IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received February 4, 2020, accepted May 12, 2020, date of publication May 25, 2020, date of current version June 8, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2997241

ICD-10 Coding of Spanish Electronic Discharge
Summaries: An Extreme Classification Problem

MARIO ALMAGRO"'!, RAQUEL MARTINEZ UNANUE’,
VICTOR FRESNO'!, AND SOTO MONTALVO 2

! Department of Computer Languages and Systems, National University of Distance Education (UNED), 28040 Madrid, Spain

2Department of Computer Science, King Juan Carlos University (URJC), 28933 Madrid, Spain

Corresponding author: Mario Almagro (malmagro@lsi.uned.es)

This work was supported by the Spanish Ministry of Science and Innovation through the MAMTRA-MED Project, AEI/FEDER, UE,

under Grant TIN2016-77820-C3-2-R.

ABSTRACT Objective: Medical coding is used to identify and standardize clinical concepts in the
records collected from healthcare services. The tenth revision of the International Classification of
Diseases (ICD-10) is the most widely-used coding with more than 11,000 different diagnoses, affecting
research, reporting, and funding. Unfortunately, ICD-10 code sets tend to follow biased, unbalanced, and
scattered distributions. These distribution attributes, along with high lexical variability, severely restrict
performance when coded clinical records are used to infer code sets in uncoded records. To improve that
inference, we explore a combination of example-based methods optimized to capture codes with different
appearance frequencies in data sets. Materials and Methods: The proposed exploration has been carried out
on Spanish hospital discharge reports coded by experts, excluding all sentences without any biomedical
concept. Representations based on semantic and lexical features are explored, using both global and label-
specific attributes. In turn, algorithms based on binary outputs, groups of subsets and extreme classification
are compared. Lists of codes together with their confidence values (certainty probabilities) are suggested
by each method. Results: Diverse spectral behaviors are shown for each method. Binary classifiers seem to
maximize the capture of more popular codes, while extreme classifiers promote infrequent ones. In order to
exploit such differences, ensemble approaches are proposed by weighting every output code according to the
method, confidence value and appearance frequency. The rule-based combination reaches a 46% Precision
at 10 (P@10), which means a 15% improvement over the best individual proposal. Conclusion: Assembling
methods based on weighting each code according to training frequency and performance can achieve better
overall Precision scores on extreme distributions, such as ICD-10 coding.

INDEX TERMS Extreme classification, XMTC, ICD-10 coding, text mining.

I. INTRODUCTION

Most information coming from healthcare services remains
unstructured, preventing direct, and easy interpretation of
clinical data. The standardization of medical concepts in
Electronic Health Records (EHRS) is a necessary preliminary
step for deeper analysis.

ICD is a clinical cataloging system that enables statistical
analyses of morbidity and mortality by defining more than
11,000 diseases, abnormal findings, complaints, social cir-
cumstances, external causes of injury, signs, and symptoms.
The tenth revision (ICD-10) is one of the main blocks in the
clinical information analysis workflow as it is increasingly
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used for reporting causes of death and clinical research,
audits and funding. ICD-10 is structured in chapters grouping
codes of 3 and 4 characters in length. The Spanish version
(CIE-10-ES!) extends the specificity of the hierarchical struc-
ture with 7-character codes, increasing the amount to approx-
imately 69,000 diagnoses and 72,000 procedures (notice that
ICD-10 does not contain procedures). In particular,
CIE-10-ES codes are organized in three-character categories
and can, in turn, belong to different nested subcategories.
Final CIE-10-ES codes can consist of 3 to 7 characters,
depending on the specificity of the diagnosis or procedure.
More general and shorter codes are assigned when there is a
lack of information and longer ones are given in association

lhttps://eciemaps.mscbs.gob.es/ecieMaps/
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FIGURE 1. Example of hierarchy in the structure of CIE-10-ES codes.

with more detail. For example, Figure 1 shows the connection
among several codes of the same family, Type 2 diabetes
mellitus.

CIE-10-ES coding entails great difficulty. Certain diseases
are much more frequent than others resulting in collections
of hundreds of very popular codes and thousands of infre-
quent codes. Therefore, the prevalence of diagnoses and
procedures leads to extremely unbalanced data sets. The tens
of thousands of rare CIE-10-ES codes from known data
entails a large sparsity in the final distribution. Significant
biases are also common in data sets as a consequence of the
strong dependency on local factors, such as environmental
conditions, lifestyles or clinical services offered. Given bias,
imbalance and sparsity as the main attributes, code sets tend
to follow an exponential rather than a uniform distribution.
Besides, the task is carried out at the document level, and
although each record contains lexical expressions that could
locally be associated with some code, disseminated informa-
tion is required to propose the final codes. Thus, it can be
considered a multi-label classification of one-to-many, with
more than 140,000 possibilities. Finally, code descriptions
are designed to aggregate multiple clinical concepts, thus
employing more abstract language and general terminology.
This means that more different lexical forms can be associ-
ated with the same code.

