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ABSTRACT The supply chain management of blood products specifically deals with the aspect of efficient
planning, implementing, and controlling of the in and out flow processes of blood unity in the blood bank
system. Therefore, any improvement in the management of these chains would directly influence the manner
in which blood and blood products are distributed to all the various sectors requiring such scarce and precious
resources. Generally, the management of blood products is difficult due to the four ABO blood groups, which
is further complicated by positive/negative rhesus factors. In this paper, a more simplified and robust dynamic
mathematical model is presented for the efficient management of the blood bank. The corresponding sets of
governing equations from an existingmodel are extended to cover the rhesus factors and the solutionmethods
of the newly derived equations are subsequently investigated. In addition, a mathematical representation of
the decision making process is presented as a function of the blood bank stockpile. Furthermore, in order
to demonstrate the robustness of the developed model and to provide managerial insights, a new global
hybrid symbiotic organisms search genetic particle swarm optimization algorithm is developed. Several
numerical computations are performed using real-world datasets from the EnuguNational Blood Transfusion
Centre, in Nigeria, which fall within the monthly initial blood volume bounds of 300 over a period of eight
years (2010 - 2018). Finally, the experimental results show that the mathematical model and metaheuristic
optimization method proposed in this paper offer a better solution approach for blood allocation in dynamic
environments. More so, the impact of some essential control parameters on the results are analysed to help
the blood bank managers or decision makers to select accurately the desired parameters for optimal results
yield.

INDEX TERMS Blood assignment, blood group, rhesus factors, blood compatibility, symbiotic organisms
search, genetic algorithm, particle swarm optimization, symbiotic organisms search genetic particle swarm
optimization.

I. INTRODUCTION
The human blood inventory management is characterized by
a string of factors, which can be complicated over time [1].
Blood products are usually received from voluntary dona-
tions; these products are then stored under ideal conditions
for future use by the blood banks. According to Karl Land-
steiner in 1901, human blood can be classified into four main
groups known as the ABO system. Then, in 1940 another
system of blood grouping, known as the rhesus (Rh) blood
group system was discovered, giving a total of eight major
blood groups for red blood cells, namely, A+, A−, B+, B−,
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AB+, AB−, O+, and O−. These blood groups are significant
with regards to storage and distribution, as compromising or
mixing incompatible blood types can lead to blood clumping
(also known as agglutination), which can be life-threatening
for most patients [1]. The distribution of blood groups within
a populationmay differ from country to country. For example,
in South Africa, the O and A blood groups are known to
be dominant, with 46% and 37% blood type proportions,
respectively. In contrast, the B and AB blood groups are
known to be less assertive, with 14% and 4% blood type
proportions, respectively [2].

Blood preservation for immediate supply in the case of
unexpected demand can be a daunting task. One reason is
blood products are perishable commodities so have limited
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shelf life [3]–[6], which is coupled with the complexity of
blood compatibility between different red blood cell types
and the stochastic nature of daily blood demand and sup-
ply [7]–[9]. Therefore, it is necessary to devise more efficient
and effective ways in which blood products can be stored
and assigned to individuals in need. For example, the shelf-
lives of blood products in South Africa are considered to
be thirty-five days for whole blood, forty-two days for red
blood cells, five days for platelets, and one year for plasma.
Therefore, any of the blood products not used by the expiry
date at a hospital blood bank are said to have ‘‘expired’’.
This perishability and the continuous rise in the demand for
blood products has stimulated numerous researchers to give
considerable attention to the management of the scarce blood
resources across the world.

The blood assignment problem (BAP) is considered in this
paper as a real-world optimization problem, which tries to
efficiently assign blood units to various centers (or hospitals)
while trying to minimize the amount of importation and
expiry within the blood bank. In general, the BAP has many
components, so it becomes difficult to model mathematically.
Such elements include having to deal with an adequate supply
to meet daily demand or importing additional units in the face
of shortages. Others include cross-matching of blood accord-
ing to the blood grouping system, and expiry of blood units
once a unit has exceeded its shelf-life [2], [11]. It must be
remembered that blood is donated voluntarily to blood banks;
therefore, there are no constant levels of supply, and while
there is a daily demand for blood, it may vary. The BAP is thus
said to be NP-hard, simply the supply and demand of blood
involve some complexities, which are associated with blood
compatibility issues and the stochastic nature of the daily
needs for such a product [10]. The BAP is, therefore, studied
to develop an adequate model that utilizes whole blood units
more efficiently and achieves the desired objective function
of minimizing unnecessary blood product importation from
an external source.

An enormous amount of research has involved
models relating to the policies of reducing bloodwastages [2],
[10]–[14]. These efforts have considered instances of
double-cross matching of blood and alternative compatibility
decision making in using Rh-negative blood for compat-
ible Rh-positive patients in the event of scarcity. Several
researchers have examined fixing blood bank inventory levels
through the use of efficient planning of blood supply chain
management schemes [15]–[19]. Some of the existingmodels
examined close matching of demand and supply for platelets,
which have a very short shelf-life, and require matching
demand and supply closely. Modeling of the blood bank
as an inventory system in which both the arrival of items
and the demand for them are stochastic and items stored
have finite lifetime was investigated in [32]. Furthermore,
in [20], a new optimization framework was proposed for
blood supply chain inventory management with the ABO
blood group compatibility being considered. The inventory
objective was to minimize the expected system out-date

rate under a predetermined maximally allowable shortage
level.

Similarly, research has frequently focused on integer
programming-driven models for reducing wastages and
shortages of blood products at hospitals. In [21], an integer
programming model to minimize the total cost, shortage,
and wastage levels of blood products in a hospital within
a planning horizon was proposed. The two models devel-
oped by these authors, namely stochastic and deterministic,
considered uncertain demand rates, demand for two types
of patients, and cross-match to transfusion ratio. The results
showed wastage rates decreasing from 19.9% to 2.57% on
average. In [22], two mixed-integer programming models
were developed, based on the FIFO and LIFO issuing poli-
cies, to maximize both the freshness of the platelet units
delivered and their total cost. More so, [8] developed an inte-
ger programming model, which accounts for all the special
aspects of blood supply chains involving uncertain demand
and irregular supply of blood products, the perishability of
blood products, and shortage avoidance. In [23], a model
was formulated using approximate dynamic programming,
and was investigated in terms of a blood platelet bank with
eight blood types, stochastic demand, stochastic supply, and
deterministic lead time.

Despite the achievements of the classical methods in min-
imizing blood product wastage in blood banks, researchers
have sort other more efficient solution methods to tackle
the blood assignment problem. The emergence of new and
novel evolutionary approaches in the last few decades has
created interest and introduced a great number of new
metaheuristics inspired by evolutionary processes. In many
instances, this new wave of metaheuristic approaches has
produced the best solutions for some of the unsolved bench-
mark problem sets [44]. For example, the genetic algo-
rithm (GA), particle swarm optimization (PSO) algorithm
and the more recent symbiotic organisms search algo-
rithm (SOS) are among some of the metaheuristic techniques
that have shown success in solving the blood assignment
problem [10], [25], [26], [31], [49], [50]. Therefore, the cur-
rent study considers the possibility of combining these three
algorithms to solve a similar problem with the intent to
obtain even more superior results. Notably, the motivation
behind selecting the three aforementioned metaheuristics
for the complex optimization tasks ahead is based on their
four properties. They have: (1) operators for exploration and
exploitation techniques; GA, PSO, and SOS possess these
functionalities; (2) parameter tuning or reduction concepts,
SOS has only one main parameter which is the swarm pop-
ulation size; (3) adaptability to the solution of a wide range
of problems, which pertains to the three chosen algorithms;
and (4) stagnation prevention techniques [44]. An additional
criterion was that the selected metaheuristic should also have
been reported to show superior performance over the tradi-
tional heuristic approaches [41], [45], for example, the GA
and PSO have good performance track records [34], [41]. The
primary reason the SOS algorithm was selected was due to
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its novelty, and nevertheless, its improved functionality and
suitability are worth investigating for the problem at hand.

This study is concerned with a method of optimal assign-
ment of blood in a blood bank system taking into account
the proportion of each blood type in the population and the
rates of blood use and donation to the stockpile available in
the blood bank. The proposed approach has the advantage
of minimizing wastage and workload at the blood bank.
Therefore, following the steps of the mathematical model
presented in [2], this paper presents a simplified and robust
extended model, designed to effectively manage the demand
and supply of blood in the blood bank. In the formulation
of the current blood assignment model, the Rh blood group-
ing system is introduced into the already formulated ABO
model in [2]. Note that the initial ABO model produced
only four sets of governing equations, while the new model
with the addition of the Rh factor would give rise to eight
sets of governing equations and twenty-three constants. This
effectively means that there would be fifteen degree of free-
dom in the new system of equations presented here. Also
in this study, a hybrid nature-inspired symbiotic organisms
search genetic particle swarm optimization (SOSGAPSO)
algorithm is developed and used to implement and validate
the applicability of the proposed mathematical model. There-
fore, the main goal of the hybrid SOSGAPSO algorithm in
this context is to demonstrate the practicality of the proposed
model. In summary, the technical contributions of this paper
are outlined as follows:
• Presentation of a novel and generalized mathematical
model formulation, the objective function, and con-
straints representation for the optimal assignment of
whole blood units in a typical real-life blood banking
system,

• The formulation of the ABO-Rh compatibility matching
rules as one of the factors that strongly affect manage-
ment decisions,

• The proposal of hybrid symbiotic organisms search
genetic particle swarm optimization algorithm for opti-
mal routing of blood assignment. Specifically, it is
notable that the SOSGAPSO is proposed for the first time
to solve the blood assignment problem.

• The main goal of the advanced hybrid metaheuristic
implementation is to demonstrate the practicality and
applicability of the novel mathematical model formu-
lated to solve a real-world problem.

• The proposed SOSGAPSO algorithm has been tested
on a real-life blood bank dataset with different param-
eter settings and characteristics so as to demonstrate its
effectiveness.

In addition to the earlier stated motivating factors for choos-
ing the three metaheuristic algorithms that form the core of
the proposed hybrid methods, it is, however, noteworthy to
mention that the main motivation behind the current study
is the proposal to extend the existing mathematical model
presented in [2] by incorporating the rhesus factors compat-
ibility, which introduces an additional level of complexity to

the already existing model. Further, since the SOS and its
hybrid variants, specifically the proposed triple hybrid meth-
ods, have not gained wide recognition in solving real-world
blood assignment problems, we believe that their applications
in this case to solve the complex problem at hand could also
be considered as an additional significant motivation for the
current study.

