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ABSTRACT This paper presents a deep reinforcement learning (DRL)-based task scheduling algorithm
that is applied to an FPGA-based real-time digital simulation (FRTDS) system to generate arrangements to
minimize the makespan of a task sequence with limited resources. The algorithm has two parts, which are
synthetic cost construction and DRL processing to make arrangements. The synthetic cost represents the
cost of different selections of arrangements in both resource usage and blockage arranging probability. This
study uses the cost tomeasure the state-action value function to process the deepQ network (DQN) procedure
to generate an optimized scheduling strategy. We establish the reinforcement learning strategy generation
process by instantiating the computing components in the hardware as agents, and RAM resources and
communication I/O ports as environment. A hardware-design-based decision rule is constructed to ensure
that the computing variables are distributed as evenly as possible in storage, while making full use of the
pipeline characteristics of FPGA. A compiler is written to generate an FRTDS binary stream to drive FRTDS.
Accuracy and performance of the proposed method are verified and evaluated. We present simulation results
of the modeling method, as well as from a classic method. Comparing these results, the makespan obtained
by the proposed method is significantly shorter. It corresponds to the possibility of having higher computing
power and dealing with larger-scale real-time simulation.

INDEX TERMS DQN, FPGA, power simulation, real-time, reinforcement learning, RTDS.

NOMENCLATURE
FRTDS FPGA-based real-time digital simulator
DAG directed acyclic graph
EST earliest scheduled time
LST latest scheduled time
fi current cost for dealing input
fo current cost for dealing output
fselect current cost for control layer usage
fguess_1 cost with arranging time exceed LST
fguess_2 potential cost with subsequent tasks
Session input, output, control layer handling period

for certain task
SC session cost
PC prediction cost
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I. INTRODUCTION
Real-time simulation is of great significance to control sys-
tem design, hardware equipment testing, and staff training.
For instance, a low-cost real time simulation system based
on a digital signal processor (DSP) was built for educational
purposes [1]. [2] emphasized the importance of the analysis of
microgrids with a real time digital simulator (RTDS) and [3]
built a co-simulation framework that can assess microgrids
with hardware-in-the-loop testing approaches. However, with
the rapidly increasing simulation scale and the common use
of electronic devices, demand for computing may exceed the
supply. To effectively expand the scale of simulation under
limited computing ability, a non-iterable method to shorten
the time step and finish tasks with multiple FPGAs was
presented [4]. However, the method is not always precise on
different device models, and multiple FPGA is not a prefer-
able choice considering its cost. [5] built a mathematical
model of a device to shorten the time step. It makes the
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model more versatile but can only deal with one speed, and
hence, it cannot simulate a combined system with multiple
time steps. A dynamic averaging model was proposed to
maintain precision with short time steps [6], but the method
is not applicable if the focus is on the transient process and
its control design.

Except for the above approaches, the problem can be
considered from the perspective of hardware computing
concurrent task-scheduling, which refers to tasks executed
on hardware in parallel but not in parallel threads while
scheduling. The task-scheduling process of cloud computing
was optimized and computing efficiency improved by math-
ematically describing the load-balanced state [7]. A heuristic
algorithm to solve multi-core task-scheduling problems
under limited resources was presented [8]. FRTDS is also
a multi-core system with limited resources, in which case
the problem is transformed into a model that minimizes
the makespan of concurrent task sequences with limited
resources. For task-scheduling implementation, a solution
to quantify the optimal substructure problem was intro-
duced [9], but it can only generate results under sequen-
tial decision-making conditions. Resources were used as
constraints and an artificial immune algorithm was used to
plan and optimize task-scheduling strategies [10]. List and
pack models for parallel task-scheduling were used while
considering resource consumption, and an easily-deployed
ε-approximation algorithm was presented [11]. This method
balances algorithmic complexity and fast implementation,
and cannot provide an optimal solution in theory. Load bal-
ancing and resource cost were quantified in a fitting function
as optimized goals, and a PSO algorithm was used for task
scheduling, but the heuristic method is complicated for
expressions of different states, hence it is not easily used for
swift migration [12]. Hardware resources were assumed to be
unlimited, and the ideal scheduling time of each task was the
optimal target benchmark. By making the actual scheduling
time as close to the ideal as possible, the completion time
of the computing task was shortened. This method only
considers current limitations and not long-term impact [20].
The above methods take only resources as constraints and
ignore the use of resources as decision-making variables.

This paper assumes that the proper use of resources can
have a great effect on the task-scheduling process based on
experience with imbalanced storage of variables in comput-
ing. We propose a reinforcement learning (RL)-based algo-
rithm that takes resource usage as parameters to describe the
cost of task selection, and whose principle is the balanced
storage of variables as an arrangement. The resource usage
of each hardware clock is described as a state, and the choice
of a task to execute is a transition between states. Due to
the non-full-state feedback of the state transition, there is
a problem in describing resource usage under new states
in later times. To describe the resource allocation caused
by currently scheduled tasks in subsequent hardware use,
a predicted window is established to estimate the subsequent
impact of the current decision task. The predicted window

obtains the future impact of the current task by analyzing its
successor tasks in variable storage, and then we use these
tasks to calculate a value based on its allocated resources.
Also, to improve the balance of resource allocation, there is
no fixed decision order of computing components, and we
adopt load-balanced decision rules. In each hardware clock,
all of the computing componentsmust be sorted first andmust
make decisions with adequate communication.