The combination of the rich diversity of lexical forms and
the existence of an enormous quantity of codes with only a
few examples severely complicates the attainment of high-
quality automatic outputs. For this reason, even though the
automation is a key priority in most health institutions, coding
is performed with human intervention, involving consider-
able financial resources.

None of the state-of-the-art ICD-10 coding approaches
deals effectively with the constrains imposed by extreme
distributions. For this reason, the task is addressed as an
eXtreme Multi-label Text Classification (XMTC) problem
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in this paper, focusing on the frequency of the codes to be
inferred.

The purpose of automatic coding is to support coders by
generating a list of possible candidate codes. Data distribu-
tion favors the prediction of the most common codes, which
provide less information to coders. So, one of the main chal-
lenges is to exploit that distribution avoiding inferring only
frequent codes while promoting the assignment of infrequent
ones. To this end, we explore multiple methods and their dif-
ferent behaviors according to the number of code instances.
As far as we know, XMTC algorithms have never been used
in CIE-10-ES classification problems and we think they could
significantly contribute to the inference of rare codes.

As a result, combinations of methods are proposed to
improve the assignment of codes in different frequency
ranges. The goal is to maximize each contribution in terms
of Precision improvements.

Il. RELATED WORK

There are multiple proposals for addressing the automatic
ICD-10 coding to assist coders. Most of them have focused on
alleviating lexical variability, while a few have tried to reduce
the imbalance effect. Next, extreme classification algorithms
are introduced following this latest trend.

A. ICD-10 CODING

The large amount of ICD codes and the different hospital
record instances associated with each one is the main issue
as it requires an unavailable volume of coded data. On this
basis, different ways to try to capture more instances have
been proposed in the state-of-the-art.

The most widespread way is to handle the high lexical
variability through external knowledge bases. For example,
some authors have explored lexical similarities by enriching
the representation through dictionaries [1]-[3]. In a simi-
lar way, other proposals have used documents as queries,
applying the expansion with ontologies [4]-[6]. Following
this tendency, repositories of medical terminology have been
explored to improve the representation of documents before
applying machine learning [7].

As an alternative to biomedical dictionaries, other authors
choose to reduce bias and extend collections by transforming
other data sets. Subotin et al. use the General Equivalence
Mappings (GEMS?) between ICD-10 and ICD-9 to supple-
ment the small size of the training corpus through reports
annotated with ICD-9 [8]. In turn, Almagro et al. explore the
application of Machine Translation techniques to expand the
data set with foreign resources [9].

Another way to deal with lexical variability is to work
directly with meanings. In this line, Chen et al. have explored
the Longest Common Subsequence (LCS) of concepts as
a feature for the classification [10], and Ning et al. have
exploited the hierarchical structure using a distributional

2https://www.asco.org/practice—quidelines/
billing-coding-reporting/icd-10/

general-equivalence-mappings—gems
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semantic [11]. Other approaches have applied neural net-
works fed with word embeddings trained on external corpora
[12], [13]. Following this line, Amin et al. use BERT pre-
trained on PubMed and exploit the information provided by
a language model in the clinical domain to represent medical
concepts [14].

In addition to reducing variability, some authors have
focused on harnessing the ICD-10 hierarchy to reduce imbal-
ance, grouping features of similar codes [15], [16] or avoiding
the assignment of multiple similar ones [17]. Furthermore,
generative rather than discriminative models, such as Latent
Dirichlet Allocation (LDA), have been used in the extraction
of topics as features for binary classifiers [18].

As for the Spanish version of the ICD-10, there are few
publications. Almagro er al. conduct a preliminary study
on the application of supervised and unsupervised methods
in CIE-10-ES coding [19]. In turn, Blanco et al. explore
how considering different numbers of codes during training
affects deep learning algorithms [20]. Recently, Pérez et al.
presented an approach based on the extraction of topic mod-
els using Latent Dirichlet Allocation (LDA). Subsequently,
it uses topics as features for applying binary classifiers.
The authors obtain positive results, but considering only the
124 most frequent CIE-10-ES codes.

B. EXTREME CLASSIFICATION

So far, ICD-10 coding has not been addressed as an extreme
classification problem. However, the high data sparsity
associated with very biased and unbalanced data sets fits
perfectly into that research area. XMTC deals with extreme
distributions by using sublinear algorithms to assign each
document the most relevant subset of labels from a large space
of categories. Most approaches fall into three main families:
decision tree-based, embedding-based, and deep learning-
based methods.

