracking. Our method considers
the motion feature between adjacent frames and can cope
with fast motion easily. The targets in CarScale and Human6
sequences have significant scale variation during tracking,
and occasionally have serious occlusion. The bounding boxes
of HCFT and HDT keep the same during tracking, as they do
not have the scale estimation component. Our method use the
same scale estimation scheme as RLT and is able to predict
precise scale of target all the time.

3) COMPARISON OF DIFFERENT METHODS IN SPEED ON
OTB100
Tracking speed is very important for industrial application
of visual tracking algorithm. It is difficult to apply track-
ers with a slow speed into industrial products. This section
demonstrates the comparison of differentmethods in speed on
OTB100. In order to show the comparison of different visual
tracking methods validly and fairly, all the three methods
with deep features (including HCFT, HDT and LCTdeep)
in Table 2 are conducted on a PC equipped with an Inter Xeon
CPU E5-2640 v4 with 128G RAM and a single NVIDIA
TITAN Xp. The other eight methods with handcrafted fea-
tures in Table 2 are conducted on the same PC platform
without GPU. From Table 2, it can be observed that our
tracker in a CPU platform is able to get better tracking results
than trackers with deep features in a GPU platform at almost
the same speed.

C. RESULTS ON TColor-128 DATASET
To further testify the validity of our proposed tracker, we con-
duct a comprehensive experiment on TColor-128 dateset.
TColor-128 dataset consists of 128 color sequences, which
have the same 11 challenging attributes as OTB100 dataset.
We compare our method with other 11 state-of-the-art track-
ers including RLT [48], SAMF_AT [55], SRDCF [27],
CoKCF [56], HDT [51], HCFT [49], SAMF [26], LCT
[54], CFNET [57], DSST [25] and ECO-HC [38]. FIGURE
5 shows the comparison results with 11 trackers in terms of
precision plots and success plots of OPE. It can be seen that
compared with trackers using deep features such as CoKCF,
HDT, HCFT and CFNET, our method achieves 7.3%, 8.7%,
8.2%, 23.8% improvement respectively in precision plot and

FIGURE 5. Precision plots and success plots of OPE of our proposed
method against other state-of-the-art methods on TColor-128.

9%, 9.1%, 9.7%, 18.2% improvement respectively in success
plot. Our tracker outperforms the other 11 trackers and ranks
the first place in both precision rate and success rate due
to the complementary handcrafted features. As using the
motion feature of two continuous frames, compared with the
baseline RLT tracker, the performance of our tracker has
been improved by a margin of 3% in terms of precision plot
and 2% in terms of success plot, respectively. Table 3 and
4 demonstrates the precision rate and success rate of 12 track-
ers with 11 challenging attributes on TColor-128 dataset. The
best, second best and third best tracking results are repre-
sented in red, blue and green, respectively. It can be observed
that our method obtains the best tracking performance in
terms of precision plot except for motion blur (ranks second)
and low resolution (ranks second). Besides, our method gets
the first place in almost all the 11 challenging attributes in
terms of success rate except for low resolution (ranks second)
and out of view (ranks second). Thus, we can conclude that
our method is effective for all the 11 attributes compared with
11 trackers mentioned in this section.

D. RESULTS ON UAVDT DATASET
UAVDT dataset contains 50 challenging video sequences
captured from UAV, which are fully annotated with bounding
boxes and focus on complex scenarios. These sequences cov-
ers 9 complex challenging attributes including background
clutter (BC), camera motion (CM), object motion (OM),
small object (SO), illumination variation (IV), object blur
(OB), scale variation (SV), long-term tracking (LT) and large
occlusion (LO). FIGURE 6 illustrates precision plots and
success plots of OPE of our proposed method against other
14 state-of-the-art tracking methods including SRDCF [27],
PTAV [58],MCPF [59], C-COT [37], FCNT [60], STCT [61],
CREST [62], RLT [48], CN [63], HCFT [49], HDT [51],
KCF [24], SINT [64] and ECO-HC [38]. It is obvious that
our method obtains the first place in both precision rate and
success rate, even better than trackers using deep features,
such as PTAV, MCPF, C-COT, FCNT, STCT, CREST, FCNT,
HDT and SINT. Although PTAV has the verification module
and can correct the tracker when needed, this method just
obtains the fourth place in precision rate and the ninth place
in success rate. Compared with the baseline RLT tracker, our
proposed method obtains an improvement (3.7% in precision
rate and 2.2% in success rate), which proves that the adaptive
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TABLE 2. Comparison of different methods in speed on OTB100.