The strength of this method is that implementation through
deep reinforcement learning (DRL) enables it to find optimal
sequential tasks in different types of equations and reorganize
tasks in similar patterns without a training dataset or adjust-
ments. Furthermore, the synthetic cost is based on resource
usage, hence it can be applied to other systems that need
to generate parallel part-sequential decisions with limited
resources. When deployed, a shortcut based on hardware
design calculates values as network outputs to accelerate the
optimization. The feasibility of the proposed optimization
method is demonstrated by two examples on an FRTDS
system.

The remainder of this paper is organized as follows:
Section 2 introduces FRTDS and the platform we use.
Section 3 gives a clear view of the proposed method.
Section 4 illustrates the implementation of an algorithm based
on the proposed method. Section 5 explains our experimental
results obtained with the proposed method and a compara-
tive approach [20]. Section 6 discusses our conclusions and
possible future work.

II. ABOUT FRTDS
FRTDS fulfills RTDS functions on an FPGA platform.
FPGA-based RTDS is constructed in two ways. One is to
use FPGA as a coprocessor [13]. The other [14] uses one or
more FPGAs to compute in small time steps. Both ways rely
greatly on component models to enable fully pipelined and
parallel-computing characteristics. A frequency-dependent
phase-domain (FDPD) line model was used to map a
traveling-wavemodel to FPGA computing [13], and a switch-
ing network partitioning (SNP) model was used to map mul-
tiple converters to FPGA computing.

Our laboratory presents an FRTDS system, and we decom-
pose power systems into subsystems to solve them. This
is an effective approach [15], [17]–[21]. FRTDS casts the
simulation process into many steps. The step size (50 µs)
corresponds to a fixed number of 7500 hardware clocks.
Considering frequency, we are working faster than [16]. One
step-size length simulation is completed after solving all
of the system equations. However, the number of hardware
clocks corresponding to the step’s completion time must be
less than the maximum, which is 7500. When the simula-
tion scale becomes larger, it takes more hardware clocks to
solve the system equations in one step. With the same sim-
ulation object, compressing the number of hardware clocks
representing the completion time improves the simulation
efficiency, which means that the scheduling algorithms can
handle larger scale simulation objects. To effectively reduce
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the data storage pressure of the FRTDS and improve the
speed of simulation calculations, the multi-value parameters
required by the direct calculation method (without solving
the sub-network equations) were defined according to the
sub-network in principle [17]. The hardware design and code
flow generation of FRTDS were introduced [18]. GOOSE
and SV communication interfaces were added to FRTDS,
enabling its use for real-time simulation of intelligent sub-
stations [19]. Power system electromagnetic transient simu-
lation calculation task scheduling software was developed to
directly generate the binary stream required by FRTDS, elim-
inating concern about the coding of simulation programs [20].
The hardware platformwe used to run examples was designed
by [21], and it promises a reduction in LUT usage in FPGA.
Figures 1 and 3 show the system structure of a computing
component in FRTDS. In Figure 1, the computing component
is connected to the RAM storage area through the read–write
control layer, so the address of the RAM area belongs to the
resources directly used by the system.

FIGURE 1. Structure of the computing component.

Regarding I/O ports, the task arrangement will directly
interact with the RAM area. Though I/O ports belong to
resources, they are mainly dependent on injection, which is
determined by the task being scheduled. A task scheduling
method refers to a computing expression corresponding to
each input variable. The data are sent to the input I/O port, and
the variable data are calculated according to the core structure
to obtain the result from the output port. Therefore, there is at
least one correspondence between a prescribed I/O port and
an input variable in a computing task, that is, an I/O resource
usage mode. A computing component can use I/O resources
in accordance with the I/O port usage method specified by
the computing task. It can use the F and G ports for direct
data transmission after selection. It can also use the A or E
port to connect to all RAM to obtain data directly. These two
I/O usage methods enable the current computing component
to communicate with other computing components. The use
of ports F and G is based on selection. The real input data
will only be input to the computing core through the five
input ports A-E . If the I/O required by the computing task
does not occupy all of the needed I/O ports, then the data
are transferred from other RAM storage areas through the
F or G port to complete the calculation. According to the
hardware design [21], theA andE ports are directly connected
to all RAM memory blocks, so data in any RAM area can be

obtained directly by reading the control layer, whether in the
private RAM area or that of the computing component. The
reading and writing relation between RAMs and computing
components can be seen in Figure 2. The double-ended arrow
means RAM is private for certain components, the red arrow
means it is not private but can be accessed by the control layer,
and the black arrow means the output to RAM with control
layer. As to the two data communication methods, the latter
directly consumes the communication capacity by taking
up I/O resources, and the former can retain data communi-
cation ability if I/O resources are available for computing
components.

FIGURE 2. Relation between computing components and RAM areas.

FIGURE 3. Structure of computing core.

III. MODELING METHOD BASED ON RESOURCES
A. BLOCKAGES AND COSTS
We construct cost to measure the interrupted working occa-
sions of computing components. Assuming no RAM read
and write restrictions, the deep pipeline characteristics of
FPGA will be obtained and the hardware will always be at
full capacity with the highest efficiency. This will result in a
partial serial relationship between tasks, which will obtain the
EST and ideal completion time of all computing tasks. The
LST represents that no computing task will affect the ideal
completion time through DAG dependency, and each can be
obtained through reverse recursion. Under ideal conditions,
no blocks occur and the computing components can fully
work at each hardware clock to reach the optimal state. Due to
limited resources, computing tasks cannot always be arranged
before their LST. For the analysis of the operating modes
of computing components, the variables used for computing
may exist in their own private RAM area or in the RAM of
other computing components. In the latter case, it is impos-
sible for computing components to directly read variables.
The hardware provides communication methods, but the I/O