Decision tree-based methods [21]-[23] start with the
whole label space and learn a hierarchy from training data
by determining which labels should be assigned to the
left or right child node. Then, nodes are recursively parti-
tioned until each leaf contains a small number of labels. Each
leaf node supplies a binary base classifier for only dealing
with two subsets of labels. The most representative method in
this family is FastXML [24]. It learns the hierarchical struc-
ture of label subsets from training instances and optimizes
an NDCG-based objective at each node of the hierarchy. The
goal is to have all the documents in each subset sharing
similar label distribution.

The embedding-based methods try to make the training
and prediction tractable by assuming low-rank training label
matrix. For this purpose, those methods linearly transform
the high-dimensional label vectors into low-dimensional ones
reducing the effective number of labels [25]-[28]. Among
these type of methods SLEEC [29] is the most representative
as it achieves significant improved accuracy on some bench-
mark data sets, being computationally efficient. Its archi-
tecture works in two steps: learning embeddings and using
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k-nearest neighbor (kNN) classifiers. It learns L-dimensional
embeddings from the original L-dimensional label vectors
that non-linearly capture label correlations. At prediction
time, the approach performs a kNN search for project-
ing a novel document in the L-dimensional embedding
space.

Asregards extreme deep learning methods, the main idea is
to design new approaches by focusing on the multi-label task.
Zhang et al. recently proposed a deep embedding method,
DXML [11], non-linearity modeling the feature space and
label graph structure in a XMTC context. On the other
hand, Liu et al. present a new Convolutional Neural Net-
work (CNN) model tailored for XMTC problems [30]. This
approach, XML-CNN, uses a dynamic max pooling scheme
that captures richer information from different regions of the
documents as well as for reducing model size. It obtains
encouraging results in well-known XMTC benchmark data
sets, improving in many cases to FastXML, in most cases to
SLEEC, and in all cases to other CNN models.

Other approaches which focused on multi-label classifica-
tion of very unbalanced data sets have not been cataloged
as XMTC. In particular, Rubin ef al. design a text classifier
that takes advantage of LDA principles to model dependen-
cies between labels [31]. No XMTC model always achieves
the best result when evaluating with multiple corpora but
some models seem to consistently obtain good results in
every different benchmark data sets, such as Amazon [32],
WikilO [33], and EURLex [34].

IIl. MATERIALS AND METHODS

A. DATA SET

Our entire collection consists of 7,254 Spanish hospital
discharged reports collected in Hospital Universitario Fun-
dacién Alcorcén for the years 2016-2018. This data set has
restrictions of use due to the European General Data Pro-
tection Regulation (EU GDPR), so it cannot be made public
for the research community, even if anonymized. In total,
76,525 CIE-10-ES codes were identified by coders, approxi-
mately 7,000 different ones. That code set follows the above-
mentioned distribution, as can be seen in Figure 2. The graph
shows how the number of different ICD codes (on the y-axis)
varies depending on the number of documents in which it
appears (on the x-axis) on a logarithmic scale. The higher the
frequency in documents, the fewer the number of different
CIE-10-ES codes.

Regarding the textual content, documents are written in
natural language, which includes different types of infor-
mation such as clinical judgment, diagnosis, history, results
of clinical trials, and treatments. In general, these reports
contain a great deal of data, with an average length
of 4,000 words, so it is necessary to select the relevant
information. The evaluation will be carried out on the
10 most reliable codes as 10.55 is the average number of
CIE-10-ES codes per document. Tables 1 and 2 sum-
marize statistical values for describing the collection.
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FIGURE 2. Distribution of the Spanish hospital discharged reports data set. The training data set is in black and the test data set is in
orange. How the number of different ICD codes (on the y-axis) varies depending on the number of documents in which it appears (on the

x-axis) is plotted on logarithmic scale.

Label dimensionality refers to the number of different codes
available in the data set.

B. TEXT REPRESENTATIONS

As mentioned above, discharge reports are long text doc-
uments with a considerable amount of clinical informa-
tion. Hence, it seems necessary to apply a preprocessing
step in order to discard the information not relevant to the
ICD-10 coding task. The IxaMedTagger> tool [35] has been
used for the selection of sentences. This is a Spanish clini-
cal part-of-speech tagging software that uses the SNOMED
CT terminology * to identify body structures, qualifiers,
medicines, allergies, and diseases. It has been assumed that
all sentences without any of those entities are not relevant
for coding, therefore they have been discarded. The content
of each discharged report used in the classification is made
by grouping together all sentences in which clinical entities
were detected. Finally, the replacement of capital letters and
accented characters, the removal of punctuation marks, and a
stemming process have been carried out. No specific negation
detection has been used.