TABLE 3. The precision rates of 12 trackers with 11 challenging attributes on TColor-128 dataset. The best, second best and third best tracking results are
represented in red, blue and green, respectively.

TABLE 4. The success rates of 12 trackers with 11 challenging attributes on TColor-128 dataset. The best, second best and third best tracking results are
represented in red, blue and green, respectively.

cosine window and motion feature are effective. To further
validate the effectiveness of our method, tracking results on
UAVDT dataset with 9 different challenging attributes are
reported in FIGURE 7. We can see that our method achieves
the first place in almost all the attributes except for small
object (ranks second), scale variation (ranks third), long-
term tracking (ranks fifth) and large occlusion (ranks fourth).
Although our method is second to C-COT in small object,
the difference is quite small, at only 0.1%. The adaptive
cosine window can decrease the effect of boundary effect
attributing to the enlarging searching region. As a result, our
method is able to perform well in object blur and object
motion.

E. RESULTS ON UAV123 DATASET
UAV123 dataset contains 123 aerial high-resolution video
sequences with more than 110K frames. These sequences
covers 12 complex challenging attributes including scale vari-
ation (SV), aspect ratio change (ARC), low resolution (LR),
fast motion (FM), full occlusion (FO), partial occlusion (PO),
out-of-view (OV), background clutter (BC), illumination
variation (IV), viewpoint change (VC), camera motion (CM)

FIGURE 6. Precision plots and success plots of OPE of our proposed
method against other state-of-the-art methods on UAVDT.

and similar object (SO). As these challenging attributes in
UAV123 dataset, the tracking performance of various trackers
decrease drastically compared with the OTB100 dataset in
terms of the same evaluation metric. FIGURE 8 demonstrates
the precision plots and success plots of OPE of our proposed
method against other 16 state-of-the-art methods including
RLT [48], SRDCF [27], CSDCF [65], Staple_CA [66], BACF
[28], CoKCF [56], SRDCFdecon [36], KCC [67], SAMF_CA
[66], Staple [53], SAMF [26], DSST [25], fDSST [68], DCF
[23], EOC-HC [38] and KCF [24]. From FIGURE 8 we can
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FIGURE 7. Success plots of OPE with different attributes on UAVDT.

see that EOC-HC obtains the first place both in precision rate
and success rate. Since the re-detection module used in our
tracker can solve the drifting problem, our method achieves
the second best tracking performance with a precision score
of 68.2% and with a success score of 48.1%. The baseline
RLT tracker follows our tracker and achieves the third place.
Owing to the adaptive cosine window and motion feature,
our method improves the tracking performance by 3% in
precision rate and 4% in success rate compared with RLT.
To further demonstrate the comparative results, success plots
of OPE with 12 different attributes on UAV123 are reported
in FIGURE 9. It can be observed that our method achieves
the second performance only to ECO-HC in almost all the
attributes except for fast motion (ranks fourth), full occlusion
(ranks third), background clutter (ranks second), illumination
variation (ranks third) and similar object (ranks third). Com-
pared with CoKCF using mutual deep features, our method
only using handcrafted features and motion feature obtains
better tracking results in all the attributes. Because of the
adaptive cosine window, our tracker is able to enlarge the
searching region and deal better with boundary effect than
BACF.