VOLUME 8, 2020 155799



Y. Guan et al.: FRTDS Real-Time Simulation Optimized Task Scheduling Algorithm

resources are limited, and cannot guarantee the smooth flow
of reading and writing variables. A computing component
may not always be in working condition. Define a block
as a situation where certain computing components have
communication conflicts or RAM read-and-write conflicts
and cannot execute a computing task at a certain hardware
clock. Through our previous experiments, we assume the
most fundamental reason for a block is that the variables used
for calculation cannot be reasonably and evenly distributed
in the storage area during scheduling. The communication
capabilities of the hardware can alleviate this imbalance,
but the task scheduling algorithm fails to consider their use.
Hence, there will still be over-communication-based schedul-
ing schemes that eventually lead to blocks.

The solution is illustrated in Figure 4. The framework
is in a closed-loop feedback state. Resources influence the
strategies of distribution by arranging tasks, and distribution
influences resource usage thorough agents (computing com-
ponents). Our solution to the task scheduling problem under
conditions of limited resources is to consider the resource
usage in the scheduling algorithm and fully guarantee the
reasonable storage allocation of the computing variables
while scheduling. Calculation tasks use different variables
and cause different potential blocking situations. We use cost
to measure the effect of potential blocks. The cost concept
corresponds to the introduction of blocks when using differ-
ent modes of tasks for scheduling. Based on different effects
on resources, we divide the cost function into an SC part
that characterizes the current resource occupancy and a PC
part that evaluates the current decision task’s future effect.
Hence, the method in this paper considers the synthetic cost
for each task arrangement, considering the impact on current
resource occupation and predicting possible future blockages.
We use SC and PC to design the computing component
selection criteria and the principles controlling the allocation
of computing variables in the storage area.

FIGURE 4. Proposed solution framework.

B. CONSTRUCTION OF COST FUNCTION FOR
SINGLE-COMPUTING COMPONENT
1) SESSION COST CALCULATION
FRTDS can carrymultiple computing components, which can
independently execute computing tasks. It can also perform
data communication based on communication capabilities
to help other computing components complete calculations.

We first analyze SC in a single-computing component.
To facilitate the description of resource usage, we label the
resources of FRTDS. As seen in Figure 1, multiple selected
read-write control I/O ports are connected to all RAM in the
RAM area, and the remaining I/O ports only communicate
with the private RAM area of their own computing com-
ponents. According to the design of FRTDS [21], internal
RAM can store up to 1024 double floating-point numbers.
Let FRTDS enable L+1 BRAMs labeled n0 to nL , and let the
system contains P+1 computing component modules labeled
m0 tomP. At the same time, we use qi∈ [1, 5] as the input port
on each computing component. Similarly, the output ports
are qo and qo ∈ [1, 3]. Finally, we use ADR to represent the
constant 1024. To better express the many-to-many mapping
relationship between I/O ports and RAM, we use adrqi to
express the correspondence between the I/O port used by the
RAM of variables in the currently considered task, and we
express a relationship representing a many-to-many connec-
tion as a one-to-one connection when scheduling. According
to the actual computing process, a session can be divided into
input, selection control, and output processes. We express fi,
a part of SC, from the input area of the computing component
during task scheduling as follows:

fi =
∑
qi∈I

(
c1 · adrqi

)
pi

ADR
+

∑
qi∈I

c2 · (ADR− adrqi)pi
ADR

, (1)

where adrqi is the number of addresses that have been used
in the currently mapped RAM, and I is the set of RAMs
corresponded to input variables. Pqi takes a discrete value to
indicate that the RAM occupies several working ports when
used. If only one is occupied, it is set to 1. Taking up both
ports for RAM blocks the use of other variables in the same
RAM. This will lead to imbalance of both arrangements and
loads. We double the cost so as to avoid such occasions.
c1 and c2 are hyperparameters to adjust the weights of the
model to measure costs. Similarly, fo can be expressed as
follows:

fo =
∑
qo∈O

(
c3 · adrqo + c4 · (ADR− adrqo)

ADR
) · Pqo, (2)

which considers that the used address is blocked and the free
address cannot be used. We should make clear that qi and qo
represent input and output I/O indices and O is the set of
RAMs corresponding to outputs.

A session includes a control layer that can complete the
communication between the current computing component
and others. According to the two communication methods,
the cost of communication is different for the two methods.
The use of global RAM reading requires only the RAM
address because the remaining communication capacity is
retained, while the F or G port for pipe communication
requires communication capacity, which will communicate
when the remaining computing components are making
schedules. We add additional fselect in this situation. Since
communication can be divided into the modes of obtaining
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and providing data, we write (3), as shown at the bottom of
this page, where Iselect_o is the set of M and N ports of any
computing component, Iselect_i is the set of F and G ports of
any computing component, and IA/E is the set ofA andE ports
of any computing component. Po equals 1 if the oth selection
controls when the I/O output port is used for pipe communica-
tion, and is zero otherwise. Pi and Pk are defined analogously
for the input of F andG ports and A and E ports, respectively.
PF/G indicates the way to use the F or G port to communi-
cate with other computing components. From the computing
kernel structure in Figure 2, we can see that M must be used
as the output when using the F port, so we set PF/G to 1 when
pipeline communication between F andG is not applicable or
only one of F andG is used. When the F andG ports are used
at the same time, PF/G is set to 2; N represents the number of
all computing components. The index is the decision-making
order of each component at each moment, and the order is a
number obtained by component sorting results. Equation (3),
includes the cost of communication to obtain data, data pro-
vided by communication, and non-pipeline communication
using any A or E port to read any RAM. The first part of the
equation represents the data acquisition and interactive block-
ing cost, the second represents the blocking cost of providing
data for interaction, and the third is the blocking cost of global
data access. This paper considers the importance of commu-
nication capabilities for reasonable task scheduling of other
computing components in the future, and increases the SC of
computing components that are scheduled for task execution
and communication. Based on the above analysis, the SC of
a single computing component can be written as follows:

