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ABSTRACT Pulse jamming is one of the common malicious jamming patterns that can significantly reduce
the of wireless communication’s reliability. This paper investigates the problem of anti-jamming communi-
cation in a random pulse jamming environment. In order to obtain the countermeasure in time domain, the
Markov decision process (MDP) is employed to model and analyze the above problem, and a time-domain
anti-pulse jamming algorithm (TDAA) based on reinforcement learning is proposed. The proposed algorithm
learns from the dynamic interaction with the jamming environment to gradually approximate the optimal
time-domain strategy. The optimal strategy enables the transmitter to switch between two states, i.e. ‘‘active’’
and ‘‘silent’’, to avoid random pulse jamming. In addition, a state estimation and adjustment method for
the random pulse jamming environment is introduced to improve the robustness of the proposed TDAA.
Simulation results show that, compared with continuous transmission, the proposed TDAA can effectively
reduce the jamming collision ratio and significantly improve the normalized throughput. And compared with
transmitting terminal Q-learning algorithm (TTQA), the proposed TDAA has higher time utilization ratio
and normalized throughput.

INDEX TERMS Anti-jamming,Markov decision process, Q-learning, reinforcement learning, random pulse
jamming.

I. INTRODUCTION
Pulse jamming is a kind of jamming with short duration
and large instantaneous power. On the one hand, it can be
produced inadvertently by various electrical equipment when
they are working. For example, vehicle ignition and aircraft
navigation can cause pulse jamming. In addition, nonlin-
ear power devices (e.g., rectifiers, diodes, transformers) in
electronic equipment will produce pulse jamming when they
work. On the other hand, the jammer can produce mali-
cious pulse jamming by transmitting the jamming signal in
a short time and staying shut down in the rest of the time
[1]. Both malicious and unintentional pulse jamming can
significantly increase the system’s bit error rate (BER) or
reduce network throughput. For example, the authors in [2]
modeled pulse jamming as Bernoulli-Gauss model. Then,
by developing a closed form expression for the probability
of error for QAM system under pulse jamming, the authors
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quantitatively analyzed the impact of the pulse jamming on
the performance of the QAM system. In [3], the error prob-
ability for ASK, PSK, and FSK systems in the presence of a
pulse jamming is analyzed by modeling the pulse jamming
as a generalized stationary Poisson process. The authors in
[4] indicated that the performance in throughput and delay
of the ARQ schemes could be affected by the pulse jam-
ming. According to the rule of pulse signal in time domain,
pulse jamming can be divided into periodic pulse jamming
and random pulse jamming. In [5], the authors proposed a
short-period pulse jamming whose duration is far less than
the packet length, which can significantly reduce the packet
delivery ratio (PDR) of the spread spectrum communication
system without significantly changing the detection value of
the received signal strength. Authors in [6] demonstrated that
periodic pulse jamming can seriously reduce the performance
of the IEEE 802.11 media access control (MAC) layer by
destroying data frames or affecting the backoff operation of
CSMA/CA protocol. With the intelligence level of jammer
improves, the well-designed random pulse jamming is more
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agile and efficient. For example, in [7], a kind of random
pulse jamming aimed at the routing operation vulnerability
of Ad Hoc network was proposed. The jammer keeps silent
when the nodes exchange the handshake information, while
at other times, it transmits random pulse jamming to block
the channel. Nodes will treat the blocked channel as an
available channel, resulting in a severe reduction in network
throughput. In [8], the random pulse jamming in satellite
communication system occurs only once in each repetition
period, while the time of occurrence in the same period is
random. Hence, the random pulse jamming not only satisfies
a certain duty cycle to achieve the jamming effect, but also
makes it difficult to be detected and eliminated.