Different features have been extracted from those sum-
maries to feed the various methods. Table 3 shows the dimen-
sions of the features. Both global and label-specific lexical
features have been explored, using word N-grams. Bags of

3http://iva.si.ehu.eus/prosamed/resources

4SNOMED CT (http://www.snomed.org/) is a clinical terminol-
ogy included in the Unified Medical Language System (UMLS)

100076

Words (BoW) and Term Frequency - Inverse Document Fre-
quency (TF-IDF) have been applied to represent attributes for
all codes. In turn, Term Frequency - Bi-Normal Separation
(TF-BNS) is used to characterize each code with particular
features as Forman proposes [36]. At the same time, semantic
features have been explored with word embeddings. Spanish
clinical word embeddings have been generated using the
fastText approach proposed by Bojanowski et al. [37]. The
Spanish Billion Word Corpus,® more than 150,000 uncoded
hospital records and thousands of medical PhD dissertations
have been used for the transfer learning process.

C. METHODS

As mentioned, ICD-10 coding is a extreme multi-label task,
where a document is associated with a subset of codes.
To deal with multiple outputs, some simplifications have typ-
ically been made, such as assuming independence between
labels and considering whole subsets as the only possibilities.
Alternatively, other algorithms directly adapted to multi-label
outputs have been used, such as k-nearest neighbors, decision
trees, and neural networks. In particular, XMTC algorithms
appear to extend those by reducing the imbalance effects.
In this paper we explore and compare approaches based on
each of these foundations to exploit the overlapping and dis-
similarity between methods within the context of ICD coding.

5https://crscardellino.github.io/SBWCE/
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TABLE 1. Data set features.

Feature Value
CIE-10-ES Codes 76,525
Label Dimensionality 7,078
Number of Training Documents 5,803
Number of Test Documents 1,451
TABLE 2. Data set statistics.
Attribute Average | Median
Documents per Label 9.56 2
Labels per Document 10.55 9
Words per Document 4,060 2,939

Codes can be processed separately by ignoring the
dependencies between them. In this way, one classifier
for each code can be defined following a One-vs-Rest
(OvR) strategy, which produces a binary output representing
presence or absence. Then, the final CIE-10-ES code subset
associated with a document would consist of those codes
whose output indicates its presence. For example, Sup-
port Vector Machines (SVMs) and Multi-Layer Perceptrons
(MLPs) have been trained for experimentation in binary clas-
sification. Each classifier has been fed with label-specific fea-
tures, by using TF-BNS, as it only perceives the differences
between documents with the corresponding code and those
that do not have it. Boosting methods to collect predictions
of multiple weak models have also been explored. Adaptive
Boosting (AdaBoost) iteratively modifies the sample distri-
bution by fitting the weights of each instance, while Gradi-
ent Boosting (GBoost) uses a gradient descent function to
optimize the remaining errors. In addition, an approach based
on TF-IDF similarity has been proposed using the Kullback-
Leibler Divergence (KLD) as the term selection method.
Estimating KLD provides the best terms characterizing each
code in such a way that the terms representing codes and those
in documents can be compared.

Fixing code subsets as default labels promotes the assign-
ment of infrequent codes. The inference of codes from a new
document would be estimated using the subset belonging to
the most similar training document. The transformation of
documents into TF-IDF vectors and the estimation of their
similarity has been explored (Document-Similarity). Instead
of assigning the code subset of the most closely resembling
document, a statistical average has been computed to improve
the robustness, avoiding the inefficiency of a simple label
aggregation. The final labels have been collected by applying
voting to the CIE-10-ES codes from the 30 most similar
documents.

Regarding adapted algorithms, no assumption is necessary.
These methods can infer more than one output from data.
In this line, a Long Short-Term Memory (LSTM) fed with
word embeddings has been applied to the data set. This
approach and the other general multi-label methods do not
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TABLE 3. Feature dimensionality.

Feature Value
TF-IDF 56,449
TF-BNS 1,000
Bags of Words 900,305
Word embedding sequence | 1,500,000

take the main feature of ICD distributions into account: the
number of relevant codes for each document is orders of
magnitude smaller than the number of irrelevant ones. For
that, XMTC methods focuses on dealing with imbalance,
optimizing the retrieval of relevant labels. In par-
ticular, a Convolutional Neural Network is explored
(XML-CNN), which minimizes a binary cross-entropy loss
and exploits dynamic max pooling mechanisms. In turn,
the most widespread XMTC approaches split feature
spaces or compress label dimension in order to determine
the differences between codes. FastXML uses decision trees
as bases and binary classifiers to establish criteria in nodes.
This is used with TF-IDF, starting with the entire code set
in the main node and recursively dividing it into different
subsets. Alternatively, SLEEC is based on reduced code
vectors and uses KNN and TF-IDF vectors to search similar
code projections. Finally, an adaptation of the Latent Dirichlet
Allocation for capturing word probabilities for groups of
labels is explored (Dependency-LDA). BoW representations
are used to estimate those probabilities.