The remainder of this paper is organized as follows:
Section 2 presents related work on the application of
metaheuristic techniques for the blood assignment prob-
lem. Section 3 briefly reviews some of the preliminary
concepts about blood, its storage and compatibility, and
dynamic mathematical model formulation for the blood
assignment problem. Section 4 presents the design of a hybrid
nature-inspired metaheuristic global optimization algorithm
to demonstrate the practicality of the derived mathematical
model. Section 5 presents the model implementation with
several sample numerical results. Finally, concluding remarks
and future directions are presented in Section 6.

II. METAHEURISTIC OPTIMIZATION APPROACHES
This study builds upon the previous metaheuristic applica-
tions proposed in [10], [29]. Each of these studies was aimed
at minimizing the importation and/or expiration of products
experienced by a real-world blood bank systemwithin a finite
time period. However, the current study is aimed at establish-
ing a superior mathematical model and metaheuristic algo-
rithm that is capable of handling the BAP in a more efficient
manner based on real-world blood banking scenarios. Other
studies presented in [10], [25], [26], [31], [46], [48] have
implemented different metaheuristic algorithms, although
each of the implementations employed a similar model of
randomly generated data set for their validation. These exist-
ing studies, also analyzed the BAP from a South African per-
spective, utilizing blood related statistics such as blood type
proportions. For example, in Olusanya et al. [26], the PSO
algorithm was implemented, and its results showed tremen-
dous capabilities in minimizing the importations of blood
units, and there was no form of wastage. The tabu search
(TS), simulated annealing (SA) and a hybrid implementation
were used in Olusanya and Adewumi [47], where the hybrid
implementation combined both the TS and SA, and the results
showed some significant improvement in solution accuracy
with the hybrid as compared to using the individual algo-
rithms. The success of the hybrid implementation on the BAP
based on previous studies further motivates the exploration of
more advance hybrid methods in the current study, with the
aim of finding a good quality solution in terms of optimal
management of the blood bank.

The genetic algorithm (GA) and its hybrid implemen-
tation with other algorithms, as well as the hill-climbing
(HC) algorithm, were explored in Adewumi et al. [25].
While all the algorithms studied produced satisfactory results
when exposed to a small blood bank, the HC algorithm
provided more optimal results when applied to a much
larger blood bank. The dynamic programming (DP) and
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greedy randomized adaptive search procedure (GRASP)were
explored by Igwe et al. [48]. They found that DP incurs heavy
importation of blood group O for the first 50 days, while
GRASP imports gradually as the number of days increased.
These authors concluded that the GRASP outperformed the
DP due to GRASP being a more suitable algorithm for
handling situations where demand exceeds supply. A robust
and effective algorithm to be incorporated in the current
study is the SOS algorithm. This algorithm was previously
implemented by Govender and Ezugwu [10], [31], who con-
structed a bi-objective function that included both impor-
tation and expiration of blood units for each blood type.
Notably, these studies indicated that no form of expiration
occurs due to the lifespan of the whole blood (WB) unit
(assumed to be 30 days) coupled with the first-in-first-out
(FIFO) issuing system. Furthermore, the SOS significantly
minimized overall importation experienced within a finite
period. Another implementation utilized in this study is the
PSO algorithm, which was previously implemented for the
BAP in Olusanya et al. [26].

All of the above-mentioned studies conducted their
research on whole blood (WB) units and implemented
randomized datasets because real-world datasets were
unattainable. A concept introduced by Govender and
Ezugwu [10], [31] in attempting to minimize randomness
when generating such datasets, was to incorporate specific
South African dates, such as public holidays and school
terms. The multiple knapsack problem was used as a base
for modeling the BAP [25], [26], [47], and involved using
knapsacks of various capacities to maximize overall profits.
Lastly, another common link amongmost of themetaheuristic
studies includes the use of the ‘‘bottom-up’’ technique, which
enables compatible blood types to be used in order to satisfy
the demand for a particular type. It is important to mention in
certain terms that while all the reviewed existing related study
used artificial or randomly generated data set for their study,
the current study used real-life blood data set to validate the
new mathematical and metaheuristic techniques discussed in
this paper.

III. PROBLEM STATEMENT AND MATHEMATICAL
MODEL FORMULATION
Blood products comprise essential components; namely,
whole blood units, red blood cells, blood plasma, and
platelets. Blood products are considered to be a scarce
resource but are an unavoidably daily essential, in hospi-
tals. Also, the management of each component of these
limited products is complicated by their differing life-spans
and consequent storage durations. The storage duration of
these products varies from a few days to a few months or
even years. Ideally, the storage and management of blood
products should be carried out in the blood banks. These
banks, however, encounter numerous difficulties associated
with the complexity of the blood economy, fragility of blood
products, and compatibility. Therefore, to adequately model
the management of blood supply and demand in the blood

TABLE 1. Proportion of ABO blood group in the Nigeria population [6].

TABLE 2. Proportion of Rh blood type distribution found in the Nigeria
population.

bank, some basic conceptions about this dynamic systemwith
a very complex environment must be clarified [2].
1. The volume of blood demand from the blood bank varies

each day considerably. In particular, the advent of emer-
gencies such as a mass accident, natural disaster, or unan-
ticipated trauma, may result in vast amounts of blood to be
requested within a minimal period. Then, the blood bank
would be subjected to high pressure.

2. The scarcity of blood is often caused by the sporadic
nature of its supply from generous donors. In essence,
the availability of blood products depends almost solely on
the willingness of individual donors to donate their blood
at the various blood collections centers.

3. As mentioned earlier, there are four main blood groups,
namely, O, A, B, and AB, further complicated by each
being Rh positive or negative, making eight blood groups.
Taking Nigeria as a case study, the population is 97%
rhesus positive and 3% rhesus negative. The blood group
proportions are summarized in Table 1 and 2.

4. Blood compatibility also introduces additional complex-
ity to the system. With the classification of blood into
eight major groups, the harmony of the different blood
types must be considered before the transfusion process to
ensure each recipient receives only blood that is compat-
ible with their own. Considering the rhesus grouping sys-
tem, the members of group O− are considered as universal
donors; their blood is compatible with blood from all other
groups. Members of the AB+ blood group can receive
from all blood types, so it is often referred to as a universal
receiver. The connected graph in Figure 1 illustrates the
grouping compatibility for the red blood cells with the
Rhesus factor. It is important to highlight the general
assumption that in the event of scarcity or emergencies,
with O− blood type being a universal donor, such blood
may be given in the absence or shortage of the compatible
blood type. However, in a normal situation, an individual
recipient should be allocated their own specific compat-
ible blood type to avoid any unforeseen circumstances
that might be life-threatening. Furthermore, as is shown
in Table 2, this blood type is among the least common,
so such stock should not be unnecessarily depleted by non-
emergencies.
In a real-world situation, the complex flow of blood prod-

ucts through a typical blood bank system is presented in
Figure. 2. Meanwhile, the daily operational performance of
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FIGURE 1. Group compatibility for red blood cells with Rhesus.

any blood bank, which is measured in terms of shortage,
operational costs, demand, supply, importation, expiration,
or wastage, is determined by several variables. These include
the frequency of blood donation camps, collection quantity
(from camps and blood bank donations), percentage of the
componentizing, cross-match release period, issuing policy
for blood products, blood type balance, shelf-life of the
incoming blood units, etc [33].

A. MASS BALANCE FORMULATION
This section presents an extended mathematical model
iformulation that was initially proposed in [2]. As aforemen-
tioned earlier, the extension here is the introduction of the
rhesus factor blood grouping system, which further intro-
duces additional complexity into the existing ABOblood type
model. For the sake of simplifying notation, blood group
AB will for the remainder of the article be referred to a C.
We begin our formulation by denoting 1 to represent the
amount of blood required by a hospital. According to [2], an
approximate value of1 should realistically be available to the
management of the blood bank. More so, the amount of blood
needed for each blood type is assumed to be proportional to
the representation of blood types in the population denoted by
nO− , nO+, nA− , nA− , nB− , nB+ , nC− and nC+ , and these values
can be expressed as follows:

1O+ = nO+1; 1O− = nO−1,

1A+ = nA+1; 1A− = nA−1,

1B+ = nB+1; 1B− = nB−1,

1C+ = nC+1; 1C− = nC−1.

Mathematically, the compatibility table can be expressed as

1O− = DO−O− , (1)

1O+ = DO−O+ + DO+O+ , (2)

1A− = DO−A− + DA−A− , (3)

1A+ = DO−A+ + DO+A+ + DA−A+ + DA+A+ , (4)

1B− = DO−B− + DB−B− , (5)

1B+ = DO−B+ + DO+B+ + DB−B+ + DB+B+ , (6)

1C− = DO−C− + DA−C− + DB−C− + DC−C− , (7)

1C+ = DO−C+ + DO+C+ + DA−C+ + DA+C+

+DB−C+ + DB+C+ + DC−C+ + DC+C+ , (8)

where,DXY represent the amount of blood donated by people
with blood type X to people with blood type Y . Equations (1)
- (8) display where optimization may take place. Apart from
type O, all blood groups may be substituted with at least
one other blood type. Optimization consists of choosing the
best replacement method. To begin, all blood quantities DXY
should be expressed as functions of VO− , VO+ , VA− , VA+ ,
VB− , VB+ , VC− , and VC+ , Which represents the amount of
blood of each type available in the blood bank. The simplest
model is a linear relationship:

DXY ∝ VX .

Note that if there is a lot of type X blood in the bank, VX is
large and this blood type may be used to supply the request
in blood of type Y . Conversely, if VX is small, DXY will be
low and very little blood of type X will be used to substitute
blood of type Y . Therefore, using this model, equations (1-8)
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FIGURE 2. A traditional framework for the flow of blood units in a real-world blood banking system [33].

can be rewritten as follows;

1O− = α1VO− , (9)

1O+ = α2VO− + β2VO+ , (10)

1A− = α3VO− + γ3VA− , (11)

1A+ = α4VO− + β4VO+ + γ4VA− + δ4VA+ , (12)

1B− = α5VO− + ε5VB− , (13)

1B+ = α6VO− + β6VO+ + ε6VB− + ϕ6VB+ , (14)

1C− = α7VO− + γ7VA− + ε7VB− + λ7VC− , (15)
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1C+ = α8VO− + β8VO+ + γ8VA− + δ8VA+ + ε8VB−

+ϕ8VB+ + λ8VC− + σ8VC+ , (16)

where αi, βi, γi, δi, λi, εi, ϕi, and σi are positive constants with
values still to be determined. The value of α1 is determined
from

α1 =
1O−

VO−
.