SC = fi+ fo+ fselect . (4)

2) PC WINDOW AND PC CALCULATION
According to the previous analysis, blocks emerge when con-
flicts exist in reading and writing addresses or communicat-
ing, because the full-state feedback of resources at a certain
hardware clock in the future cannot be explicitly obtained.
The cost of potential blocks cannot be directly described by
address occupation. We propose the concept of a PC win-
dow from another perspective to describe possible blockages
caused by task scheduling over a period.

The PC window is the closed interval formed between the
current decision task time and the ideal lasted arranging time
of the succeeding task being tested, which is jointly deter-
mined by all subsequent tasks of the current task and time.

The length of the window limits the current decision task to
consider each subsequent task in turn. The arrangement of
these tasks can be described by predictable computing and
communication needs. The window must be changed accord-
ing to each successor task. The prediction method proposed
in this paper requires a window analysis and summation of
all successor variables. The concept of the window can be
understood from Figure 5. Task y is the successor task of tasks
x1, x2, and x3 and the previous task of tasks z1, z2, and z3,
according to DAG dependency. Taking task y as an example,
each successor task establishes a PCwindow, and the union of
all PC windows of successor tasks constitutes the PC window
of task y.

FIGURE 5. Concept of predicted window.

Let the current decision task have j successor tasks; i rep-
resents the ith calculated variable in the jth successor task, and
variable(j,i) represents whether the ith variable of the jth suc-
cessor task is uncalculated (variable not in the RAM storage
area in the time between the predecessor and successor tasks
in the PC window), and if so is set to 1, and otherwise is 0;
cls represents the ideal scheduling time of the successor task,
cur represents the current decision time, and lst represents
the LST for subsequent tasks. The blocking risk introduced
by uncalculated variables in the PC calculation is as follows:

fguess_1 =



∑
j

∑
variable(j, i)

(cls− cur) · (lst − cur)
, cur < cls

∑
j

∑
variable(j, i)

(cur − cls) · (lst − cur)
, cur > cls

0, cur = cls.

(5)

fselect =


∑

i∈Iselect_i

(
c5 × adrIi + c6 × (ADR− adrIi)

ADR
+

1
2

)
· Pi · PF/G

+

∑
o∈Iselect_o

((
c3 × adrIo + c4 × (ADR− adrIo)

ADR
+

1
2

)
· Po

)
×
(
2− PF/G

)
× (N − index)

+

∑
k∈IA/E

c7 × adrIk + c8 × (ADR− adrIk )
ADR

· Pk (3)
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This part of the PC is described by the relationship of
task scheduling times. A task that can be scheduled at the
ideal scheduling time is considered non-blocking. Otherwise,
the result will be added and the blocking cost will change
the sign when the time has exceeded the LST, which means
that fguess_1 encourages the task to complete the scheduling as
soon as possible and reduces PC by completing the arrange-
ment before the LST arrives to make it complete as soon
as possible. Based on the common sense of the scheduling
process, PC needs to involve the estimation of the communi-
cation cost. Even if a variable exists in the RAM storage area
before the specified time, there are still cases when the RAM
does not belong to the private RAM of the current computing
component. In this case, the current task selection will need
communication to arrange subsequent tasks, which will incur
additional blocking costs. We calculate this part of PC as
follows:

fguess_2 =
∑
j∈J

N (j)ready − 1
ready(j)+ 1

, (6)

where j represents the jth successor task and J is the set of all
successor tasks for a considered task, and ready() counts the
ready variables of the jth successor task that must be fetched
from other components’ RAM areas when used in the jth

successor task. N (j)ready indicates the number of variables
that are ready in the jth successor task. Based on the above
analysis, the PC of a task can be expressed as follows:

PC = fguess_1 + fguess_2. (7)

And synthetic cost for certain task we use in the following
passage is the sum of SC and PC for certain task.

IV. DRL-BASED OPTIMIZED TASK DECISION
A. INTRODUCTION TO MULTI-AGENT DRL
Reinforcement learning determines the optimal behavior of
an object by interacting with the environment based on its
state. Unlike supervised learning methods, reinforcement
learning requires no clearly labeled training set. Optimization
is accomplished by continuous interaction with the environ-
ment to obtain feedback and modify object selection strate-
gies. Reinforcement learning is unique because the feedback
it gets from interacting with the environment is time-delayed,
which enables it to adapt to complex decision-making prob-
lems. Its interaction model is shown in Figure 6.

The environment varies continuously with the action of
the object between states. The environment is modeled from
the perspective of the Markov decision process. Most such
methods are carried out through deep learning networks.
There are several construction methods for deep reinforce-
ment learning, among which DQN networks are commonly
used. ADQNnetwork is based onQ-learning, where Q stands
for the state-action value function, which is used to measure
the value obtained by selecting a certain behavior a with
current state s in the current object. To select the research
object (agent) is to select the action by using the existing

FIGURE 6. Concept of DRL interaction.

state-action pair Q value as an estimated value, and the val-
uation network to calculate the actual state-action selection
behavior of Q and update it after the selection. To continu-
ously make selections can continuously improve the effect
of the agent’s next selection. The Q value calculation of the
multi-agent system is introduced below.