The existing anti-pulse jamming methods mainly include
the ‘‘hidden’’ method based on spread spectrum technology
and the ‘‘shearing’’ method based on filtering technology.
The authors in [9] proposed a kind of self-encoding spread
spectrum technology, which can effectively reduce the sym-
bol error rate (SER) of system under periodic pulse jam-
ming. [10] proposed two self-adaptive filtering algorithms,
namely, the incremental and diffusion affine projection sign
algorithms, which can reduce the system bit error rate under
pulse jamming environment. However, the pulse jamming
considered in the above methods has limited jamming band-
width, low jamming power or periodic pulse signals, while
well-designed pulse jamming may have high peak power, the
broadband jamming signal which can completely cover com-
munication bandwidth, and random pulses in time domain.
More effective anti-jamming methods are needed to deal with
the well-designed pulse jamming. In recent years, the devel-
opment of machine learning provides a new research idea for
communication anti-jamming. Reinforcement learning (RL)
is one of the methods of machine learning that aims to enable
agents to take appropriate actions to get high rewards [11].
RL problems can usually be modeled as Markov decision
process (MDP) [12]. Q-learning [13] is a classical model-free
reinforcement learning algorithm, which can obtain the opti-
mal strategy without modeling the environment. To solve the
communication anti-jamming problem, Q-learning enables
legitimate users to learn from the feedback (e.g. through-
put or PDR) caused by their own actions (e.g. channel,
power or coding mode) in the process of dynamic interaction
with the jamming environment, and thus obtain the optimal
anti-jamming strategy with the maximum gain or minimum
loss. Although Q-learning has been widely used in solving
anti-jamming problems [14]–[19], most existing works adopt
Q-learning to obtain the frequency domain anti-jamming
strategy like optimal channel switching strategy, while the
related works on obtaining time-domain anti-jamming strat-
egy by Q-learning is rare.

To solve the limitation of the existing anti-pulse jamming
methods, this paper proposes a time-domain anti-pulse jam-
ming algorithm (TDAA) based on reinforcement learning
to obtain the optimal time-domain anti-jamming strategy.
The proposed algorithm can make the transmitter switches
between two states, i.e., ‘‘active’’ or ‘‘silent’’, to avoid

FIGURE 1. System model.

random pulse jamming and improve the transmission relia-
bility. The main contributions of this paper are as follows:

• Based on reinforcement learning, a low complexity
time-domain anti-pulse jamming algorithm (TDAA) is
proposed to to obtain the optimal time-domain anti-
jamming strategy.

• A state estimation and adjustment method for pulse jam-
ming environment is designed to improve the robustness
of the proposed TDAA.

The rest of this paper is organized as follows: Section II
presents the system model and problem formulation.
In Section III, we introduce the time domain anti-pulse jam-
ming algorithm (TDAA) and the state estimation and adjust-
ment method, and analyze the complexity and convergence
of TDAA. The simulation results are discussed in Section IV.
And concluding remarks are given in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. SYSTEM MODEL
As shown in Fig. 1, the wireless communication system
consists of two nodes: a legitimate transmitter and its intended
receiver. The system is affected by a malicious jammer, and
the jamming region can only cover the receiver. We assume
that the transmission time can be divided into discrete times-
lots with a length of Ts. Moreover, we consider the timeslot
is the minimum time unit for transmission. In other words,
if the transmitter starts the transmission, it can last at least
one timeslot. In addition, we assume that one sub-frame will
be transmitted in one timeslot when the transmitter is active.
Each packet is composed of l sub-frames and contains CRC
check bits, and the amount of information in each sub-frame
is i.
We consider a pulse jammer with prior information

about communication frequency and timeslot synchroniza-
tion frame. The bandwidth of the pulse jamming signal can
completely cover the transmission bandwidth, and the dura-
tion of a single pulse is equal to the length of the timeslot.
To effectively affect the transmission, the pulse jamming
shouldmeet a certain duty cycle [20]. In other words, it should
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FIGURE 2. Random pulse jamming signal.

occur at least once in a certain number of timeslots. Mean-
while, to reduce the detection probability, each pulse can be
launched randomly within a certain time range on the premise
of ensuring the duty cycle. Similar to [8], we assume that the
jammer defines every N timeslots as one jamming period.
Within the same jamming period, a timeslot is selected ran-
domly as the target for pulse jamming according to a specific
probability distribution. The above probability distribution
is defined as jamming selection distribution (jsd). If the
probability density function (pdf) of jsd is fJ (t), then the
probability of the jammer to choose the nth timeslot within
the kth jamming period, denoted by pk (n), can be expressed
as follows:

pk (n) =
∫ kTs+nTs

kTs+(n−1)Ts
fJ (t)dt, (1)

where t represents the transmission time. As shown in Fig. 2,
each pulse is modeled as shot noise [21] having power
spectral density σ 2, and its pulse waveform is equivalent to
Gaussian noise in a short time period. Pulse jamming can
cause a large number of error bits in the jammed timeslot,
and even cause packet loss due to the failure of CRC check.
In addition, we assume that the channel noise is not enough
to affect the transmission compared with the pulse jamming
significantly.