If α1 < 1, the quantity of blood needed for that given day
is larger than the amount of blood of type O− that must be
imported from outside the system. Otherwise, there will be a
shortage at some stage in the day. If no substitution is allowed,
then the rate of self-replacement for the parameters, γ3, δ4, λ5,
ϕ5, χ8, and σ8, will be as follows:

βs2 =
1O+

VO+
, γ s3 =

1A−

VA−
, δs4 =

1A+

VA+
, εs5 =

1B−

VB−
,

ϕs6 =
1B+

VB+
, λs7 =

1C−

VC−
, σ s8 =

1C+

VC+
, (17)

where the superscript denotes self-replacements. Here again,
if the parameters have a value larger than 1, this indicates a
potential shortage of the respective blood types. If all eight
parameters α1, β2, γ3, δ4, ε5, ϕ5, λ8, and σ8 are greater
than 1, the amount of blood requested for the day will be more
than the amount of blood in the bank and additional blood
should be pulled into the system. In an ideal situation, these
parameters should be as small as possible, which would mean
that the blood bank is well stocked in all types of blood.

B. THE DYNAMIC MASS BALANCE SYSTEM
Next, the dynamical mass balance equation for this system
may be described as represented in equations (18-25).

dVO−

dt
= QO− − (DO−O− + DO−O+ + DA−O− + DO−A+

+DO−B− + DO−B+ + DO−C− + DO−C+) , (18)
dVO+

dt
= QO+ − (DO+O+ + DO+A+ + DO+B+ + DO+C+) ,

(19)
dV A−

dt
= QA− − (DA−A− + DA−A+ + DA−C− + DA−C+) ,

(20)
dV A+

dt
= QA+ − (DA+A+ + DA+C+) , (21)

dV B−

dt
= QB− − (DB−B− + DB−B+ + DB−C− + DB−C+) ,

(22)
dV B+

dt
= QB+ − (DB+B+ + DB+C+) , (23)

dVC−

dt
= QC− − (DC−C− + DC−C+) , (24)

dVC+

dt
= QC− − DC+C+ . (25)

For each time unit, say at time t = 1, which corresponds
to one day, blood enters and leaves the system. Similarly,
the variations of the blood volume in the blood bank will

correspond to the amount of blood donated for each blood
group, denoted byQO− ,QO+ ,QA− ,QA+ ,QB− ,QB+ ,QC− and
QC+ minus the amount of blood from that group used during
the day. The following equations denote variations in the
volume of bloodstock in the blood bank, in terms of the actual
quantity of blood leaving the bank, which may be expressed
as a function of DXY . Similarly, using the above-derived
model, the governing equations may, therefore, be written as
follows:

dVO−

dt
= QO− − (α1 + α2 + α3 + α4 + α5

+α6 + α7 + α8)VO− , (26)
dVO+

dt
= QO+ − (β2 + β4 + β6 + β8)VO+ , (27)

dV A−

dt
= QA− − (γ3 + γ4 + γ7 + γ8)VA− , (28)

dV A+

dt
= QA+ − (δ4 + δ8)VA+ , (29)

dV B−

dt
= QB− − (ε5 + ε6 + ε7 + ε8)VB− , (30)

dV B+

dt
= QB+ − (ϕ6 + ϕ8)VB+ , (31)

dVC−

dt
= QC− − (λ7 + λ8)VC− , (32)

dVC+

dt
= QC+ − σ8VC+ . (33)

The solutions to the differential equation (26-31) above can
also be written as follows:

VO− (t) =
QO−∑8
n=1 αn

+

(
V 0
O− −

QO−∑8
n=1 αn

)
e
−

(∑8
n=1 αn

)
t
,

(34)

VO+ (t) =
QO+∑4
n=1 β2n

+

(
V 0
O+ −

QO+∑4
n=1 β2n

)
e
−

(∑4
n=1 βn

)
t
,

(35)

VA− (t) =
QA−

γ3 + γ4 + γ7 + γ8

+

(
V 0
A− −

QA−
γ3 + γ4 + γ7 + γ8

)
× e−(γ3+γ4+γ7+γ8)t , (36)

VA+ (t) =
QA+
δ4 + δ8

+

(
V 0
A+ −

QA+
δ4 + δ8

)
e−(δ4+δ8)t ,

(37)

VB− (t) =
QB−

ε5 + ε6 + ε7 + ε8

+

(
V 0
B− −

QB−
ε5 + ε6 + ε7 + ε8

)
× e−(ε5+ε6+ε7+ε8)t , (38)

VB+ (t) =
QB+

ϕ6 + ϕ8
+

(
V 0
B+ −

QB+
ϕ6 + ϕ8

)
e−(ϕ6+ϕ8)t ,

(39)
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VC− (t) =
QC−
λ7 + λ8

+

(
V 0
C− −

QC−
λ7 + λ8

)
e−(λ7+λ8)t ,

(40)

VC+ (t) =
QC+
σ8
+

(
V 0
C+ −

QC+
σ8

)
e−(σ8)t , (41)

where V 0
X denotes the amount of blood available in the blood

bank at the beginning of the day. If the parameters V 0
X and

QX remain the same for some time, the volume of blood at
the blood bank will reach its asymptotic level, resulting in
the following equations:

V l
O− =

QO−∑8
n=1 αn

, (42)

V l
O+ =

QO+∑4
n=1 β2n

, (43)

V l
A− =

QA−
γ3 + γ4 + γ7 + γ8

, (44)

V l
A+ =

QA+
δ4 + δ8

, (45)

V l
B− =

QB−
ε5 + ε6 + ε7 + ε8

, (46)

V l
B+ =

QB+
ϕ6 + ϕ8

, (47)

V l
C− =

QC−
λ7 + λ8

, (48)

V l
C+ =

QC+
σ8

, (49)

where the superscript l represents the long term value, and
this should reflect the proportions of each blood type in the
population (nO− , nO+ , nA− , nA+ , nB− , nB+ , nC− , and nC+ ).
More so, these proportions describe what should be the state
of blood stocked in the bank in an ideal situation. Relating
the population of the donor types to the amount of each blood
type available expressed by equations (39-46), the following
equations are obtained:

nO−

=
V l
O−

V l
O− + V

l
O+ + V

l
A− + V

l
A+ + V

l
B− + V

l
B+ + V

l
C− + V

l
C+
,

(50)

nO+

=
V l
O+

V l
O− + V

l
O+ + V

l
A− + V

l
A+ + V

l
B− + V

l
B+ + V

l
C− + V

l
C+
,

(51)

nA−

=
V l
A−

V l
O− + V

l
O+ + V

l
A− + V

l
A+ + V

l
B− + V

l
B+ + V

l
C− + V

l
C+
,

(52)

nA+

=
V l
A+

V l
O− + V

l
O+ + V

l
A− + V

l
A+ + V

l
B− + V

l
B+ + V

l
C− + V

l
C+
,

(53)

nB−

=
V l
B−

V l
O− + V

l
O+ + V

l
A− + V

l
A+ + V

l
B− + V

l
B+ + V

l
C− + V

l
C+
,

(54)

nB+

=
V l
B+

V l
O− + V

l
O+ + V

l
A− + V

l
A+ + V

l
B− + V

l
B+ + V

l
C− + V

l
C+
,

(55)

nC−

=
V l
C−

V l
O− + V

l
O+ + V

l
A− + V

l
A+ + V

l
B− + V

l
B+ + V

l
C− + V

l
C+
,

(56)

nC+

=
V l
C+

V l
O− + V

l
O+ + V

l
A− + V

l
A+ + V

l
B− + V

l
B+ + V

l
C− + V

l
C+
.

(57)

Using the assumption that the donated blood quantity Qx ,
is proportional to the amount of blood in the population nx ,
equations (47-54) can be rewritten as

nO−−1
α
+
nO+
β
+
nA−
γ
+
nA+
δ
+
nB−
ε
+
nB+
ϕ
+
nC−
λ
+
nC+
σ
=0,

(58)
nO−
α
+
nO+−1
β
+
nA−
γ
+
nA+
δ
+
nB−
ε
+
nB+
ϕ
+
nC−
λ
+
nC+
σ
=0,

(59)
nO−
α
+
nO+
β
+
nA−−1
γ
+
nA+
δ
+
nB−
ε
+
nB+
ϕ
+
nC−
λ
+
nC+
σ
=0,

(60)
nO−
α
+
nO+
β
+
nA−
γ
+
nA+−1
δ
+
nB−
ε
+
nB+
ϕ
+
nC−
λ
+
nC+
σ
=0,

(61)
nO−
α
+
nO+
β
+
nA−
γ
+
nA+
δ
+
nB−−1
ε
+
nB+
ϕ
+
nC−
λ
+
nC+
σ
=0,

(62)
nO−
α
+
nO+
β
+
nA−
γ
+
nA+
δ
+
nB−
ε
+
nB+−1
ϕ
+
nC−
λ
+
nC+
σ
=0,

(63)
nO−
α
+
nO+
β
+
nA−
γ
+
nA+
δ
+
nB−
ε
+
nB+
ϕ
+
nC−−1
λ
+
nC+
σ
=0,

(64)
nO−
α
+
nO+
β
+
nA−
γ
+
nA+
δ
+
nB−
ε
+
nB+
ϕ
+
nC−
λ
+
nC+−1
σ
=0,

(65)

where

α =
∑8

n=1
αn,

β =
∑4

n=1
βn,

γ = γ3 + γ4 + γ7 + γ8,

δ = δ4 + δ8,
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ε = ε5 + ε6 + ε7 + ε8,

ϕ = ϕ6 + ϕ8,

λ = λ7 + λ8,

σ = σ8,

and

nO− + nO+ + nA− + nA+ + nB− + nB+ + nC− + nC+ = 1.