The learning goal is defined as learning strategy π :
S ∈ A, the finite state set S = {Si} and A = {ai} as the
action set of the object. The strategy description object selects
the probability distribution {P1, P2,. . . Pi} of action a ∈ A
according to the current state s ∈ S. Starting from any state St,
the expected cumulative attenuation obtained according to
strategy π∗ is as follows:

V π (st ) = E
(∑∞

i=0
γ irt+i

)
, (8)

where 0 ≤ γ ≤ 1 is the delayed reward attenuation
coefficient, which reflects the importance of the current and
future reward in the total reward, and rt is the bounded return
obtained from each hardware clock. Considering that the
system state transition is a nondeterministic Markov process,
the expectation is added to the calculation of cumulative
returns. The best strategy of the object is to maximize (8).

The behavior selection can be simplified to the evaluation
process of the Q-estimation network, and network estimates
are calculated according to (9). For convenience, we use Q̂ to
denote the Q-estimation value, and Q is used to calculate the
Q value for behavior selection, which is calculated through
the delayed reward principle:

Q(s,
→
a ) = E[r(s,

→
a )+ γV ∗(δ(s,

→
a ))]

= E(r(s,
→
a ))+ γE[V ∗(δ(s,

→
a ))]

= E(r(s,
→
a ))+ γ

∑
s′
P(s′|s,

→
a ) · V ∗(s′). (9)

Equation (9) is iterative. This optimization problem is con-
sidered from the perspective of dynamic programming of
optimal substructures. We replace (9) with

Q(s,
→
a ) = E(r(s,

→
a ))+ γ

∑
s′
P(s′|s,

→
a ) ·max

→

a′
Q̂(s′,

→

a′),

(10)

where r(s,
→
a ) is the reward that a selection can bring at this

moment; δ(s,
→
a ) is the state successor function that represents
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the next entry of the object after the component acts in
state s with action a; P(s′|s,

→
a ) is the probability that the

subsequent state is s’ after multiple objects take the action
vector in state s, and a’ is the action of each research object
in the new state s’. In theory, iteration should stop when
the agent transfers to the final state. Besides, since taking
max as the target estimation in (10) may cause the estimated
value to be significantly higher than the real value because
of using same set of parameters in networks. There is also
a double DQN method for balanced value estimation. This
method introduces an additional set of DQN networks as
a target-DQN with different parameters, which is designed
for Q value calculation; the main DQN is used for behavior
selection and the target-DQN Q value converges to the main
DQN to ensure that the training process does not oscillate.
Equation (10) can be modified to:

Q(s,
→
a ) = E(r(s,

→
a ))

+ γ
∑
s′
P(s′|s,

→
a )Q̂(s′, argmax

→

a′
Q(s′,

→

a′)), (11)

where Q is the main DQN and Q̂ is the target-DQN. The
Q value for behavior selection is provided by the main
DQN, and then the Q estimate value can be calculated using
the target-DQN. Parameters of target-DQN are often set as
parameters of the main DQN after several steps. The Q value
of the main DQN can be split into two parts for calcula-
tion, which will increase the speed of the agent’s behavior
selection in the main DQN. According to the typical method,
we obtain the Q value of the main DQN network as follows:

Q(s,
→
a ) = V (s)+

∑
→
a

A(s,
→
a ), (12)

where V (s) estimates the current state value and A(s,a) esti-
mates the advantages of the relevant actions.

If the network parameters are integrated into the gain
function and state successor functions as parameters and are
expressed as rt (s,

→
a ; θt ) and δt (s,

→
a ; θt ), respectively, then

the network parameters can be updated according to the
gradient based method:

θt+1 = θt + ε · (Q(st ,
→
at ; θt )

− Q̂(st ,
→
at ; θt )) · ∇θt Q̂(st ,

→
at ; θt ), (13)

where ε is the learning rate of the neural network, and the
remaining quantities are calculated by Eqs. (11) and (12). We
generally set γ between 0.97 and 0.99. Q estimation can be
updated by:

Q̂t+1(s,
→
a ) = Q̂t (s,

→
a )+ βt {rt (s,

→
a )

+ γ
∑

λ∗1

∏n

i=2
λit Q̂t (s′,

→

a′)}, (14)

where λ∗1 is the estimated probability of the current agent
executing the optimal action strategy based on its judgment,
and λi is the estimated probability of the current agent exe-
cuting strategy i that it is currently capable of executing.

Probability estimates can be calculated using roulette or soft-
max methods. Equations (13) and (14) are used in network
training with stored experiences in (state, reward, action, next
state) format. In theory, we stop the iteration when our agent
transfers to the final state. However, in practice, when training
the DQN network, we often use:

loss =
1
2

∑
ai∈Ea

(
r + γ Q̂

(
s, argmaxQ

(
s, ai; θ−

)
; θ ′
)

−Q
(
s, ai; θ−

) )2
(15)

where r is the reward of the current action, ai is the action
chosen, and θ is the set of network parameters. The equation
represents the summed square error of the target-DQN Q
value and main DQN Q value when choosing certain action
vectors. We use this loss for backpropagation in (13), and
update the Q value by a time discrete update:

Q (s, ai)=Q (s, ai)+α
(
r+γ Q̂

(
s, argmaxQ

(
s, ai; θ−

)
; θ ′
)

−Q
(
s, ai; θ−

) )
(16)

When the summed square error is within tolerance, we stop
the iteration. In our implementation, we add a max epochs
limit to stop the iteration in the case of exceptions.