B. PROBLEM FORMULATION
To deal with the uncertainty of jamming signals, the
anti-jamming problem can be modeled as a Markov deci-
sion process (MDP), which is widely adopted in related
works [14]–[19]. The MDP can be defined by a tuple <
S,A,P(s′|s, a), r >, where S is the state space, A is the
action space, P(s′|s, a) is the state transition probability and
r is the immediate reward of the system.
The state space of the system is defined as follows:

S 1
= {(n, j) : n ∈ {1, . . . ,N } ; j ∈ {0, 1}} . (2)

FIGURE 3. State transitions of system.

The system state is defined as a composite variable
s = (n, j) ∈ S, where n represents the sequence number of the
timeslot in the jamming period. j is a flag reflecting whether
the pulse jamming has occurred in the current jamming
period. Specifically, in the first timeslot of each jamming
period, j is initialized to 0. From the second timeslot to the
last one in the jamming period, j = 1 when pulse jamming
is sensed in the previous timeslot and j = 0 otherwise. Once
j = 1, the value of j stays 1 for the rest of the jamming
period until it is reinitialized to 0 in the next jamming period.
According to the above definition, in the same jamming
period, j = 1 after the pulse jamming is sensed, and j = 0
in previous timeslots. In addition, the system can interact
with the environment to estimate the size N of the jamming
period, which can be used to determine the current system
state (estimation method detailed in section III).

The transmitter can perform two actions, i.e., keep active
or keep silent. Then, the action space of the transmitter can
be defined as follows:

A 1
= {a : a ∈ {0, 1}}, (3)

where a represents the action of the transmitter, i.e., a = 0
when the transmitter keep silent and a = 1 otherwise.
Fig. 3 shows the state transitions of the system, where pk (n)

is the timeslot selection probability (tsp) in Eq. (1). If the
current state is expressed as s = (n, j) and the next state is
expressed as s′ = (n′, j′), then the next sequence number n′

can be expressed as follows:

n′ =

{
n+ 1, if n < N ,
1, if n = N .

(4)

Obviously, the value of n′ is only relevant to n. Similarly, j′

can be expressed as follows:

j′ =


0, if n = N ,
0, if j = 0, g = 0& n < N ,
1, if j = 0, g = 1& n < N ,
1, if j = 1 n < N ,

(5)

97166 VOLUME 8, 2020



Q. Zhou et al.: Countermeasure Against Random Pulse Jamming in Time Domain Based on Reinforcement Learning

where g represents the result of jamming sensing, i.e., g = 1
when the system senses the pulse jamming and g = 0 oth-
erwise. Within the same jamming period, the tsp of each
timeslot is independent before the pulse jamming occurs (i.e.
j = 0), then j′ only depends on the tsp of current state; If pulse
jamming has occurred before the current timeslot (i.e. j = 1),
then j′ = 1 unless n=N, then j′ = 0. In brief, the value of j′ is
only relevant to current state s. Hence, the next state s′ is only
related to the current state s, and independent of the earlier
states, i.e., the system state is a Markov chain. As shown in
Fig. 3, the probability that the system state transmits from s
to s′ after taking action a can be expressed as follows:

P(s′|s, a) =


1, if n = N ,
1, if j = 1& n < N ,
pk (n), if j = 0, j′ = 1& n < N ,
1− pk (n), if j = 0, j′ = 0& n < N .

(6)

The immediate reward of the system after the transmitter
takes an action a at state s can be defined as follows:

r =


E, if j = 1& a = 1,
E, if j = 0, g = 0& a = 1,
−L, if j = 0, g = 1& a = 1,
0, if a = 0.

(7)

In the above, if j = 1 & a = 1, i.e., the transmitter takes
action of ‘‘keep active’’ after the occurrence of pulse jam-
ming within the jamming period, the system is bound
to transmit successfully, then the system gain is E ; If
j = 0, g = 0 & a = 1, i.e., the transmitter takes the action
‘‘keep active’’ and the pulse jamming has not been
sensed within the jamming period, the system is bound
to transmit successfully, then the system gain is E ; If
j = 0, g = 1 & a = 1, i.e., the transmitter takes the action
‘‘keep active’’ when the pulse jamming is sensed in the
current timeslot, the transmission will be jammed, then sys-
tem loss is L; If a = 0, i.e., the transmitter takes action of
‘‘keep silent’’, then system gain is obviously 0. As previously
assumed, each timeslot can transmit 1 sub-frame, and each
packet contains l sub-frames. Thus, we set E = 1, which
represents the number of sub-frames that transmitted success-
fully in a single timeslot. In addition, it takes l timeslots for
each packet to be transmitted. If the number of pulses in the
packet is p, then the number of sub-frames transmitted in the
p timeslots with pulse jamming is 0, while the number of
sub-frames transmitted in other timeslots without pulse jam-
ming is l − p. Hence, we set L = (l − p)/p, which represents
the average number of lost sub-frames caused by each pulse.