Equations (55-61) is rewritten to have seven independent
parameters, and solving further will yield the following
equations:

α = β = γ = δ = ε = ϕ = λ = σ. (66)

In the matrix system given below, we express α, β, γ, δ, ε, ϕ,
and λ as a function of σ8. Expressing the system of equa-
tion (9) - (16) using (66) results in the matrix representation

QC = R, (67)

where From the matrix system given in equation (68), there
are 14 equations and 25 unknowns. In general, the equa-
tions above gives 14 independent relationships between the
parameters αi, βiγiδi, εi, ϕi, λi and σ8, which are expressed
as follows:

The parameters have to be positive, which, therefore,
results in the following inequalities:

β8 ≤
1O+

VO+
, γ3 ≤

1A−

VA−
, δ4 ≤

1A+

VA+
, ε5 ≤

1B−

VB−
,

ϕ6 ≤
1B+

VB+
, λ7 ≤

1C−

VC−
β2 + β4 + β6 ≤ σ8

γ3 + γ4 + γ7 ≤ σ8

δ4 ≤ σ8

ε5 + ε6 + ε7 ≤ σ8

ϕ6 ≤ σ8

λ7 ≤ σ8.

Here, the equality holds only when 1x = Dxx .
Note that by combining the above equations with equa-

tions (9) - (16), fourteen of the required parameters have
been defined. However, the remaining parameters will be
determined by optimizing the decision-making process, for
which insight is provided in the subsequent discussion in
Section 3.3.

C. DECISION MAKING
At the end of the first day (t = 1), equations (32-38) give the
stocks of blood available in the bank as:

VO− (1) =
QO−∑8
n=1 αn

+

(
V 0
O− −

QO−∑8
n=1 αn

)
e
−

(∑8
n=1 αn

)
,

(68)

VO+ (1) =
QO+∑4
n=1 βn

+

(
V 0
O+ −

QO+∑4
n=1 βn

)
e
−

(∑4
n=1 β2n

)
,

(69)

VA− (1) =
QA−

γ3 + γ4 + γ7 + γ8

+

(
V 0
A−−

QA−
γ3+γ4+γ7+γ8

)
e−(γ3+γ4+γ7+γ8),

(70)

VA+ (1) =
QA+
δ4 + δ8

+

(
V 0
A+ −

QA+
δ4 + δ8

)
e−(δ4+δ8), (71)

VB− (1) =
QB−

ε5 + ε6 + ε7 + ε8

+

(
V 0
B−−

QB−
ε5+ε6+ε7+ε8

)
e−(ε5+ε6+ε7+ε8),

(72)

VB+ (1) =
QB+

ϕ6 + ϕ8
+

(
V 0
B+ −

QB+
ϕ6 + ϕ8

)
e−(ϕ6+ϕ8), (73)

VC− (1) =
QC−
λ7 + λ8

+

(
V 0
C− −

QC−
λ7 + λ8

)
e−(λ7+λ8), (74)

VC+ (1) =
QC+
σ8
+

(
V 0
C+ −

QC+
σ8

)
e−σ8 . (75)

Combined with equation (66), the volumes become

VO− (1) =
QO−
σ8
+

(
V 0
O− −

QO−
σ8

)
e−σ8 , (76)

VO+ (1) =
QO+
σ8
+

(
V 0
O+ −

QO+
σ8

)
e−σ8 , (77)

VA− (1) =
QA−
σ8
+

(
V 0
A− −

QA−
σ8

)
e−σ8 , (78)

VA+ (1) =
QA+
σ8
+

(
V 0
A+ −

QA+
σ8

)
e−σ8 , (79)

VB− (1) =
QB−
σ8
+

(
V 0
B− −

QB−
σ8

)
e−σ8 , (80)

VB+ (1) =
QB+
σ8
+

(
V 0
B+ −

QB+
σ8

)
e−σ8 , (81)

VC− (1) =
QC−
σ8
+

(
V 0
C− −

QC−
σ8

)
e−σ8 , (82)

VC+ (1) =
QC+
σ8
+

(
V 0
C+ −

QC+
σ8

)
e−σ8 . (83)

And the corresponding blood proportion in the bank may be
expressed in (84)–(91), as shown at the bottom of the 11th
page.

D. GENERALIZED OBJECTIVE FUNCTION
Managing the blood bank requires getting these proportions
at the end of the day to be as close as possible to the ideal
proportions of the bank. Achieving optimum management
involves minimizing the objective function, which is given
in equation (92).

E = (pO− − nO−)
2
+ (pO+ − nO+)

2

+ (pA− − nA−)
2
+ (pA+ − nA+)

2
+ (pB− − nB−)

2

+ (pB+ − nB+)
2
+ (pC− − nC−)

2
+ (pC+ − nC+)

2 .

(92)

This function depends only on the parameter σ8. The rest of
the parameter values, namely β2, γ3, δ4, ε5, ϕ6, and λ7, should

97584 VOLUME 8, 2020



A. E. Ezugwu et al.: Computational Intelligence Approach to Dynamic Blood Allocation

be provided by the optimization process such that their values
are close as possible to those of the self-replacement values
βs2, γ

s
3 , δ

s
4, ε

s
5, ϕ

s
6, and λ

s
7. Thus, E can be modified and given

as:

E = (pO− − nO−)
2
+ (pO+ − nO+)

2

+ (pA− − nA−)
2
+ (pA+ − nA+)

2
+ (pB− − nB−)

2

+ (pB+ − nB+)
2
+ (pC− − nC−)

2
+ (pC+ − nC+)

2

+

(
1−

β2

βs2

)2

+

(
1−

γ3

γ s3

)2

+

(
1−

δ4

δs4

)2

+

(
1−

ε5

εs5

)2

+

(
1−

ϕ6

ϕs6

)2

+

(
1−

λ7

λs7

)2

.

However, it is noteworthy to mention here that the objective
function is only a possibility, and since solving E is rather
complicated, numerical methods would be preferred over
analytic methods as an alternative method for computing its
minimum value. As a preference, later in this paper, we will
explore the possibility of using standard global optimization
methods to calculate the minimum value of E , which proba-
bly satisfies some of the typical constraints easily associated
with real-world experiences in the blood banking system.
Therefore, once the minimum value of E is computed, and
the values of the parameters β2γ3δ4, ε5, ϕ6, λ7 and σ8 may be
determined alongside all other outstanding constants. After-
ward, based on these findings, reasonable suggestions would
be available for the blood bank manager to make feasible and
accurate decisions on the proportions of blood volume needed

Q =



1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

VO− 0 0 0 0 0 0 VO+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 VO− 0 0 0 0 0 0 0 0 0 VA− 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 VO− 0 0 0 0 0 VO+ 0 0 0 VA− 0 0 VA+ 0 0 0 0 0 0 0 0 0
0 0 0 VO− 0 0 0 0 0 0 0 0 0 0 0 0 0 VB− 0 0 0 0 0 0 0
0 0 0 0 VO− 0 0 0 0 VO+ 0 0 0 0 0 0 0 0 VB− 0 0 VB+ 0 0 0
0 0 0 0 0 VO− 0 0 0 0 0 0 0 VA− 0 0 0 0 0 VB− 0 0 0 VC− 0
0 0 0 0 0 0 VO− 0 0 0 VO+ 0 0 0 VA− 0 VA+ 0 0 0 VB− 0 VB+ 0 VC−



C =



α2
α3
α4
α5
α6
α7
α8
β2
β4
β6
β8
γ3
γ4
γ7
γ8
δ4
δ8
ε5
ε6
ε7
ε8
ϕ6
ϕ8
λ7
λ8



, R =



σ8 − α1
σ8
σ8
σ8
σ8
σ8
σ8
1O+

1A−

1A+

1B−

1B+

1C−

1C+ − σ8VC+ .



.
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in the replacement strategy, which can be expressed using the
follows:

µO−A− =
DO−A−
1A−

, µO−A−=
DA−A−
1A−

, µO−A+=
DO−A+
1A+

,

µO+A+ =
DO+A+
1A+

, µA−A+=
DA−A+
1A+

, µA+A+=
DA+A+
1A+

,

µO−B− =
DO−B−
1B−

, µB−B−=
DB−B−
1B−

, µO−B+=
DO−B+
1B+

,

µO+B+ =
DO+B+
1B+

, µB−B+=
DB−B+
1B+

, µB+B+=
DB+B+
1B+

,

µO−C−− =
DO−C−
1C−

, µA−C−=
DA−C−
1C−

,

α1 =
1O−

VO−

α2 =
1O− − β2VO+

VO−

α3 =
1A− − γ3VA−

VO−

α4 =
1A+ − β4VO+ − γ4VA− − δ4VA+

VO−

α5 =
1B− − ε5VB−

VO−

α6 =
1B+ − β6VO+ − ε6VB− − ϕ6VB+

VO−

α7 =
1C− − λ7VA− − ε7VB− − λ7VC−

VO−

α8 = σ8 −

(
1O− + VO+ + VA− + VA+ + VB− + VB+ + VC−

VO−

)
+

(
β2VO+ + γ3VA− + β4VO+ + γ4VA− + δ4VA+ + ε5VB− + β6VO+ + ε6VB− + ϕ6VB+ + λ4VA− + ε7VB− + λ7VC−

VO−

)
β8 = σ8 − (β2 + β4 + β6)

γ8 = σ8 − (γ3 + γ4 + γ7)

δ8 = σ8 − δ4

ε8 = σ8 − (ε5 + ε6 + ε7)

ϕ8 = σ8 − ϕ6

λ8 = σ8 − λ7.

pO− =
V l
O− (1)

V l
O− (1)+ V

l
O+(1)+ V

l
A−(1)+ V

l
A+ (1)+ V

l
B− (1)+ V

l
B+ (1)+ V

l
C− (1)+ V

l
C+ (1)

, (84)

pO+ =
V l
O+ (1)

V l
O− (1)+ V

l
O+(1)+ V

l
A−(1)+ V

l
A+ (1)+ V

l
B− (1)+ V

l
B+ (1)+ V

l
C− (1)+ V

l
C+ (1)

, (85)

pA− =
V l
A− (1)

V l
O− (1)+ V

l
O+(1)+ V

l
A−(1)+ V

l
A+ (1)+ V

l
B− (1)+ V

l
B+ (1)+ V

l
C− (1)+ V

l
C+ (1)

, (86)

pA+ =
V l
A+ (1)