B. REINFORCEMENT LEARNING BASED ON COST
To develop DRL, we must set the agent and environment,
choice of strategy, and expression of state values. The FRTDS
system has multiple computing components, each needing to
make task scheduling decisions, which will affect the allo-
cation of RAM storage resources. It is obvious that FRTDS
and multi-agent DRL bear a resemblance. We abstract each
computing component in the FRTDS system as an agent, and
we abstract task selection as an action in DRL. Since we have
a fixed number of task modes, we have a finite action space.
We quantify resources in state expression by making resource
variables as input vectors.We update the RAMport usage and
address usage percentage according to task selection for each
hardware clock. RAM port usage will decide whether certain
RAM can be used at certain hardware clocks, and we encode
this as 1 if it can, and zero otherwise. We add numbers of
undone tasks to it. We extend the address-use percentage of
each component to the index we have just encoded. We map
a small range of values to one figure which is the mean of this
range. We suggest a (−2%, +2%) range. Now we can make
continues filed into discrete field. We clip the value mainly
to shrink the scale of the state space to reduce the computing
complexity. Then we will have an input vector representing a
certain state. We explain how to combine SC and PC with the
FRTDS system by mathematical principles of reinforcement
learning to better generate strategies. With a finite action and
state space, we now can implement our algorithm on the DQN
structure.

The state transition process based on the use of resources is
different from the general state transition process. FPGA has
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deep pipeline characteristics, so the calculation task selection
vector executed in the current state will take effect some-
time later, depending on the length of the pipeline [21]. The
state transition with pipeline characteristics will affect the
calculation of conditional probability in (11) For subsequent
states in conditional probability calculation, we propose to
use the state after the pipeline length instead of that at the next
moment on the hardware clock, hence the state in the equation
is the performance after the influence of the execution of
selected calculation tasks. This gives the calculation practical
meaning. And indeed, this system should be seen as history-
dependent.

For V (s), as the system’s current state value estimate, it can
be obtained by the main DQN network output added with a
task-considering bias. The main DQN network takes input
vectors we build and generates evaluated state values as out-
puts. We use LST to describe the bias with task arrangement
status:

bias(s, Ea) =
∑
i∈
→
a

(lst + 100− ti)2, (17)

where ti is the time schedule of the task scheduled by the
ith computing component, and lst is the LST of the task
scheduled by the ith computing component, where 100 is
the hardware clock length, which can be adjusted accord-
ing to the hardware design. For the reward system, with
limited resources, we still must ensure that the task accepts
a certain reward when finished. Therefore, considering the
longest pipeline length, we set the buffer value to 100. The
threshold time is LST plus the buffer value. Negative rewards
will be received when arranging tasks after their thresh-
old time has passed, and positive rewards will be received
otherwise.

For the calculation of A(s, a), extended summation can be
combined with the SC and PC described:

A(s,
→
a ) = −

∑P

i=0
(SC(mi)+ PC(mi)), (18)

where mi is the task index chosen by computing compo-
nent mi. The set of all mi task scheduling choices constitutes
the computing task selection vector a.

C. DECISION RULES AND DECISION ORDER OF
COMPUTING COMPONENTS
The decision rule is to optimize the target service so as to
better balance the computing variables of the task scheduling
process. It is a basic decision rule formulated to eliminate
blocking. The SCmentioned above can only be used as part of
the decision rule. Eliminating blocking in the task scheduling
process canmore efficiently schedule computing tasks, which
is the starting point of our optimization work.

Based on whether the variables used for the operation have
been stored in the RAM area and the dependency constraints
of the calculation task, we screen out a ready task sequence
that can be considered for each operation component at each

moment. To maintain the reasonable allocation of variables
in the storage area during the execution of computing tasks,.
We propose the following decision rules:

1. According to the obtained hardware resource usage
description and ready limit, all of the ready task sequence is
generated before the beginning of a decision time.

2. We check whether all ready tasks can use the hardware
read-write control layer for the computing component cur-
rently making a decision.

3.We check whether ready tasks share variables. If so, then
we establish group scheduling using control-layer design to
broadcast variables. Otherwise, we estimate the synthetic cost
of a task according to its SC and PC and obtain the cost-sorted
sequence by filtering the ready task sequence.

4. We use the ε-greedy method to randomly select all
currently selectable tasks by generating a random number.
If the number is less than ε, then the current task is selected,
and otherwise, tasks should be chosen by the greedy rule with
the least synthetic cost.

5. After obtaining the task, we determine how many vari-
ables must be obtained through communication. If there is
more than one, the calculation task will be locally optimized
and the variables will be calculated in advance according
to the resource usage record through the time when there
is an idle pipeline communication capability. For output,
we use the PC window to analyze the subsequent tasks of
the output variable again and allocate the output to the most
concentrated RAMaccording to the storage allocation of each
variable of subsequent tasks.

6. In this process, the remaining variablesmay not be ready.
At this time, to ensure a balanced load, the RAM with the
greatest number of unused addresses for output should be
chosen. Also, the remaining variables may be evenly dis-
tributed with multiple RAMs. At this time, multiple alloca-
tions of the output port should be used to allocate to multiple
RAMs. This canminimize the imbalanced resource allocation
of computing components.