According to the strategy π : S 7→ A, the system can get
the action a that should be taken under any state s. We aim to
obtain the optimal strategy π∗ that can maximize the average
long-term reward. Then, the π∗ can be obtained as follows:

max
π

R(π ) = lim
T→∞

E

[
1
T

T∑
τ=1

rτ

]
, (8)

where R(π ) represents the average long-term reward of the
strategy π . τ represents the number of steps, the maximum
value of which is T . rτ represents the immediate reward
of step τ . E[·] is the mathematical expectation operator.
According to the definition of immediate reward, the average
long-term reward R(π ) can represent the average number of
sub-frames that transmitted successfully per timeslot. Thus,
the average throughput of the system can be expressed as
R(π )·i/Ts, where Ts is the length of the timeslot and i is
the amount of information in each sub-frame. Obviously,
the average throughput is also maximized when the system
achieves the maximum average long-term reward.

III. TIME-DOMAIN ANTI-PULSE JAMMING ALGORITHM
A. DETAILED DESCRIPTION OF THE ALGORITHM
To get the optimal anti-jamming strategy, a time-domain
anti-pulse jamming algorithm (TDAA) based on Q-learning
is proposed. Q-learning is the most well-known model-free
reinforcement learning (RL) algorithm. And it is a progres-
sive dynamic programming process that can find the optimal
strategy step by step [22]. The basic idea of Q-learning is
to create and update a Q-table that contains state-action pair
values what are called Q-values [23]. In any given system
state, the transmitter observes the current state and selects
an action based on the current strategy. After performing the
selected action, the receiver observes the immediate reward
and updates the Q-value. In this way, the system can keep
learning from its own action and finally converges to the opti-
mal anti-jamming strategy. Similar to [5], Q-value is updated
according to the following Q-function:

Qτ+1(s, a)=Qτ (s, a)+ατ
[
r + γmaxa′Qτ (s

′, a′)−Qτ (s, a)
]
,

(9)

where r is the immediate reward for taking action a in current
state s. s′ represents the next state after taking action a.
Qτ (s, a) is the current Q-value. r + γmaxa′Qτ (s′, a′) rep-
resent the predicted Q-value. Besides, 0 ≤ ατ < 1 is the
rate factor determining the learning speed, and 0 ≤ γ < 1 is
the attenuation factor reflecting the importance of long-term
reward. Eq. (9) can find the temporal difference between
the current Q-value and predicted Q-value to calculate the
updated Q-value [24].

The system timeslot structure is illustrated in Fig. 4, which
consists of a transmission sub-slot, a sensing sub-slot and
a learning sub-slot. Let T0, T1 and T2 denote the transmis-
sion time, sensing time and learning time respectively. Each
iteration is divided into three steps. Firstly, the transmitter
takes an action according to the decision of the previous
timeslot. Secondly, the receiver senses pulse jamming. Lastly,
the receiver adopts the Q-learning algorithm to obtain the
action for the next timeslot. the last two steps are performed
even when the transmitter remains silent. The pseudo-code
of TDAA is shown in Algorithm 1. The system performs
the above three steps in each timeslot. Specifically, in the
transmission sub-slot, the transmitter takes the action ‘‘keep
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FIGURE 4. Illustration of the system timeslot structure.

active’’ or ‘‘keep silent’’ according to the decision of the
previous learning sub-slot (line 3); In the sensing sub-slot, the
receiver senses whether there is pulse jamming in the envi-
ronment by the broadband spectrum sensing technology [25]
(line 4); In the learning sub-slot, The receiver first obtains the
immediate reward r and the next state s′ according to the first
two sub-slots, then updates the Q-value according to Eq. (9)
(line 5), and finally obtains the next action and feeds it back
to the transmitter (line 6). To select action a′, the ε-greedy
algorithm [26] is often introduced. In particular, the system
choose an action by a ∈ argmaxa Q(s, a) with probability
1− ε, and randomly choose an action with probability ε. The
larger ε is, the more obvious the decision-making system’s
‘‘exploratory’’ intention will be, and the better anti-jamming
strategy may be triggered [26]. The learning process will be
terminated when all Q-values are convergent or the algorithm
reach a certain number of iterations. When all Q-values con-
verge, the system can obtain the optimal strategy indicating an
action to be taken at each state such that convergedQ∗(s, a) is
maximized for all states, which can be expressed as follows:

π∗ = argmax a Q∗(s, a). (10)

B. JAMMING PERIOD ESTIMATION
In TDAA, the determination of system state is closely related
to the size N of jamming period. However, it is hard to know
the value of N in advance. Since the jammer only transmits
one pulse signal per jamming period, the system can transmit
data for a while to estimate the size N of jamming period.
The estimated time Te is defined to represent the transmission
time from the beginning of the first pulse to the end of the
K th pulse. The estimated value Ne of N can be calculated as
follows:

Ne = round
[
Te
KTs

]
, (11)

where round[·] is rounding operator. K is the number of
pulses. Te/Ts represents the total number of timeslots in the
estimated time and satisfies the following equation:

Te/Ts = N · K − (n1 − 1)− (N − nk )

= N · (K − 1)+ nk − n1 + 1, (12)

Algorithm 1 Time-Domain Anti-Pulse Jamming Algorithm
(TDAA)
1: Initialize: α, γ, ε ∈ [0, 1), Q(s, a)← 0.
2: for τ = 0, 1, . . .,T do
3: The transmitter takes the action a at state s based on

the previous timeslot.
4: The receiver senses whether there is pulse jamming

in the environment.
5: The receiver obtains the immediate reward r and the

next state s’ according to the previous two steps, then
updates the Q-value according to Eq. (9).

6: The receiver obtains the next action a′ according to
the following rules:
• The receiver chooses the next action a′ ∈

argmaxa′Q(s′, a′) with probability 1− ε;
• The receiver randomly chooses the next action a′

with probability ε.
Then, the receiver sends a′ back to the transmitter.

7: Replace s← s′ and a← a′.
8: end for
9: Outputs: π∗ = argmax aQ∗(s, a)

where n1 ∈ {1, 2, . . . ,N } represents the sequence number
of the first jammed timeslot in the corresponding jamming
period, and nk ∈ {1, 2, . . . ,N } represents the sequence num-
ber of theK th jammed timeslot in the corresponding jamming
period. Eq. (12) shows that the timeslots in the estimated
time is equal to the different between the timeslots in K
complete jamming periods and the timeslots that are not
included in the estimated time in the first and last jamming
period. When the estimated value Ne converges to the exact
valueN , i.e.Ne = N , the following inequality can be obtained
by expanding the rounding operator in Eq. (11):

N − 0.5 ≤
Te
KTs

< N + 0.5. (13)

By substituting Eq. (12) into Eq. (13), we have:{
K ≥ 2(N − nk + n1 − 1),
K > 2(−N + nk − n1 + 1).

(14)

Since 4N − 4 ≥ 2(N − nk + n1 − 1) ≥ 2(−N + nk − n1
+1), the value of K can be relaxed to K ≥ 4N − 4, then
Eq. (13) will still hold. By substituting K ≥ 4N − 4 into
Eq. (12), we have:

Te/Ts = N · (K − 1)+ nk − n1 + 1

≥ 4N 2
− 5N + nk − n1 + 1. (15)

Since 4N 2
− 4N ≥ 4N 2

− 5N + nk − n1 + 1, the value of
Te/Ts can be relaxed to Te/Ts ≥ 4N 2

− 4N , then Eq. (13)
will still hold. Since Eq. (13) is a sufficient and necessary
condition forNe = N , Te/Ts ≥ 4N 2

− 4N is a sufficient con-
dition for Ne = N . In other words, when the total number of
timeslots satisfies Te > (4N 2

− 4N ) · Ts, the estimated value
Ne must have converged to N . Due to the size N of jamming
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period is a positive integer of finite size, it can be estimated
in a finite time.