V l
O− (1)+ V

l
O+(1)+ V

l
A−(1)+ V

l
A+ (1)+ V

l
B− (1)+ V

l
B+ (1)+ V

l
C− (1)+ V

l
C+ (1)

, (87)

pB− =
V l
B− (1)

V l
O− (1)+ V

l
O+(1)+ V

l
A−(1)+ V

l
A+ (1)+ V

l
B− (1)+ V

l
B+ (1)+ V

l
C− (1)+ V

l
C+ (1)

, (88)

pB+ =
V l
B+ (1)

V l
O− (1)+ V

l
O+(1)+ V

l
A−(1)+ V

l
A+ (1)+ V

l
B− (1)+ V

l
B+ (1)+ V

l
C− (1)+ V

l
C+ (1)

, (89)

pC− =
V l
C− (1)

V l
O− (1)+ V

l
O+(1)+ V

l
A−(1)+ V

l
A+ (1)+ V

l
B− (1)+ V

l
B+ (1)+ V

l
C− (1)+ V

l
C+ (1)

, (90)

pC+ =
V l
C+ (1)

V l
O− (1)+ V

l
O+(1)+ V

l
A−(1)+ V

l
A+ (1)+ V

l
B− (1)+ V

l
B+ (1)+ V

l
C− (1)+ V

l
C+ (1)

. (91)
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µB−C− =
DB−C−
1C−

, µC−C−=
DC−C−
1C−

, µO−C+=
DO−C+
1C+

,

µO+C+ =
DO+C+
1C+

, µA−C+=
DA−C+
1C+

, µA+C+=
DA+C+
1C+

,

µB−C+ =
DB−C+
1C+

, µB+C+=
DB+C+
1C+

, µC−C+=
DC−C+
1C+

,

µC+C+ =
DC+C+
1C+

,

where µXY represents the percentage proportion of blood of
type X used to replace the blood of type Y in the blood bank.
µXY , in essence, is the critical piece of information that the
blood bank manager needs.

As previously mentioned, solving the blood assignment
problemwill involve applying three standard global optimiza-
tion algorithms, the symbiotic organisms search, genetic, and
particle swarm optimization algorithms to find an optimum
solution for the problem at hand.Moreover, it should be noted
that these global optimization techniques are preferred to
their traditional counterparts because they have been proven
to be more efficient and robust in finding reasonable or
near-optimal solutions to nearly all complex optimization
tasks [27], [28]. Therefore, the next step involves solving the
given objective function by implementing the hybridization
of the three metaheuristic algorithms to efficiently identify
the optimal routing for each blood type described above.
The aim here is to determine the replacement proportion of
all blood groups based on the volume of importation and
supply of the different blood groups considering the rhesus
factor compatibility effect as well. The solution methodology
and implementation process of the triple hybrid algorithms is
discussed subsequently.

IV. SOLUTION METHODOLOGY
In blood supply chains, the daily management of the blood
bank with respect to blood demand and supply units has
frequently been observed to be threatened by several risks
that arise from uncertainty in available parameter values,
such as the accurate demand forecast and possible unforeseen
disruptions [30]. This highlights the need for an effective
technique that can determine the optimal assignment of blood
units in the dynamic blood bank environment. Note that the
case where highly limited importation of blood from external
sources to the blood bank is needed, then the process is con-
sidered to represent optimal assignment. However, because
the optimal assignment of blood in most cases is not usually
a possibility, an optimization method is preferred. Such a
method should be able to assign blood units commensurate to
the available blood volume, and the volume requested, with
minimal or no form of importation from an external source.
Therefore, because good quality solutions to the same blood
assignment problem studied in this paper have resulted from
some global metaheuristic algorithms, namely, SOS [10],
PSO [26], and GA [25], [31], these three efficient algorithms
are combined in this study to determine an even better, near-
optimal, assignment of blood units relative to blood demands.

Implementing the proposed hybrid optimization tech-
niques involves multiple heuristic methods. For example,
the SOS algorithm is first used as the global optimization
technique, which maintains the required optimal routing for
assigning available blood units relative to demands. Then
the GA, with its crossover, mutation, and selection operator
effects, is used to handle the aspect of rhesus factor blood
compatibility concerns.We also use the PSO, which is similar
in operation to the SOS and is used to enhance the overall per-
formance stability of the optimal routing process. The PSO,
with its global best variable characteristic, serves the main
purpose of filtering out the best cross-matching among the
different blood groups from any inappropriate cross-matches.
The search strategy of the PSO differs from the SOS in the
sense that it does not implement survival of the fittest like the
SOS search mechanism. Finally, a more traditional heuristic
technique called the bottom-up technique is implemented as
part of the proposed hybrid algorithm, with the aim of pulling
in required blood units from other compatible blood types.
The reason for introducing the bottom-up technique is to
maximize the replacement options of the available compati-
ble blood types. For example, there are situations or instances
when the blood units at hand cannot meet the demand for a
day, so additional units from other compatible blood types
can be used to augment the temporary shortage. However,
it is necessary that each blood type must first fulfill its
own corresponding requests before being redirected to sat-
isfy other compatible blood types. Specifically, the bottom-
up technique is used to minimize unnecessary importation
of blood units from an external source; such minimization
should reduce the running cost of the blood bank. Next,
we briefly discuss the three stages of the hybrid SOSGAPSO
implementation steps.

A. SYMBIOTIC ORGANISMS SEARCH OPTIMIZATION
TECHNIQUE
The SOS algorithmic design concept is inspired by the
three main interactive relationships that occur between paired
organisms within ecosystems [34]. These evolving relation-
ships are mutualism, commensalism, and parasitism. Each
of these interactions presents a unique behavioral pattern
between the organisms, which they can be mutually bene-
ficial, one-sided, or even destructive to one organism while
benefiting the other. The integration of each of the three afore-
mentioned interactions into the SOS computational, algorith-
mic design model is briefly presented below, as three phases.

1) MUTUALISM INTERACTION PHASE
The mutualism phase of the SOS algorithm involves the
interaction between two different organisms, for which the
overall relationship goal is that both organisms receivemutual
benefits during their interaction. In other words, both organ-
isms will attempt to provide some form of positive exchange
that would assist in the sustainability of both individual
organisms. Given below are two updating equations (90 and
91), which exemplify the mutualism phase. Let Xi and Xj
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represent randomly selected individuals from an ecosystem,
whilst rand represents a random number generator with a set
bound range between 0 and 1. The term BF1 and BF2 are
stochastic values between 1 and 2 that depict each individual
organism’s benefit factor. The term Xbest corresponds to an
individual organism with the highest degree of adaptation
to the habitat or ecosystem. Finally, the term MV , which is
calculated in equation 92, represents a mutual vector between
Xi and Xj.

Xinew = Xi + rand(0, 1) · (Xbest −MV · BF1), (93)

Xjnew = Xj + rand(0, 1) · (Xbest −MV · BF2), (94)

where

MV = (Xi + Xj)/2. (95)

2) COMMENSALISM INTERACTION PHASE
The commensalism phase involves one organism benefiting
from the interaction, whilst the other organism does not
receive any benefit, but at the same time, the interaction
between the two organisms does not cause harm to the tar-
geted organism. Equation 93 below exemplifies the com-
mensalism phase of the SOS algorithm. Let Xbest and Xinew
represent the best organism and newly calculated organism,
respectively.

Xinew = Xi + rand (−1, 1) · (Xbest − Xj), (96)

where the organisms Xi Benefits from Xj by means of
(Xbest − Xj).

3) PARASITISM INTERACTION PHASE
The final step within the SOS algorithm optimization search
process is known as the parasitism relationship, and generally
relates to improving the structure of one organism at the
cost of harming the second organism involved. Typically,
the organism that feeds (i.e., becomes stronger) is known as
the parasite, while the organism being fed off is regarded as
the host. The parasitic phase offers powerful capabilities in
improving the chances of obtaining a possible solution for a
given problem. The current study utilizes the form of parasitic
mechanism between two individuals, as depicted in Figure 3
below.

FIGURE 3. Illustration of the SOS algorithm parasitic phase considered in
this study.

With reference to Figure 3, the illustration provides an
example with specific reference to blood type B+. Assume

that organism A is the parasite, and organism B is the host.
Furthermore, assume that the demand for blood type B+ is
30 for the given day. Since the host contains a value that is
much closer to the daily demand, the parasite will then scan
the host and, if the present value within the parasite is not
enough, swap values. This mechanism is implemented across
all blood types, performing swap-overs when necessary. If the
parasite contains a value that is better than the host, then the
swap-over is not performed. The enhanced SOS algorithm for
the blood assignment problem is illustrated in Figure 4.

B. PARTICLE SWARM OPTIMIZATION TECHNIQUE
Originally the construction of the PSO algorithm was moti-
vated by the behavior of birds and schools of fish [35]. The
general description of the PSO algorithm comprises various
particles within the solution search space of a problem. The
PSO algorithm has, over the years, gained wide popularity
and acceptance among the optimization research community
due to its flexibility, simplicity of implementation and adap-
tation, and versatility in solving a wide range of optimization
problems [36]. The algorithm has each candidate solution
as a ‘particle’. It starts its optimization search process by
enabling individual particles to move randomly with different
velocities, which they use to update their individual positions.
While moving within the search domain, a particle tries to
attain its best velocity according to its own local best (rep-
resented here as Pbest ) value and its neighbor’s global best
(represented here as Gbest ) value. The change in position of
a particle in the search domain is dependent on the current
position of the particle, current velocity of the particle, the
distance between Pbest and current position, and distance
between Gbest and current position [37], [38]. The velocity
guides the movement of particles within the search space.
The control parameters of PSO are inertia weight, accel-
eration coefficients, and velocity of the particle. Given an
n-dimensional space, every particle is made up of a posi-
tion vector Xi = (Xi1,Xi2, . . . ,Xin) and a velocity vector
Vi = (Vi1Vi2, . . . ,Vin), whilst using the particle and velocity
updating equations (94 and 95) to iteratively update the best
source of direction within the solution search space.

Vi (t + 1) = ωVi (t)+ c1r1 (Pbest − Xi)

+ c2r2 (Gbest − Xi) (97)

Xi (t + 1) = X (t)+ Vi(t + 1) (98)

where:

Pbest : personal best position
Gbest : global best position
r1, r2 : random values between [0, 1]
c1, c2 : scaling parameters.
ω : inertia weight
t : iteration index.