FIGURE 8. Precision plots and success plots of OPE of our proposed
method against other state-of-the-art methods on UAV123.

F. RESULTS ON VOT2016 DATASET
In order to further evaluate our method, a comparison
with other state-of-the-art trackers which participated in
VOT2016 is demonstrated on FIGURE 10 and FIGURE 11.
VOT2016 dataset consists of 60 challenging videos. The
tracking performance is assessed in terms of accuracy and
robustness, which consider the average overlap ratio and
failure times, respectively. VOT2016 also introduces the
expected average overlap to rank trackers which takes
account of the raw values of per-frame accuracies and
failures in a principled manner. FIGURE 10 gives the
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FIGURE 9. Success plots of OPE with different attributes on UAV123.

robustness-accuracy ranking plots under the baseline on
VOT2016. FIGURE 11 demonstrates the expected average
overlap graph onVOT2016. Trackers closer to the top-right of
the plot perform better. We can see that our proposed method
achieves the thirteenth place among the 50 trackers and per-
forms better than most of trackers participated in VOT2016.

G. ABLATION ANALYSIS

In this section, we conduct extensive experiments to illus-
trate the effectiveness of each proposed component includ-
ing adaptive cosine window, motion feature and re-detection
scheme.
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FIGURE 10. Robustness-accuracy ranking plots under the baseline on
VOT-2016.

FIGURE 11. Expected average overlap graph on VOT2016.

1) EFFECT OF ADAPTIVE COSINE WINDOW
The adaptive cosine window plays an important role in our
proposed method. It has the ability to highlight the target,
suppress the background and can cope with boundary effect
effectively. The first chart of FIGURE 12 gives the precision
plots by RLT method with adaptive cosine window and fixed
cosine window on OTB100. The second chart of FIGURE
12 shows the success plots by RLT method with adaptive
cosine window and fixed cosine window on OTB100. Fig-
ure 14 reflects the effectiveness of adaptive cosine window
with our proposed method on OTB100 in terms of precision
plots and success plots, respectively. It is clear that the adap-
tive cosine window scheme improves the precision rate and
success rate significantly. Both FIGURE 13 and FIGURE
15 report the tracking results of RLT and our method on
OTB100 in terms of 11 challenging attributes with adaptive
cosine window and fixed cosine window, respectively. It can
be observed that both RLT method and our method with
adaptive cosine window perform better than that with fixed
cosine window in almost all the eleven challenging attributes.

Our proposed adaptive cosine window combines tradi-
tional cosine window and the target likelihood map of each
frame with a fixed parameter η3. η3 determines the extent
of each part acted on the final adaptive cosine window. Fig-
ure 16 shows the tracking performance in terms of precision

FIGURE 12. Precision plots and success plots of OPE by RLT method with
adaptive cosine window and fixed cosine window on OTB100.

FIGURE 13. Tracking results of RLT on OTB100 in terms of 11 challenging
attributes with adaptive cosine window and fixed cosine window.

FIGURE 14. Precision plots and success plots of OPE by our method with
adaptive cosine window and fixed cosine window on OTB100.

and success rate by our proposed method on OTB100 with
different parameter η3. We can see that when the parameter
η3 is set to 0.5, both precision value and success rate obtain
the maximum value.

2) EFFECT OF MOTION FEATURE
Motion feature is important for our method and can be
estimated by large displacement optical flow. The motion
trajectory of target can be obtained and promotes the tracking
performance greatly. The first picture of FIGURE 17 shows
the precision plots of OPE by RLT method with motion
feature and without motion feature on OTB100. The second
picture of FIGURE 17 demonstrates the success plots of OPE
by RLT method with motion feature and without motion
feature on OTB100. Figure 19 shows the effectiveness of
motion feature on our method. It can be observed that RLT
with motion feature achieves a precision score of 82.7% and
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FIGURE 15. Tracking results of our method on OTB100 in terms
of 11 challenging attributes with adaptive cosine window and fixed
cosine window.