C. STATE DETERMINATION AND ADJUSTMENT METHOD
Because the system has no prior information about the
jamming period, it is difficult to accurately determine the
sequence number of the current timeslot in the jamming
period (hereinafter referred to as ‘‘sequence number’’), which
affects the determination of the system state. We define state
determination error (sde) as δ = |n− ne|, where ne is the
estimated sequence number and n is the actual sequence
number. To accurately determine the state of the system,
a state determination and adjustment method is presented in
the form of a flowchart in Fig. 5. This method can reduce the
sde gradually and finally make the system accurately deter-
mine the state of the current timeslot. To be specific, on the
premise that the size of jamming period has been accurately
estimated, we set the estimated sequence number of initial
timeslot to ne = 1. Before ne = N , the system updates the
next estimated state s′e = (n′e, j

′) according to Eq. (4) and (5).
When ne = N , we judge whether there is only one pulse in
the previous N timeslots (including the current timeslot). If it
is, the system continues to update the next estimated state
s′e = (n′e, j

′) according to Eq. (4) and (5). If it is not, the sys-
tem adjust the sequence number of next timeslot to ne′ = N ,
while the next jamming flag j′ still be updated according to
Eq. (5). After each adjustment, the sde minus 1. Therefore,
after a finite number of adjustments, the estimated sequence
number can be equal to the actual sequence number, i.e.
ne = n. In other word, the system can accurately determine
the state of the current timeslot. If the jammer starts working
in the τ0th timeslot, the actual sequence number n(τ0) of
the τ0th timeslot is 1, but the estimated sequence number is
ne(τ0) = (τ0 − 1)rem(N )+ 1, where rem(·) is the remainder
operator. The initial state determination error in τ0th timeslot
can be defined as δ0 = |n(τ0)− ne(τ0)| = (τ0 − 1)rem(N ).
It means that it will take (τ0 − 1)rem(N ) times adjustments
to make ne = n.

D. COMPLEXITY AND CONVERGENCE ANALYSIS
In Algorithm 1, the computational complexity of step 1 and
step 9 are obviouslyO(1). The main computational complex-
ity of the proposed Algorithm 1 lies in steps 2 to 8, which is
aboutO(T ), where T is the iterations numbers, i.e., the num-
bers of timeslots. Thus, the total computational complexity
can be expressed as C = O(T ). It means that the proposed
algorithm can achieve an optimal solution in polynomial time.

When the learning rate αt in Eq. (9) is deterministic, non-
negative, and satisfies the following conditions:

αt ∈ [0, 1),
∞∑
t=1

αt = ∞, and
∞∑
t=1

(αt )2 <∞, (16)

the authors in [23] have proved that the Q-learning can
fully traverse all system states and converge to the optimal
strategy after a finite number of iterations. The proposed

FIGURE 5. Flowchart summarizing the state determination and
adjustment method.

time-domain anti-pulse jamming algorithm (TDAA) is based
on Q-learning to make decisions in a random pulse jam-
ming environment. Hence, it can converge to the optimal
anti-jamming strategy.

IV. SIMULATION RESULTS
A. JAMMING SELECTION DISTRIBUTION
To evaluate the performance of the proposed algorithm with
different jamming selection distribution (jsd), the normal
distribution, uniform distribution and Poisson distribution are
simulated in this paper. The simulation parameters of the
three distributions are set as follows.

1) NORMAL DISTRIBUTION
As shown in Fig. 6, the jsd is normal distribution, and the
probability density function (pdf) in the kth jamming period
can be expressed as:

fJ (t) =
1

√
2πσ

exp[−
(t − µ)2

2σ 2 ], (17)

where t represents the transmission time. µ = (k − 1/2)N ·
Ts +τ0 · Ts represents that the mean of the distribution is the
median of the jamming period. τ0 represents the sequence
number of the timeslot when the jammer starts working. σ 2

is the variance. According to the Pauta criterion of normal
distribution, the probability that the timeslot selected by the
jammer is in the interval [µ− 3σ,µ+ 3σ ] is approximately
100%. Thus, we set σ = (N · Ts)/10 to ensure that the kth
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FIGURE 6. Probability density function when the jsd is normal
distribution.

FIGURE 7. Probability density function when the jsd is uniform
distribution.

pulse is in the kth jamming period. Then, the probability of
pulse jamming in the nth timeslot within the kth jamming
period can be expressed as:

pk (n) =
∫ kTs+nTs

kTs+(n−1)Ts

1
√
2πσ

exp[−
(t − µ)2

2σ 2 ]dt, (18)

2) UNIFORM DISTRIBUTION
As shown in Fig. 7, the jsd is uniform distribution, and the
pdf in the kth jamming period can be expressed as:

fJ (t) =


1

2ωTs
, µ− ω · Ts < t < µ+ ω · Ts

0, others,
(19)

where µ = (k − 1/2)N · Ts +τ0 · Ts. We set ω = N/5 to
ensure that one timeslot can be selected in the corresponding
jamming period. Then, the probability of pulse jamming
in the nth timeslot within the kth jamming period can be
expressed as:

pk (n) =


∫ kTs+nTs

kTs+(n−1)Ts

1
2ωTs

dt, µ− ω · Ts < t < µ

+ω · Ts
0, others,

(20)