C. GENETIC ALGORITHM OPERATORS
A genetic algorithm (GA) can be described as a global
stochastic search method that duplicates the processes
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FIGURE 4. Enhanced SOS algorithm flowchart for optimal routing of blood assignment.
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associated with the evolutionary processing of biol-
ogy [39], [40]. The GA comprises three stages, which are
summarized below: selection, crossover, and mutation.

1) SELECTION
this genetic operator emphasizes the need to locate better
solutions within a population. This generally encompasses
some form of selection mechanism, such as the roulette
wheel, tournament selection, etc.

2) CROSSOVER
the selection operator chooses two individuals from the
population and selects segments within the individuals to
crossover. As with the selection stage, there are several types
of crossover possible, such as uniform, multi-point, etc. In the
current study of the blood allocation problem, the hybrid
algorithm is modeled in such a way that it is possible to ran-
domly select positions between two organisms and perform
uniform crossovers to exchange segments between corre-
sponding blood types. Figure 5, below, provides an example
of the crossover mechanism implemented for the proposed
SOSGAPSO considered in this study.

FIGURE 5. Representation of a crossover operator for the SOSGAPSO
algorithm.

Figure 5 provides an illustration of the crossover mech-
anism adopted within the GA segment of the proposed
SOSGAPSO hybrid algorithm. In figure illustrates two indi-
viduals within the population being selected and then being
subjected to the crossover mechanism. Afterward, random
segments are selected (in this example segments 2 and 7 are
selected), and the values (denoted by x) are then swapped
between individuals (segments 10 and 16).

3) MUTATION
The process of mutation encompasses changing the original
genetic make-up of an individual, which in turn creates a
new opportunity for a potential solution to be located. The
mutation process used in this study involves the process of
recalculation and multi-randomized selection. If a segment
within an individual is randomly selected and the value does
not match the daily demand for the day (per blood type),
then the segment is subjected to recalculation, which leads
to replacement if the new value is an improvement over the
pre-existing value.

D. BOTTOM-UP TECHNIQUE
Ensuring adequate blood units supply relative to demand is
a vital managerial decision making practice that must be

maintained, if the blood bank is to function well. However,
this is only feasible if there is sufficient information regarding
blood units supply, demand and importation. Such accounting
information is also required to avoided unnecessary blood
importation from external sources. Therefore, in the proposed
blood assignment optimization task, the bottom-up technique
is used to model the blood units compatibility matching
pattern based on the compatible replacement probability of
each of the available blood units in the bank. The probability
pattern is derived from similar daily historical replacement
options that had been previously implemented in the bank.
For N similar days, the replacement probability pattern Pin of
the blood type i is computed as follows.

Pi =

∑N−1
n=1 X

n
ij

N − 1

Xij =

{
1 Dij > Pi
0 Dij > Pi

(99)

where Xnij = 1 denotes compatible blood type i being
considered as a suitable replacement for blood type j on a
similar day n. While Xnij = 0 implies that the blood type
i cannot be used to replace blood type j. The variable Dij
represent the amount of blood donated by people with blood
type i to people with blood type j. Therefore, the replacement
probability pattern for all compatibility blood types can be
written as follows.

P i =
{
p1ij , p2ij , . . . , pmij

}
(100)

where m represents the number of blood types, which in this
case is eight (8).

Ideally, the bottom-up technique favors replacement with
the blood of the same type. However, with the complexity
of blood compatibilities issues introduced by the addition of
the rhesus factors, replacement options become even more
complex. The bottom-up techniques is modelled to handle
such complexity by exploring different replacement possibil-
ities or alternatives based on historical behavior probability.
Note that the bottom-up techniques are considered and used,
in general, only when the primary blood type replacement
option is not possible because of a shortage in that blood
type. In this case, a secondary compatible replacement blood
type option is invoked by implementing the aforementioned
replacement technique.

E. SYMBIOTIC ORGANISM SEARCH GENETIC PARTICLE
SWARM OPTIMIZATION
The hybrid optimization algorithm proposed in this paper
consists of three well-known global metaheuristics, namely
SOS, GA, and PSO. Further, these three algorithms have been
proven to be highly effective, efficient, and robust in solving
very complex global optimization problems [41]. Of note is
the aforementioned individual algorithms, each having been
previously used separately to solve the blood assignment
problem, with their respective performance studies having
been reported in [10], [26], [31]. Therefore, it is assumed that
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a hybrid of these algorithms should prove capable of routing
the assignment and minimizing overall levels of whole blood
units importation over a finite period of time in the blood
bank. Further, our combination of the algorithms entails using
the SOS algorithm as the control algorithmic structure, while
embedding the essential components of the GA and PSO
to improve the overall performance further and refine the
quality of the partial results obtained by the SOS. In other
words, the resulting hybrid SOSGAPSO algorithm generally
leverages and incorporates the strength of the individual algo-
rithms to form a more robust and complex optimization algo-
rithm. However, due to the fusion of multiple sub-processes
such as the mutation, crossover, particle position and veloc-
ity equations of the remaining algorithms, it is most likely
that the time complexity of the new hybrid algorithm would
increase to some extent. Nevertheless, the anticipated slight
increase in the amount of computational time needed for
the new method is likely to be compensated by the hybrid
algorithm’s improved performance.

For the SOSGAPSO swarm solution representation, each
individual organism and particle is encoded using strings of
characters, which in this case represent the eight blood types,
namely, A+, A−, B+, B−, C+, C−, O+, and O−. However,
because the values of the sample blood unit are represented as
strings, they cannot be directly used to compute the updating
formulas for the SOS and PSO algorithms, which form the
major part of the hybrid SOSGAPSO. Therefore, the strings
of the blood types are transformed or converted into numeric
values of type double, so as to take into consideration signif-
icant values of supply, demand, and importation. Note that
while there may be other approaches for transforming the
given string of blood type into equivalent numeric values,
the conversion methods used in the current study are with
respect to the blood type compatibility equations given in (1)
to (8) above and the proportion of Rh blood type distribution
found in the Nigerian Population [2]. Note that by storing
each value in a separate location, as shown in Table 3, we can
manipulate the individual swarm in the calculations used later
in the algorithms updating formulas, which are represented in
equations (90) – (95) above.

TABLE 3. Blood types values and proportions.

The standard SOS and PSO were initially designed to
handle continuous optimization problems. Since the blood
assignment problem considered in this paper is a discrete
optimization problem, a discretization transformationmethod
is required to map a continuous position of each organism
to a discrete position. The conversion method used here for
the SOS algorithm is a simple random number permutation
defined in equation (101) and also discussed in [29].

Xi = bXi + kcmod m (101)

where k and m > 0 are integers.

For the PSO aspect of the hybrid algorithm, the conversion
techniques proposed by Veeramachaneni et al. [42], appear
to be more appropriate for the problem at hand. The Veera-
machaneni PSO is an extension of the well-known binary
PSO, in which each variable is allowed to assume any of θ
discrete values. The technique uses the generalized Sigmund
function given in equation (102) to map the updated velocity
into [0, θ − 1] interval.

Sij =
θ − 1

1+ exp
(
−Vij

) (102)

While the velocity update remains unchanged from the binary
case, the particle position update is modified to allow for
more than two states [43]. Consequently, each particle’s
position is updated according to the normal distribution
Xij = N

(
Sij, τ × (θ − 1)

)
random number generator. Then

the piecewise function given in equation (100) is applied
to ensure that all values fall within the specified interval
[0, θ − 1], as described in [43].

Xij =


θ − 1 Xij > θ − 1
0 Xij < 0
Xij otherwise

(103)

The incorporation of the GA entails using its three special
operators, namely selection, crossover, and mutation, which
have been explained above. Finally, the bottom-up technique
is used to assign compatible blood types to those special
replacement cases where shortages might arise. For example,
in the special cases arising when, as a result of scarcity or
shortages, the request for some units of a specific blood type
cannot be met by assigning the same blood type. In that case,
any available compatible blood units from other blood types
are pulled to satisfy the immediate demand. What this simply
means is that, whenever blood is to be assigned, the requested
blood type must first be considered. Only when there is a
shortage of the requested blood type in the blood bank then
aside from the universal donor (O−), the other next available
compatible blood type should be considered for a possible
assignment. However, in the case where the O− and the other
compatible blood types are not available, and then blood
will be imported into the bank from an external source(s) in
accordance with the request at hand [26]. One main advan-
tage of implementing the bottom-up technique is that it has
every tendency to minimize the importation of blood units
into the blood bank, and by so doing, increases the effective
utilization of available resources. The Algorithm listing one
below provides a brief summary of the sequence of steps
performed in the implementation of the SOSGAPSO algo-
rithm. The process starts by setting the size of the initial
swarm population, which does not exceed the initial blood
volume. The first optimization task is initiated by the control
algorithm, which is the SOS, where the three interaction
phases of the algorithm are executed and updated iteratively.
The mutualism phase of the SOS algorithm, which consists
of equations (90) - (91), is implemented in conjunction with
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Algorithm 1 Pseudocode of SOSGAPSO
1. Begin:
2. Initialize organism population Xi(i = 1, 2, . . . , n)
3. Initialize ecosize, MaxDay, Day: nday
4. While (itr <Maximum number of iterations) do
5. for nday = 1: MaxDay
6. Let i = 1
7. for i = 1 : ecosize
8. Calculate fitness of all organisms
9. Xbest = Organism with lowest fitness value
10. end for
11. //Begin SOS phases
12. Mutualism Phase:
13. Select organism Xj randomly where Xj 6= Xi
14. Apply SOS updating formula on new Xi and Xj using equations 90 and 91
15. Implement GA operator: Selection
16. Implement GA operator: Crossover
17. Implement GA operator: Mutation
18. Commensalism Phase:
19. Whilst in Commensalism Phase: Apply SOS updating formula on new Xi using equations 93
20. Apply PSO updating formula on new Xi using equations 94 and 95
21. Parasitic Phase:
22. Select organism Xj randomly where Xj 6= Xi
23. Create a parasite vector Pvec
24. Update the organism Xj
25. Calculate the fitness value of Xj
26. if (fitness (Pvec) <fitness (Xj)) then
27. Xj = Pvec
28. end if
29. Implement the bottom-up technique: Pi =

{
p1ij,p

2
ij, . . . ,p

m
ij

}
30. Identify the best individual Xbest
31. end for
32. Itr = itr + 1
33. end while
34. return Xbest
35. end

the GA operators. Afterward, the commensalism phase fol-
lows with the SOS updating formula given in equation (95):
it causes one individual within an ecosystem to benefit from
another individual without causing the secondary individual
any harm. Further, in parallel, the commensalism phase is
implemented in conjunction with the updating formula of
PSO given in equations (94) – (95). The parasitic phase of
the SOS algorithm is similarly implemented in conjunction
with the bottom-up technique. Lastly, the SOSGAPSO algo-
rithm exits the search optimization process and returns the
best individual as the solution for the day; that is, after the
algorithm set termination condition is satisfied.