D. EVALUATION

Rank-based assessment metrics are commonly used to com-
pare methods in the XMTC domain. In this line, the evalu-
ation has focused on Precision and normalized Discounted
Cumulative Gain at top K, P@QK and nDCG @K respectively.
P@K would be the number of relevant codes in the K first
predicted codes (Equation 1). r is a binary array, where i
element indicates the presence or absence of the i suggested
code in the gold standard.

K
Pk =Y 2 1

Although Precision estimation is usually complemented
by Recall and F-measure values to quantify the correla-
tion between relevant and retrieved codes, this is not nec-
essary when fixing the number of retrieved codes. Instead,
nDCG@K would measure the distribution of those rele-
vant codes by giving more importance to the top positions.
nDCG@K is described in Equations 2, 3, and 4, where r is
the same binary array and |REL| is the number of best ratings
up to position K.

peGy =y O @
loga(i+ 1)

i=1
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|REL|

(i) — 1
IDCGy = A 3
K ; loga(i + 1) ©)
DCG
nDCG@K = K 4)
IDCGx

Alternatively, another metric based on the distance
between the suggested code set and the gold standard is
explored in Equation 6: S@K. Similarity values between
pairs of codes are calculated exploiting the hierarchical struc-
ture as proposed in [38]. Equation 5 deals with the Infor-
mation Content (IC) of code 1 (IC(i)), code 2 (IC(j)), and
the least common subsumer (/C(LCS(i, j))). The IC has been
established as the number of characters. Considering that
the size of the final CIE-10-ES codes can range from 3 to
7 characters, then IC € [3, 7].

_ 2-IC(LCS, )

CEj= IC(i) + IC(j) ©)

The code set similarity (S) is finally proposed as the maxi-
mum weight matching in a bipartite graph G = (V, E), where
the vertices are the union of two subsets V = V| U V,, with
V1 being the suggested codes and V; being the gold standard
codes, and the edges between both subsets (E) have a cost
based on the code similarity C;; in Equation 5. Such maxi-
mization is defined in Equation 6, where N, is the number of
codes in the gold standard and X; ; is a binary value indicating
the assignment of code i to code j. As a constraint, there must
be only one positive value of X for each i. The Hungarian
method has been used for the optimization [39].

K 5Ne ooy
_ Imax 21 =1 CijXij
K

One could impose P@QK = S@K by restricting S@K to
be only the sum of the cost functions of the code pairs that
match exactly. Therefore, it is interesting to note that P@K
is the same as S@K when there are no partial similarities.
So the difference S@K — P@K indicates the percentage of
partial code overlap, excluding exact code matches.

Regarding the generation of results, several K values have
been computed to evaluate different ranges, but all decisions
made are based on the top 10 retrieved codes as this is roughly
the average number of codes per document. In this way,
P@10, S@10, and nDCG@10 aim to quantify the perfor-
mance of a system capable of predicting 10 CIE-10-ES codes
per document. All approaches described in Section III-C have
been applied on the data set using a 5-fold cross-validation
with an 80-20 split. Evaluation metrics have been computed
based on micro average.

S@K (6)

IV. RESULTS

Global scores are shown in Table 4. All S@K values are
higher than P@K values, indicating that some of the incorrect
suggested codes belong to the same hierarchical branch as
some of the unpredicted codes in the report. Moreover, P as a
function of K is shown in Figure 3, which gives an idea of the
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trend of the metrics by varying the number of codes assigned
to each document.

In addition to the previous described methods, a base-
line consisting of always assigning the most frequent codes
is explored. Despite the existence of thousands of codes,
the baseline reaches 30%, 19%, and 14% Precision when only
predicting the 1, 5, and 10 most frequent codes respectively.
It also yields similarity values from 40% to 20% for the
suggested code sets. In particular, 14% P@10 and 23% S @10
means that one of the 10 codes recommended by the baseline
usually matches completely (sometimes 2) and several of the
other 9 usually match partially without exceeding together
more than 100% in the percentage of coincidence. The nDCG
values close to 45% suggest that these codes tend to be
slightly lower in the output rankings.