Computing components are designed so as to not make
decisions in fixed order at each hardware clock. The decision
order should be dynamically changed, which affects the occu-
pation of RAM and communication resources. We propose
the following rule to determine the decision order of the com-
puting components at each hardware clock. We consider the
goal of load balancing and sort them in descending order by
calculating the address space that each computing component
has already occupied, and expand the operation arrangement
according to this order.

This order is used because computing components occupy-
ing a large number of addresses have a higher probability to
execute computing tasks without communication, so commu-
nication capabilities are reserved for subsequent tasks, which
can improve scheduling efficiency. Using the above decision
rules and order, the resource and synthetic cost description
of FRTDS can be used to complete the generation of the
calculation task selection vector a.
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D. COMPUTING TASK OPTIMIZED SCHEDULING
ALGORITHM BASED ON FRTDS
The algorithm in this paper is designed to improve the ratio-
nality and balance of variable allocation in storage during the
scheduling of computing tasks. At the same time, we assume
that the allocation of initial variables affects the overall
scheduling. The method of initial parameter allocation is to
set variables in RAMs according to the actual topology of
the system to be simulated, for example, to allocate data
on the same bus line to the same computing component’s
RAM storage. The logic of the algorithm in this paper at each
moment can be summarized as follows.

1. Update hardware resource usage.
2. Determine which computing component should be

assigned a computing task according to the decision order.
3. Filter the ready task sequence according to the ready

condition and calculate the SC in conjunction with the com-
puting component.

4. Select the calculation tasks to be performed for the
current computing component according to the decision rules.

5. Set the current computing component that has been
assigned a computing task and skip to step 1.

6. Loop until all computing components at the current
moment get a computing task or no ready task exists.

7. If all computing components have accepted a task
assignment, or the current task assignment is complete, then
calculate the current and delayed rewards.

8. End the current time; add 1 to the global time record.
The algorithm can be seen in Figure 7a, and the decision

loop in Figure 7b.
To illustrate the details, the logic of implementation can

be seen in Algorithms 1 and 2. Algorithm 1 shows how the
strategies are generated. FormulaCompile is used to read
in tasks and build DAG dependency. DelayRewardUpdate
accumulates long-term rewards in the DRL environment.
BinaryCodeGen generates a binary stream that FPGA can
use.

Algorithm 2 shows the execution of the Q-learning pro-
cess to explore solutions. DQN network is included in
CostFunction.

V. FRTDS EXAMPLE VERIFICATION AND RESULTS
ANALYSIS
We first implement instruction compiling software by using
the concept of coding flow [18], and extend the software’s
computational task scheduling algorithm based on synthetic
cost and reinforcement learning. We use Qinbei 220 kV and
500 kV power plant real-time simulation calculation scripts to
compare the proposed algorithm with FRTDS. The topology
of the platforms can be seen in Figure 8a and b.We first verify
the correctness of the results using the proposed algorithm.
The real-time simulation result is compared with the PSCAD
offline simulation result. We analyze results we get under the
same script and hardware resources using the two methods.
According toQinbei 220kV power plant simulation, we select

FIGURE 7. (a) Process of proposed algorithm. (b) Decision loop.

the PT voltage value of index 221 as the observation object,
set the BC two-phase short-circuit fault in 4 s, and clear the
fault after 0.2 s.
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Algorithm 1 Task Scheduling
task_sequence, dag←FormulaCompile(input, calc_rules)
undo_tasks←len(task_sequence), Q_table←{}
env.reset(), clock←0, done_tasks←{}, delay_reward←0
strategy←{}
while undo_tasks > 0 do
for each task in task_sequence do
if task.dag_limit==false && task.can_arrange then
can_do.append(task)

end if
end for
state←env.update()
do_tasks←QExplore(state, env, can_do, Q_table)
obs_timestamp←env.step(do_tasks, strategy)
DelayRewardUpdate(delay_reward, obs_timestamp)
undo_tasks←undo_tasks – len(do_tasks)
done_tasks.extend(do_tasks)
task_sequence←task_sequence \ done_tasks
clock←clock + 1

end while
BinaryCodeGen(strategy)
returnstrategy

Algorithm 2 QExplore(state, env, can_do, Q_table)
deo←DecisionRuleSort(state.component, env)
while any state.component is available or len(can_do)>0
with deo as decision_order do
min_cost←inf
for each task in can_do do

if(env.resource, task.mode) in Q_table.keys() do
cost← αQ+(1-α)CostFunction(env.resource, task)

else
cost←CostFunction(env.resource, task)

end if
(cost < min_cost)?(min_cost=cost):(min_cost)

end for
state.op_task.append(ct←FindtaskbyCost(min_cost))
can_do.remove(state.op_task)
Q_table.update()
state.ramuse.record(rec←RAMArrange (ct, state, env))
end while
return do_tasks←doTaskfactory(state, env, Q_table)

Taking 220 kV as an example, the change of the PT voltage
is shown in Figure 9, where the solid line is the result obtained
by our algorithm and the dotted line is the offline simulation
result of PSCAD. We can see from Figure 9 that the two
curves mostly fit. Then we use Qinbei 220 kV and 500 kV
power plant scripts to execute the two algorithms to compute
task scheduling. The makespan of the two algorithms on the
two scripts are shown in Table 1.