The main advantage of the above algorithm listing is its
leverage of the enhanced performance of the three indi-
vidual algorithms, namely SOS, GA, and PSO, and most
importantly, it strikes a good balance between exploration
and exploitation during the hybrid algorithm implementation.
The parameter nday represents the number of days, MaxDay

represents the maximum number of days the algorithm will
execute before termination, ecosize represents the size of the
ecosystem, X is the organism within the ecosystem, Xbest
represents the best organism that will be returned as a solution
for the day, and fitness () represents the fitness function used
to evaluate organism X .

F. DATASET SUMMARY
The following study implements a hybrid Symbiotic Organ-
ism Search – Genetic Algorithm – Particle Swarm Optimiza-
tion (SOSGAPSO) algorithm in conjunction with real-world
blood dataset. The dataset was adapted from the Nigerian
Enugu blood bank over a period of eight years (2010 - 2018).
The datasets provide the issued levels of blood units for
each blood type per month. To gauge the effectiveness of
SOSGAPSO algorithm, the algorithmwas tested with various
population sizes. For each population size, the number of
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FIGURE 6. Line graph showing the summed blood levels across all blood types.

solutions, levels of importation, and the time complexity were
compared. The following further elaborates on each point:
a) Population size: Relates to the number of organisms gen-

erated within each population. An organism in this study
is represented by a basic array of size eight, with each seg-
ment relating to each blood type. Additionally, the organ-
ism representation relates to both the supply generated for
a month and the organism with the closest make-up to the
demand for the month.

b) Number of Solutions: When the demand for a month
matches the randomly generated supply, then this is clas-
sified as a solution. A solution implies that no form of
importation occurred within that month, nor were any
blood units carried over to the next month. Due to the
nature of the algorithm, finding solutions would occur
mainly at the start of the time frame, because the algorithm
carries over any blood units from the previous month into
the current month. Due to this behavior, blood units would
be expected to stockpile as time progresses, thus making
the aspect of finding a solution much rarer.

c) Importation: This variable relates to importing additional
blood units from external sources when the blood bank
cannotmeet the demand for a givenmonth. This is deemed
to have a negative connotation, as the act of importing
additional blood units incurs more expenses for the blood
bank.

In total, five different population sizes were tested, ranging
from a population size of 50 to 300, in increments of 50. Due
to the issued amount of blood units being documented (use of
real-world dataset) and not randomly generated, the average
levels will be held constant across the five simulations.
Table 4 below illustrates the averages attained for each blood
type, over a test period of 108 months.

TABLE 4. Average per blood type for demand levels in accordance with
the Nigerian Enugu Blood dataset used within this study across a period
of 108 Months.

As previously stated, this study used real-world blood
demand values from Enugu, Nigeria. According to the
dataset, in none of the months did demand values exceed
300 units. Figure 6 is given below, which illustrates the annual
demand for blood units from 2009 until 2018. The supply is
generated using a random generator with an upper and lower
percentage bound of 100 and 0, respectively. Furthermore,
the initial blood unit volume is set to 300.

Figure 6 indicates the summed amounts of blood units
across all blood types for the period 2010 to 2018. It is
noticeable that an increasing trend occurs from 2010 until
2013 when the trend shows a somewhat steady-state for
the next three years. The trend then starts to decrease from
2016 onwards. It is unclear if the issued blood supply would
continue this decreasing trend, as the datasets only provided
values between these time ranges. Furthermore, since we are
currently in 2019 for this study, we opted to ignore the few
months of data provided for 2019, as it would give an unfair
comparison with data for complete years.

V. EXPERIMENTAL RESULTS AND DISCUSSION
In this section, extensive experiments are described, which
were conducted in order to investigate the practicality of
the mathematical model formulation and the efficacy of the
proposed hybrid SOSGAPSO, in comparison to the perfor-
mance of other existing algorithms, in solving the blood
assignment problem. For this purpose, a real-life blood use

VOLUME 8, 2020 97593



A. E. Ezugwu et al.: Computational Intelligence Approach to Dynamic Blood Allocation

FIGURE 7. Levels of blood unit importation for the population size of 50 over a period of 108 months (2010 - 2018) for the SOS, SOSGA,
SOSPSO and SOSGAPSO algorithms.

dataset is utilized. The experimental testing platform for the
proposed algorithms was conducted on an Intel Core i5 CPU
with 2.5 GHz and 4 GB RAM and Windows 10.0 operating
system. The implementation software for the three algorith-
mic methods was Java.

This study utilizes the following parameter settings for
the proposed SOSGAPSO algorithm: population size N or
ecosize = 50, crossover rate Cr = 0.07, mutation rate
m = 0.03, personal and global learning coefficients c1 =
c2 = 1.7, inertia weight ω = 0.715, the inertia weight damp-
ing ratio wdamp = 0.99, r1 = r2 = are randomly generated
values between [0, 1]. Each algorithm was subjected to a
maximum of 1000 iterations, where each iteration number
stands for each day. Different population sizes of 50, 100,
150, 200, 250, and 300 were used to conduct the experiment.
Whilst the supply values were set to constant percentage
bounds between 0 and 100%, with the initial blood volume
not exceeding 300 units. Specifically, the representative algo-
rithms namely, the SOS, PSO and GA choice of parameter
selection is similar to the implementation by Govender and
Ezugwu [10], [31], [46] and Ezugwu et al. [29], in terms of
parameter configuration, however, they differ with regards to
the real-life data set used for the current study. Table 5 shows
the parameter setting for the three representative algorithms.

VI. COMPARISON WITH COMMONLY USED BLOOD
ASSIGNED ALGORITHM
To examine the effectiveness of SOSGAPSO algorithm,
the results obtained from the algorithm would be contrasted

TABLE 5. Parameter configuration for SOS, PSO, and GA algorithms.

with the values obtained in relation to the SOSGA [29],
SOSPSO, and standard SOS algorithm [46]. Furthermore,
the aspect that would be evaluated is the average level of
importation and computational time. Note that no solutions
were found by any of the algorithms. A solution is achieved
when the supply meets every value across all the eight blood
types, thus resulting in no form of importation or carry-over
of stock. More so, the algorithms could not find any potential
solutions due to the varying issuing percentages exhibited
by the real-life datasets. Additionally, the act of carrying
over remaining blood units to the next month increases the
likelihood of stockpiling and diminishes the potential for the
algorithms to locate solutions.

The monthly volumes of importation with the initial pop-
ulation size, according to all the algorithms, are shown in
Figure 7 and Table 6. As can be seen from the figure, all
the algorithms (except the SOSGA, algorithm) experienced
low importation levels for the initial 37 months. Thereafter,
sporadic spikes in importation occurred for the SOS, SOSGA,
and SOSPSO algorithms across the finite time period. The
importation spikes occurred much earlier (after month 7) for
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TABLE 6. Supply and importation averages attained per algorithm across eight blood types in accordance with population size 50.

FIGURE 8. Levels of blood unit importation for the population size of 100 over a period of 108 months (2010 - 2018) for the SOS,
SOSGA, SOSPSO and SOSGAPSO algorithms.

the SOSGA algorithm. Once importation was necessary, sim-
ilar levels of importation were predicted by all the algorithms,
except for the proposed hybrid SOSGAPSO algorithm, which
seemed to incur lower peaks in the importation, as illustrated
in Figure 7. It is expected that an increase in population size
will have a positive effect on importation levels.

Table 6 shows the capabilities of the competing algo-
rithms in handling the assignment of certain blood types
more efficiently. For instance, the proposed SOSGAPSO
indicates lower importation levels for O+ as compared to
the SOSGA and SOS, with the SOSPSO showing similar

capabilities. In contrast, the SOSPSO incurs lower impor-
tation rates for blood type A+. Likewise, the SOSGA low
importation rates are linked to blood type A− and SOS is
linked to type C− blood. It is unclear at this point whether this
behavior would continue as the population sizes increase.

Results for a population size of 100 are shown in
Figure 8 and Table 7. According to Figure 8, the four algo-
rithms incurred minimal levels of importation over the first
30 months. It is then noticeable that the three algorithms
(SOS, SOSGA, SOSPSO) start to increase importation rates
around months 35-37, but the SOSGAPSO algorithm starts
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TABLE 7. Supply and importation averages attained per algorithm across eight blood types in accordance with population size 100.

FIGURE 9. Levels of blood unit importation for population size of 150 over a period of 108 months (2010 - 2018) for the SOS, SOSGA,
SOSPSO and SOSGAPSO algorithms.

to increase importation rates a few months later, around
month 40. The SOSGA and SOSPSO algorithms incur very
similar peaks, with the SOS algorithm incurring more fre-
quent and higher peaks, whilst the proposed SOSGAPSO
incurs noticeably lower levels of blood units importation.
Months 41-95 incurred the majority of blood unit importation
across all the four algorithms, with the levels lowering back to
minimal values from month 95 onwards, whilst the SOSGA
algorithm experiencing one large spike in month 106.

From Table 7, it can be seen that no form of importation
occurred for blood groupB, which can, therefore, be excluded
from comparisons. It is evident that the SOSGAPSO

algorithm incurs lower importation values for blood types
O+, A−, and C−. This is important because O+ is one of the
most common blood types within Nigeria, so any algorithm
that incurs lower importation for O+ would reduce expenses
for the blood bank. The SOSPSO algorithm marginally out-
performs the SOSGA algorithm with lower importations for
blood types O+, O−, A+, C+, and C−. Finally, the standard
SOS algorithm did not succeed in producing lower importa-
tion levels for any of the blood types.