The performances of LSTM and KLD barely exceed the
baseline as they require large quantities of annotated exam-
ples not available in these collections. While LSTM is more
effective in predicting few codes, its effectiveness decreases
rapidly as the number of codes increases. In contrast, the vari-
ation in KLD Precision at different K-values is less pro-
nounced, with higher S values. For example, 28% P @1 value
is almost double 51% S @1 value, which means that almost
3 out of 10 predicted codes (one per document) usually match,
while the other 7 codes often overlap categories or subcat-
egories with a total superposition of 30%, e.g. 4 out of 7
suggested codes could match half of the characters with
4 codes from the gold standard.

As for XMTC classifiers, P@10 and S@10 increase to
values greater than 25% and 35% respectively, while nDCG is
around 70%. The one based on neural networks (XML-CNN)
achieves lower values despite the dynamic max pooling
mechanisms counteracting the scarcity of examples, closely
followed by SLEEC. Conversely, FastXML and Dependency-
LDA obtain more promising results, for both small and large
values of K. Both differ in behavior for different K values:
Dependency-LDA has a less pronounced Precision slope.
Document-Similarity also achieves similar scores by only
comparing examples, with 3 out of 10 codes retrieved per
document being correct and 15% of the remaining 7 codes
matching the categories or subcategories, i.e. the additional
10% to P@10 spread over 7 codes.

Regarding binary classifiers, those algorithms achieve the
best overall values. Gradient Boosting produces the best per-
formance, with 69% success rate retrieving only one code and
40% for predicting the top 10. It also reaches the maximum
similarity, 80% when suggesting a single code and 50%
with 10. SVMs and MLPs behave in a similar way, reaching
S scores from 80% to 45%. Adaptive Boosting is also around
these values, but it shows a smaller variance depending
on K.

At first glance, it would seem reasonable to suppose that
binary methods more efficiently capture frequent codes, for
which there is enough information to conduct a quality char-
acterization, while the others that exploit the dependencies
are able to capture rarer codes. A breakdown has been made
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TABLE 4. Results of CIE-10-ES predictions for each method. The scores are shown as a percentage.

Type Method PQ@1 | P@Q5 | PQ10 | S@Q1 | S@Q5 | S@10 | nDCG@Q@5 | nDCGQ10
- Baseline 30.39 19.31 14.59 41.50 | 28.77 23.07 46.00 47.48
Binary SVMs 67.26 | 49.19 37.06 76.41 | 58.69 45.64 79.39 76.72
Binary MLPs 66.99 48.48 35.28 75.35 | 58.08 43.95 79.00 76.26
Binary AdaBoost 58.44 | 47.62 36.36 69.42 | 5791 45.06 76.77 74.46
Binary GBoost 69.47 53.30 40.88 80.73 | 64.00 49.98 80.71 78.44
Binary KLD 28.33 20.96 16.52 51.02 | 35.09 26.46 56.24 55.20
Grouping | Document-Similarity | 56.44 39.59 29.37 66.22 | 51.22 39.86 72.50 70.02
Adapted LSTM 37.28 22.14 15.08 48.73 | 33.06 23.95 51.19 51.19
XMTC XML-CNN 52.31 34.31 24.99 62.54 | 46.38 35.26 68.53 65.76
XMTC FastXML 60.65 41.81 29.87 68.57 | 5243 39.32 75.04 72.55
XMTC SLEEC 51.00 37.08 27.00 63.72 | 49.45 37.87 68.76 67.18
XMTC Dependency-LDA 59.61 41.28 31.96 71.52 | 53.48 41.93 75.34 72.19
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FIGURE 3. Precision at different K-values for all methods proposed for experimentation. The scores are shown as a percentage.

below to provide further details on which codes each method
is predicting.

A. ANALYSIS

In Figure 4 a detailed analysis of P@ 10 using the frequency of
training instances has been carried out to discern differences
in retrieved codes. P@10 is plotted on the y-axis, breaking
down the results by codes grouped into 8 clusters according
to the number of instances in the training data set.

The used frequency ranges follow a logarithmic scale to
balance the percentage of instances in each one. In addition,
the number of different CIE-10-ES codes and the impact on
the test data set for each group are shown in parentheses and
brackets respectively on the x-axis.

Figure 4 shows three separate sections in which dif-
ferent methods work best: up to 5, from 6 to 278, and
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from 279 instances in the training data set. As one can
see, the LSTM focuses on the very common codes with-
out getting the best scores, like the baseline. XMTC and
Document-Similarity approaches tend to balance Precision
for all frequency ranges by exploiting code co-occurrences.
Dependency-LDA outperform all methods for the least fre-
quent codes in the first section, which contains 5,676 different
codes and only represents 15% of the test collection.