3) POISSON DISTRIBUTION
If the selected timeslot obeys Poisson distribution in the time
domain, the probability of pulse jamming in the nth timeslot
within the kth jamming period can be expressed as:

pk (n) =
λn−1

(n− 1)!
e−λ, (21)

where n ∈ {1, . . . ,N } is the sequence number of the timeslot
in the same jamming period. The parameter of the Poisson
distribution is set as λ = N/5. When the size N of jamming
period is 6, 8 and 10 respectively, the probabilities of different
timeslots selected by the jammer are shown in Fig. 8.

FIGURE 8. Probability of different timeslots being jammed when the jsd
is Poisson distribution.

FIGURE 9. Estimation of jamming period N .

B. SIMULATION ANALYSIS
In the simulation, we set T0 = 0.5ms, T1 = 0.04ms,
T2 = 0.06ms which denote the transmission sub-slot, the
detection sub-slot and the learning sub-slot respectively. The
number of timeslots for simulations is set as S = 10000, and
the simulation time is Tsl = S × Ts. Referring to [16], we set
the learning rate αt = 0.8, and the discount factor γ = 0.6.
Furthermore, the greedy factor is set as ε = 1/

√
t .

It is necessary to accurately estimate the value of N for
modeling and solving the anti-pulse jamming problem pro-
posed in this paper. As shown in Fig. 9, when the values of
N is 6, 10 and 12, the estimated value Ne converge gradually.
According to the analysis in Section III, the estimation of Ne
can converge to the exact value N in a finite time, which is
confirmed by the simulation results. Thus, in the following
simulation, we assume that the system has accurately esti-
mated the value of N in advance. In addition, we temporarily
consider that the timeslot when the jammer starts to work
is just enough to make the initial state determination error
τ0 = 0. The influence of different initial state determination
errors on the performance of the proposed TDAA will be
discussed separately in the following paper.

Fig. 10 shows the diagram of TDAA at convergent state
when the jsd is normal distribution, uniform distribution and
Poisson distribution. In the figures, the blue, yellow and
red areas represent active state of transmitter, silent state of
transmitter and pulse jamming respectively. Besides, different
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FIGURE 10. Diagram of TDAA at convergent state with different jsds (N =

10, l = 4).

FIGURE 11. Diagram of TDAA at convergent state with different packet
lengths (jsd is normal distribution, N = 10).

jamming periods are divided by black bold lines. As indicated
in the figures, at convergent state, the proposed TDAA can
avoid most of the pulse jamming regardless of what the jsd
is. In addition, when the size of jamming period is set as
N = 10, and jsd is normal distribution, Fig. 11 shows the
diagram of TDAA at convergent state with different packet
lengths. With the increase of packet length of l, the number
of sub-frames in each lost packet caused by pulse jamming
increases. Thus, as shown in Fig. 11, when l is large, the
transmitter keeps silent in more timeslots, ensuring a higher
probability of avoiding jamming.

In this section, we compare the proposed TDAA with the
following two methods:
• Continuous transmission: The transmitter continuously
transmits data to the receiver without any anti-jamming
measures.

• Transmitting terminal Q-learning algorithm (TTQA):
The transmitter independently executes the Q-learning
algorithm. Since the pulse jamming signal only cov-
ers the receiver, the transmitter cannot sense the pulse
jamming. This method uses the ACK mechanism to
determine whether the transmission is successful, and
thus obtains immediate rewards for different actions.
The anti-jamming strategy is based entirely on local
learning results of the transmitter. As shown in Fig. 12,
when the jsd is normal distribution and N = 10, the
TTQA can effectively avoid the pulse jamming at con-
vergent state. Moreover, similar to TDAA, with an
increase of l, the transmitter keeps silent in more
timeslots.

FIGURE 12. Diagram of TTQA at convergent state with different packet
lengths (jsd is normal distribution, N = 10).

FIGURE 13. Jamming collision ratio of different methods.