FIGURE 16. The effect of parameter η3.

FIGURE 17. Precision plots and success plots of OPE by RLT method with
motion feature and without motion feature on OTB100.

a success score of 63.0%, while RLT without motion feature
only obtains a precision score of 82.3% and a success score
of 62.4%. At the same time, our method combining three
features (including Hog feature, color feature and motion
feature) is able to get better performance than without motion
feature. FIGURE 18 and FIGURE 20 demonstrate tracking
results of RLT method and our method on OTB100 in terms
of 11 challenging attributes with motion feature and without
motion feature, respectively. It can be easily seen that our
method using motion feature can get better performance in
almost all the attributes except for IV and BC.

3) EFFECT OF RE-DETECTION COMPONENT
In this section, our method uses the same scheme as RLT
to judge the reliability of tracking results. If the tracking

FIGURE 18. Tracking results of RLT on OTB100 in terms of 11 challenging
attributes with motion feature and without motion feature.

FIGURE 19. Precision plots and success plots of OPE by our method with
motion feature and without motion feature on OTB100.

FIGURE 20. Tracking results of our method on OTB100 in terms
of 11 challenging attributes with motion feature and without motion
feature.

results are regarded as unreliable, RLTmethod use traditional
sparse representation to refine the candidates. On the con-
trary, our method uses reverse sparse representation to find
coarse locations efficiently. FIGURE 21 and FIGURE 23
give the precision plots and success plots of OPE by RLT
method and our method with traditional sparse representation
and reverse sparse representation on OTB100, respectively.
The reverse sparse representation reconstructs the template
sets with a few candidates and builds a discriminative sparse
similarity map to refine the candidates. FIGURE 22 and FIG-
URE 24 give the tracking results of RLT and our method on
OTB100 in terms of 11 challenging attributes with traditional
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FIGURE 21. Precision plots and success plots of OPE by RLT method with
traditional sparse representation and reverse sparse representation on
OTB100.

FIGURE 22. Tracking results of RLT on OTB100 in terms of 11 challenging
attributes with traditional sparse representation and with reverse sparse
representation.

FIGURE 23. Precision plots and success plots of OPE by our method with
traditional sparse representation and reverse sparse representation on
OTB100.

sparse representation and with reverse sparse representation,
respectively. It can be easily seen that our reverse sparse
representation can promote the tracking performance signifi-
cantly in terms of all the attributes.

H. FAILURE CASES
We give some tracking failure cases by our method in FIG-
URE 25. For the video Jump and Diving, targets undergo fast
motion as well as serious deformation. As our method do not
consider in-plane rotation and fails to locate the true position
of target. In thePerson sequence, target person passes through
the pavilion and disappears for a long time. Although the
re-detection module is activated due to full occlusion, our
method can not locate the true position of small target person
when target reappears in the far place.

FIGURE 24. Tracking results of our method on OTB100 in terms
of 11 challenging attributes with traditional sparse representation and
with reverse sparse representation.

FIGURE 25. Failure cases on the Jump, Diving and Person sequences. Our
results are shown in red and the ground truth in green.

V. CONCLUSION
In this paper, we propose a robust visual object tracking
method with motion estimation and reliable re-detection
scheme. First, motion feature is estimated by large dis-
placement optical flow through adjacent frames, which is
combined with color response and Hog correlation response
to promote the tracking performance significantly. Second,
an adaptive cosine window is adopted to deal with boundary
effect, which has the ability to highlight target and suppress
background effectively. Third, the color response and Hog
correlation response is introduced to judge the reliability
of tracking results. Fourth, reverse sparse representation is
adopted to refine the candidates in case of tracking failures.
At last, extensive experiments are conducted on five popular
benchmarks to demonstrate the superiority of our proposed
method.
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