Conversely, binary classifiers surpass the other methods for
those codes appearing more than 5 times. In particular, SVMs
together with boosting methods get the highest Precision in
the second section, which collects about 63% of codes in the
test data. On the contrary, KLD and MLPs seems to be far
better than the others with those codes appearing more than
278 times in the training data set. Despite the poor overall
KLD scores, it seems to perform efficiently for the higher
ranges.
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FIGURE 4. Frequency analysis of the CIE-10-ES predictions for each method. The scores are shown as a percentage.

The distribution of the results confirms that an indepen-
dent code characterization rewards the prediction of common
codes, which are assigned to a substantial number of instances
with which to establish certain coding criteria, while limit-
ing the suggestion of less frequent codes due to their lack
of information. Given the diverse behaviors, an ensemble
approach could exploit the dissimilarity and overlapping
between methods.

B. ENSEMBLE

The idea of combining such complementary methods is to
leverage this better modeling of usual codes and the aggre-
gation of scarce ones. Each representation and method can
contribute with different information. As for the way to com-
bine the methods, emphasizing contributions according to the
code frequency seems the obvious option. For this purpose,
two combination methods have been explored: voting and
regression.

The first one is implemented using an extension of the
Borda count to try to adjust the relevance of each predicted
code i to the results shown in Figure 4. The output per
document of each method consists of a list of candidate codes
sorted by confidence. In this scenario, all the codes suggested
by the methods for a document are grouped together and
sorted according to the new value Score, (i) in Equation 7.
Different partial scores are assigned to each output candidate
i according to the identifier of the method m that suggests the
code, the positions of the code i in the rankings provided by
the methods (p; ), and the appearance frequency of the code
i in the training data set (7).

M
Score(i) = W(pim) - am, f;) (7)

m=1
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The sum of partial scores for the same code indicates
the final code score (Equation 7), which will determine the
position in the ordination. M is the number of methods, W
is an exponential decay function, and « is a matrix with
coefficients associated with the different methods and fre-
quency ranges in Figure 4. The coefficients are proportional
to the performance in each section and system. For example,
the coefficient of the codes suggested by Dependency-LDA
and which appear between 6 and 15 times in the training
data set is the same as the coefficient assigned to the codes
predicted by Adaboost and with a frequency greater than
648 occurrences in the training data set.

The intended effect is to penalize those codes that are less
reliable in each method and to promote those that tend to be
the most successful. The individual treatment per frequency
range avoids gathering all the predictions for the most fre-
quent codes by improving the distribution of the results.

Regarding regression, the methods described in
Section III-C are applied to the training data set. Each code
assigned to a document by some classifier is a training
instance. Similar output code attributes have been used:
code position per method (p; ), appearance frequency (f;),
and length (L;). Equation 8 describes the final code score
Score, (i), where M is the number of methods again, 8 are the
intercept constants and slope coefficients, and € is the residual
value. Score, (i) is set to a positive constant value during the
learning process if the code i is in the gold standard; otherwise
it is zero.

M

Scorer(i))=Po+P1 - fi+ B2 Li+ ) _ Bus2 - Pimte  (8)

m=1

The regressor must estimate the probability that the code
i has been assigned to the document. Again, the codes for
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TABLE 5. Results of the combination methods, including GBoost with the best scores. The scores are shown as a percentage.

Method PrPQail PQ5 PQ@10 SQail Sas S@10 | nDCGQ5 nDCG@10
GBoost 69.47 53.30 40.88 80.73 64.00 49.98 80.71 78.44
Voting 62.51 49.22 46.75 70.90 57.42 53.17 72.93 70.49
Regression 73.53 54.73 41.73 82.75 66.31 51.25 83.56 80.80
80
70
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FIGURE 5. Frequent analysis for the predictions of the ensemble approaches and the two best methods per section. The scores are shown

as a percentage.

the same document will be sorted according to that value.
Although different estimators have been explored to com-
pute final scores, Bayesian linear regression has achieved the
best scores on the output rankings. The results are shown
in Table 5.

Both combinations have been designed to optimize P@ 10,
considering 20 candidates per method during the fusion.
The Voting method reaches 46% P@10, which is a 15%
improvement over the Gradient Boosting. However, the rel-
ative increase in S is lower (only 6%), which indicates that
almost all codes are successful in full and hardly any in part.
In turn, nDCG @5 and nDCG @10 are smaller, indicating the
movement of valid codes to lower positions in the output
ranking. On the contrary, Regression method does not reach
such high scores at both P@10 and S @ 10, but surpasses all
other metrics. The increase to 83% in nDCG@ 10 means an
approach of the valid codes to the highest positions. Although
the distance in P@10 between Voting and Regression is 5%,
the partial match of the Regression compensates for this
difference by reducing the deviation in S @10 to less than 2%.