In the scheduling process of the two algorithms, the time
distribution of the RAM read and write code corresponding
to each computing component (three in total) with 220 kV

TABLE 1. Makespan comparison.

and 500 kV simulations are shown in Figures 10a, b and 11a,
b, where code time represents the concept of the hardware
clockmentioned above, and the instruction refers to the 16-bit
binary code in each component. We set the number of codes
for each component as the y-axis, and the hardware clock as
the x-axis, and then we plot the curves. The colored zone
represents that the number of codes varies from the lower
to upper bound, and the lower bound could be zero. The
number of codes remains zero for a period will leave a blank
on x-axis which means certain component runs into block.
The statistical results of the communication times used by
the two algorithms in the scheduling process and the total
number of codes are shown in Table 2. We set the initial
variables only in computing component 1 (as PE1) in the
500 kV simulation. This is different from balanced storage
in the 220 kV simulation.

Real-time simulation solves system equations in one step
and solves them again in the next step. However, the comput-
ing process is the same. So, we record the statistics in just one
step for our comparative analysis.

TABLE 2. Comparison of code usage count.

We can make the following basic observations from the
graphs and tables.

1. The makespan (in the hardware clock) obtained by the
proposed algorithm is significantly shorter than from the
method in [20], considering Tables 1 and 5.

2. In Figure 10a, there is no blank on the x-axis (interrup-
tion of instructions) in one simulation step.

3. In Figure 10b, obvious interruptions of instructions
occur at about 4200 hardware clocks.

4. The range between the upper and lower bound is wider
in Figures 10b, 11b than 10a and 11a.

5. There is still a blank on the x-axis when using the
proposed method in Figure 11a with the second component.
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FIGURE 8. (a) 220kV power plant. (b) 500kV power plant.

6. Communication approaches’ using percentage of the
proposed method is far lower than [20] when considering
Table 2.

7. Both methods basically achieve load-balancing
according to Figures 12 and 13.

Considering the solving methods of the system equations,
this paper indicates that the interruption phenomenon is due
to the method of solving system equations. Taking the Gauss

method as an example, it is likely that there is a serial block
due to DAG dependency when there are no conditions for
parallel computing. The same issue can be found in the
second component in Figure 11a near 3700 on the x-axis.
We believe that this blank can be filled by changing the
method to solve the system. Comparing the fluctuations of
Figure 10a and b and the number of communications counted
in Table 2, it can be found that the fluctuation in Figure 10a is
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FIGURE 9. Results compared with PSCAD.

more stable (narrow range between lower and upper bound).
It can be found from Table 2 that the communication using
a percentage of the proposed method is far lower than that
for [20], which we think proves that a higher percentage
of communication leads to a longer makespan. This is also
evidence that balancing the allocation of variables can have
a better effect in this process. Comparing Figures 10 and 11
with the same method, we can tell that the trend of graphs
is mainly dependent on the Gaussian solution method. The
growth of makespan does not vary with the total number of
codes in a linear relation. This to some extent means larger
scale simulation objects still can be compressed in makespan
compared with the fixed number of 7500.

Through the above results, we conclude that our proposed
method has the effect of keeping working loads in balance,

TABLE 3. load of each component record/220 kV.

TABLE 4. Load of each component record/500 kV.

but the effect is not always good with the influence of the
initial distribution of variables. However, overall, the method
tries to keep a balance through balanced allocation, and it is
better than the classic method [20] when the initial storage of
variables is set.

We use some other simulation instances to further prove
that the proposed method shows better performance in han-
dling different simulation objects. The comparative results
can be seen in Table 5, which [1], [2] represent for differ-
ent solving methods of system equations. Xi’an, Guangzhou
stand for different simulation objects.

Since the decision rule proposed by the algorithm in
this paper explicitly considers the balanced allocation of

FIGURE 10. (a) Result of the proposed method with each PE/220kV. (b) Result of [20] with each PE/220kV.
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(a)

(b)

FIGURE 11. (a) Result of the proposed method with each PE/500kV. (b) Result of [20] with each PE/500kV.

TABLE 5. Makespan for Qther simulation instances.

FIGURE 12. Load balancing of 220kV simulation.

FIGURE 13. Load balancing of 500kV simulation.

computing variables, the percentage of communication usage
is lower, the amount of reading and writing is less, and the
final completion time is significantly reduced. The above
makespan statistics confirm our assumption.

VI. CONCLUSION
This paper proposes a DRL-based task scheduling algo-
rithm to optimize the performance and efficacy of FRTDS
with power system simulations. It introduces the block con-
cept and the assumption that unbalanced arrangements cause
blocks. A cost model is combined with Q-learning as a
Q function to evaluate task choice benefits under certain
states with limited tasks to choose. It addresses the impor-
tance of resources in modeling and makes resources vari-
ables in the model, but not constraints. With the FRTDS our
laboratory built, the proposed algorithm is implemented and
its assumptions are verified by comparative analysis. With
a more balanced strategy, the proposed strategy gains more
long-term rewards, which performs as short end-simulation
time in one step. We provide resource usage records to
support our assumption. We could refer the communication
influence to the unbalanced storage and usage of resource in
performance as assumption.

Some refinements can be made in future work. Our
Q-learning method relies on stored experience, which
requires much memory and affects execution speed. We have
found more similarities between FRTDS and the A3C struc-
ture in parallel computing. We will try to make our DRL
process perform with better accuracy and efficacy. We also
find that detailed components models and more specific
synthetic cost construction for certain FRTDS design could
make our results better and we will have more research on
maintaining lower step length with detailed models in real
time simulations. Our model quantifies the hardware design
features and resource allocation as variables. However, the
hardware designmay change due to expansion of the platform
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or a new simulation platform. The hardware does affect the
construction of SC and PC. We use common indicators like
storage, address, and I/O usage to build a model that guar-
antees swift migration between platforms. However, to use
more specific cost models based on certain FRTDS designs
may shorten the makespan.
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