For an initial population of 150, the need for importation
is delayed. As seen in Figure 9, the overall levels of blood
unit importation begun to elevate only around month 43,
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TABLE 8. Supply and importation averages attained per algorithm across eight blood types in accordance with population size: 150.

FIGURE 10. Levels of blood unit importation for the population size of 200 over a period of 108 months (2010 - 2018) for the SOS, SOSGA,
SOSPSO and SOSGAPSO algorithms.

which is 13 months later than the effects seen in Figure 7
(population size of 50). Once again, it is evident that the
proposed SOSGAPSO algorithm exhibited lower peaks in as
compared to the remaining algorithms, which is a good sign
that the SOSGAPSOhad the least importation level compared
to the other algorithms.

Results illustrated in Table 8 are also in favor of the
SOSGAPSO algorithm, which required minimal importation
levels for four out of the eight blood types, with an equal
finish for blood type B across the three hybrid implementa-
tions, whilst the standard SOS incurred minimal importation
averages for blood type B. Furthermore, the SOSGAPSO

algorithm seemed to incur no importation for blood type C−

as compared to the other algorithms.
Figure 10 gives results for an initial population of 200.

It shows an increased importation rate amongst most of
the algorithms around month 40, which is similar to the
effects seen in Figure 9. The importation rates do not level
out as the time frame continues, with sporadic importa-
tion spikes occurring across the four algorithms. For the
SOSGAPSO and SOSPSO algorithms, there were numer-
ous low peaks, whilst the standard SOS, and SOSGA algo-
rithm experienced the two highest peaks within the time
frame.
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TABLE 9. Supply and importation averages attained per algorithm across eight blood types in accordance with population size: 200.

FIGURE 11. Levels of blood unit importation for the population size of 250 over a period of 108 months (2010 - 2018) for the SOS,
SOSGA, SOSPSO and SOSGAPSO algorithms.

As can be seen in Table 9, for a population of 200, whilst
the triple hybrid implementation shows minimal importation
values for the majority of the blood types, it is apparent that
the standard SOS and SOSGA algorithms turn over lower
importation levels for blood types C− and B− in comparison
to the other hybrid implementations.

In Figure 11, giving results for a population of 250,
the SOSGAPSO algorithm incurs the highest peak of all the
algorithms around month 51. Nevertheless, it makes up for
this large increase by having far lower importation levels
across the remaining time period. The SOSPSO algorithm
seems to incur the majority of its importations between

months 31 and 67, whilst the SOSGA algorithm incurs impor-
tations between month 25 and 58, followed by a brief period
of low importations, after which importation levels start to
increase again around month 76. Finally, the SOS algorithm
started incurring larger importation rates around month 33,
and sporadically incurred spikes throughout the remaining
time frame.

While focusing on Table 10, which depicts the importa-
tion averages attain for each metaheuristic implementation in
conjunction with a population size of 250, it can be seen that
the SOSPSO hybrid significantly improves its results as com-
pared to those for a population size of 200. The SOSGAPSO
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TABLE 10. Supply and importation averages attained per algorithm across eight blood types in accordance with population size: 250.

FIGURE 12. Levels of blood unit importation for the population size of 300 over a period of 108 months (2010 - 2018) for the SOS, SOSGA,
SOSPSO and SOSGAPSO algorithms.

provides lower importation values for only four out of the
eight blood types with the SOS algorithm incurring higher
importation values.

With the population set at a maximum of 300, the SOS-
GAPSO hybrid implementation dramatically outperformed
the remaining three algorithms, as shown in Figure 12.
As depicted, the SOSGAPSO algorithm incurred many fewer
high peaks than did the remaining algorithms. The SOSGA
and SOSPSO algorithms seem to produce almost simi-
lar results, whilst the SOS algorithm sees some improve-
ment with a larger population, but still incurs much higher
importation peaks.

The superiority of the SOSGAPSO algorithm with a pop-
ulation size of 300 can also be witnessed in relation to
specific blood groups. The SOSGAPSO algorithm clearly
outperforms the other algorithms in all eight blood types,
requiring nil imports for several blood groups. This behavior
is expected to continue as the population size increases, but it
can be seen from the results above that none of the algorithms
were capable of minimizing importation for blood types C+.

VII. DISCUSSION
As depicted in Figures 7 – 12, and Tables 6 – 11 the SOS-
GAPSO offers improved results in comparison to the other
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TABLE 11. Supply and importation averages attained per algorithm across eight blood types in accordance with population size: 300.

TABLE 12. Computational time associated with each metaheuristic
algorithm in comparison to the different population sizes.

two hybrid implementations and the standard SOS algorithm.
Even though none of the algorithms where able to find a
solution, it is apparent that an algorithm with more operators
that modify an individual within a population will have a
greater chance of obtaining individuals that are a closer match
to the demand for a month. In addition, the computational
times associated with each metaheuristic algorithm in con-
junction with the varying population sizes is shown below in
Table 12 and these CPU times give a clearer picture of the
amount of computing resource consumed by the individual
algorithm to obtained the results presented in Tables 6 – 11.

From Table 12, it can be seen that for each metaheuristic
algorithm, the computational time tends to increase as the

population size increases. However, this relationship is not
consistent. In comparing the results for the SOSGAPSO algo-
rithm for population sizes of 250 and 300, it can be seen that
the computational time decreases considerably between these
two variables. It appears that a decrease in importation rates
(as depicted in Table 11) influences the overall computational
time experienced per algorithm. Another observation con-
cerns the standard SOS algorithm, which, except for the case
of SOSGAPSO with population size 300 mentioned above,
showsmuch lower computational time values than that for the
other algorithms. This can be attributed to the hybrid meta-
heuristic algorithms needing to execute additional functions
which can be computationally intensive, but offer improved
results. In order words, the SOS algorithm consumed the
least computational time, but at the expense of sound quality
results. The hybrid methods produced better results, but at
the cost of computational time. Additionally, it can be seen
that increasing the number of individuals within a popula-
tion decreases the chances of obtaining large importation
averages.

To further investigate the effect of population size on the
level of importation, this study summed the average amounts
of importation experienced per blood type in order to find
a percentage increase or decrease in the amount of importa-
tion experienced. Below is Figure 13, which illustrates the
trend associated with the behavior between importation and
population size.

As shown in Figure 13, each algorithm starts with a 0%
percentage change from a population size of 50, as this was
the initial starting population size. Afterwards, there is a
decrease in overall importation percentage for all algorithms,
with the SOSPSO and SOSGAPSO incurring approximately
14.20 % decrease in importation for a population size of 100.
Following the population size of 100, a further increase in
population size to 150 imposes a smaller percentage decrease
for the standard SOS, SOSGA and SOSPSO algorithm, whilst
SOSGAPSO incurs a great decrease of 20.54%. Population
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FIGURE 13. Percentage increase/decrease between importation levels and population sizes for the SOS, SOSGA, SOSPSO and SOSGAPSO
algorithms.

size of 200 suddenly increases importation for all algorithms,
which is largely caused by the increases in blood types A+

and O+ as shown in Table 9. Although a sudden increase
was experienced with a population size of 200, a further
increase dramatically decreases all percentage importation,
with SOSPSO incurring the highest decrease of 18.79%.
Lastly, the population size of 300 establishes the dominance
of SOSGAPSO, indicated by a decrease importation levels by
38.40%.

In terms of the individual blood types, type O+ incurs
as one of the highest average levels of importation due to
high percentage of individuals in Nigeria living with blood
type O+ as was shown earlier in Table 2. Blood group B
was handled well by each metaheuristic algorithm for all
population sizes, even though blood type B+ has the third
highest percentage proportion within Nigeria. Stock-piling,
as the accumulation of blood stocks of different types over
a prolonged finite period, can be seen with positive connota-
tions, because it greatly reduces importation levels associated
with a blood type. The relationship can be seen as directly
proportional, as a higher blood type percentage proportion
leads to a higher probability of stock-piling occurring at a
faster rate. Taking into account the aspect of stock-piling,
it appears that all algorithms struggled to reduce importation
rates associated with blood types O− and C+, which is mainly
associated with these blood types having a low population
proportion. In summary, the SOSGAPSO hybrid metaheuris-
tic can be deemed as a superior implementation in relation
to the data from a real-life blood sample collection process
at the National Blood Transfusion Service, Enugu Center,
Nigeria.

VIII. CONCLUSION AND FUTURE DIRECTION
This paper has considered the formulation of a novel math-
ematical model for the task of assigning whole blood units
by blood bank managers to meet requests for blood supplies
from hospitals and emergency call centres. In the developed
model, the relationship between the proportion of each blood
group in the population and the blood use and donations to the
stocks available in the blood bank was established. Unlike the
existing mathematical models, the full ABO-Rhesus blood
compatibility factor was considered and its associated com-
plexities estimated using an optimization procedure that min-
imizes the difference between the ideal situation of constantly
available stocks and the real-world blood bank scenario.
Further, the proposed model accounts for the provision of an
accurate managerial discernment on the proportion of blood
type X that can be replaced with blood type Y.

Subsequently, efficient advanced nature-inspired SOS-
GAPSO metaheuristic algorithm has been proposed for the
optimal routing of blood units in the bank. The metaheuristic
optimization method that was proposed combined the efforts
of the SOS, GA, PSO and a unique bottom-up modelling
technique. The bottom-up technique was modelled accord-
ing to certain observed historical behavioural probability of
blood compatibility replacement trends in the blood bank.
The implemented bottom-up technique reflects some addi-
tional constraints that needed to be satisfied for the blood
bank to be efficiently managed, and so avoiding unnecessary
importation of blood from external source(s). The multiple
experiments conducted using real-life datasets proved the
practicality and validity of the proposed mathematical model
formulation. Further, the numerical results showed that by
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using the SOSGAPSO global optimization and bottom-up
techniques, the total units of blood types imported into the
bank were greatly minimized.

The current model formulation only considered red blood
cells. Therefore, in future work, we intend to incorporate
further components of a variety of blood products by extend-
ing the current proposed mathematical model formulation.
More so, it will be interesting to consider integrating special
cases of mass emergencies and blood shelf-life relative to
expiration into the proposed model. Although incorporating
these two last components would slightly increase the model
complexity, but the results of the proposed model imple-
mentation presented in this study would not be significantly
affected. It would also be interesting to test the robustness
of the proposed hybrid SOSGAPSO metaheuristic algorithm
when applied to solve other complex real-world optimization
problems.
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