Figure 5 shows the breakdown by frequency of both
combinations. It also shows those methods that reach the
first or second position per range. In general, combinations
outperform any other method in range 43-648, where those
seem to exploit the dissimilarities and different criteria of
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each method. Although the best scores in lower ranks are
not exceeded, the combinations succeed in adopting different
behaviors approaching the best methods in each case. As for
the 4 most frequent codes, performance has been decreased
to favor predictions of other codes.

V. DISCUSSION

Binary discriminative methods work properly by suggesting
individual codes but tend to focus on the most common codes
and ignore the rest. Noise is introduced and Precision is
reduced when there are a large number of labels with a limited
number of instances. In this case, there are 6,447 categories
in the used training data set (91% of the total) with less than
16 instances. Although this is only 26% of the volume of
the test data set, the prediction of these codes seems to be
more interesting for coders as their criteria and evidences
are more difficult to learn. That huge imbalance makes the
use of XMTC approaches convenient as they focus on sub-
sets instead, balancing results in different frequency ranges.
For example, Dependency-LDA always yields a P@ 10 score
between 20% and 40% for all frequency ranges.

A more desirable behavior would be a system with the best
of both families of algorithms: a high predisposition to guess
frequent codes as they involve most instances and imply more
automatic activity for the coder, while keeping the ability to
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suggest rare codes to handle greater complexity. Assembling
methods is one way of trying to combine both attributes.

The overlap of results in a joint system has been explored
through Regression and Voting. It should be noted that the
remarkable skewness of documents per label distribution
produces a tendency for labels with a larger number of doc-
uments to be predicted more often and therefore to appear
higher at the intersections between results, pushing down the
rest of the codes and extending the unbalance. Regression
is a discriminative learning method that requires a minimum
number of instances to identify patterns, and Voting method
selects codes based on their occurrence frequency. Neither
method deals with imbalance, so some mechanisms must be
implemented to counteract the promotion of common codes.

Including methods that propose more diverse codes such
as XMTC classifiers, introducing frequency as a feature to
identify rare codes and increasing their relavance compensate
for the imbalance. The proposed combinations of methods
have demonstrated how to harness different representations
and selection criteria to suggest lists of candidate codes
more relevant to coder task, predicting common and not-
so-common codes. As Figure 5 shows, there is an overall
improvement in code prediction, both in high-frequency and
low-frequency sections. Hardly any of the codes that appear
only once are matched, which seems an acceptable weakness
for a data-driven system. The counterbalancing mechanisms
used to avoid the constant suggestion of the most frequent
codes have penalized the score for those 4 codes that appear
more than a thousand times and constitute 8% of the data set
volume.

VI. CONCLUSION

This paper has addressed the prediction of the Spanish mod-
ification of the ICD-10 (CIE-10-ES) coding as a classifica-
tion problem with more than 7,000 classes. The main ICD
challenge is to deal with extreme distributions, containing
few very frequent codes and many infrequent ones. As far
as we know, this is the first data-driven proposal to deal with
CIE-10-ES coding considering so many codes.

The proposal is conceived to be applied in a real system,
suggesting a list of the 10 most probable codes to experts.
The idea is to provide the coders with additional information
that helps them to focus the search for diagnoses reducing
manual annotation time. For this purpose, it is important to
consider that coders can more easily recognize very frequent
codes in reports than less frequent codes, precisely because
they are more used to the former. So, a system capable of
suggesting also less frequent codes with precision might be
useful to them. For that reason, the proposed approach has
focused on avoiding the tendency to always predict the same
codes and to promote other less common ones.

Different methods have been explored, with special atten-
tion paid to P@10 as it indicates the degree of accuracy
on the 10 codes, being 10 the average per document. The
best P@10 score is achieved by Gradient Boosting (40%),
followed by SVMs, Dependency-LDA, and FastXML.
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Conversely, the worst values are reached by LSTM and KLD
approaches. None of these methods achieves the best results
in all frequency ranges. The idea of combining these methods
is based on exploiting their different strengths to improve the
results. A rule-based method by voting reaches 46% P@10
while a learning-based regressor get 5% less Precision but
locating the right codes at the top of the rankings.

In this domain, identifying negation as well as enriching
lexical diversity are important factors. Therefore, it is planned
for the future to include an effective detection of denied
expressions in combination with techniques based on medical
knowledge bases in order to improve the representation of
reports. The intention is also to explore more effective fusion
methods that focus on promoting more less frequent codes
and on the rough estimation of the number of codes in each
document through the diversity of terms.
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