To validate the performance of TDAA compared with the
above two methods, we introduce the ‘‘jamming collision
ratio’’, ‘‘time utilization ratio’’ and ‘‘normalized through-
put’’. To describe the ratio of collision with pulse jamming
when the transmitter takes a ‘‘keep active’’ action, we define
the ‘‘jamming collision ratio’’ as ρj = τjam/Tactive, where
τjam represents the number of timeslots in which the transmis-
sion is jammed, and Tactive denotes the length of statistics of
the timeslot in which the transmitter takes the ‘‘keep active’’
action, which means that the jamming collision ratio ρj is
calculated every Tactive active timeslots. To evaluate the time
loss caused by the transmitter taking the ‘‘keep silent’’ action,
we define the ‘‘time utilization ratio’’ as ρsl = τactive/Ta,
where τactive represents the number of timeslots in which
the transmitter takes the ‘‘keep active’’ action. Ta denotes
the length of timeslot statistics, which means that the time
utilization ratio ρsl is calculated every Ta timeslots. Due to the
average throughput is proportional to the average long-term
reward, the ‘‘normalized throughput’’ can be defined as
ρth = (E · τactive + (−L) · τjam)/(E · Ta). In our simulation,
we set Tactive = 20 and Ta = 20. Then, the simulation results
are obtained by the mean of 200 independent runs. Besides,
we let the jsd is normal distribution and N = 10 in the fol-
lowing simulation.

Fig. 13 shows the performance of the jamming collision
ratio when the packet length l = 4. Compared with the
continuous transmission, both TDAA and TTQA can sig-
nificantly reduce the jamming collision rate to below 0.02.
Moreover, the convergence rate of TDAA is higher than
TTQA. Besides, Fig. 14 shows the jamming collision ratio of
TDAA decreases with growing packet length of l. The reason
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FIGURE 14. Jamming collision ratio of TDAA with different packet lengths.

FIGURE 15. Time utilization ratio of TDAA and TTQA.

is that longer packets cause the transmitter to keep silent in
more timeslots is shown in Fig. 11.

Fig. 15 compares the time utilization ratio between TDAA
and TTQA. When the packet length is the same, the time
utilization ratio of TDAA is higher than TTQA. The reason is
that the TDAA can keep the transmitter active in the timeslots
after the occurrence of pulse jamming in the same jamming
period, while the TTQA may still keep the transmitter silent.
Moreover, the time utilization ratio of both TDAA and TTQA
decreases with growing packet length of l. The reason is that
the loss caused by collision with pulse jamming increases
with growing packet length of l, and thus both TDAA and
TTQA keep the transmitter silent in more timeslots.

Fig. 16 shows the performance of the normalized through-
put, it can be seen that the normalized throughput of TDAA at
convergent state is higher than both continuous transmission
and TTQA when the packet length is 2, 4 or 8. Furthermore,
the improvement of the performance increases with growing
packet length. The reason is that when the packet is short,
the throughput loss caused by packet loss is small, and the
throughput gain generated by the ‘‘keep silent’’ operation
of TDAA for avoiding jamming is 0. In other words, ‘‘zero
gain’’ does not significantly improve normalized throughput
compared with ‘‘small loss’’. On the contrary, when the
packet is long, the throughput loss caused by packet loss is
large, and thus ‘‘zero gain’’ can significantly improve nor-
malized throughput compared with ‘‘large loss’’. In addition,

FIGURE 16. Normalized throughput comparison when packet lengths are
different.

although the ‘‘silent’’ operation of the proposed algorithm
results in time loss, the communication efficiency is improved
because of the higher normalized throughput compared with
the continuous transmission.

Since the proposed TDAA adopts the state determination
and adjustment method mentioned in section 3.3, it is neces-
sary to evaluate the impact of different initial state determina-
tion error δ0 on the performance of the proposed algorithm.
According to the simulation Settings, when N = 10, there
is an initial state determination error δ0 ∈ [0, 9]. As shown
in Fig. 17(a), when the proposed state determination and
adjustment method is not adopted, the convergence values
of normalized throughput are reduced to different degrees by
different δ0. The reason is that the system’s misjudgment of
the state can never be corrected. As shown in Fig. 17(b), when
the state determination and adjustment method is adopted,
different δ0 have no obvious impact on the normalized
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FIGURE 17. Normalized throughput of different initial determination
errors.

throughput. It can be seen that the proposed state determina-
tion and adjustment method can effectively correct the wrong
state determination at the initial time, thus improving the
robustness of the algorithm.

V. CONCLUSION
In this paper, we investigated the anti-jamming problem under
the threat of random pulse jamming. In order to obtain the
countermeasure in time domain, Firstly, the anti-jamming
problem is modeled as a Markov decision process (MDP).
Then, a time-domain anti-pulse jamming algorithm (TDAA)
based on reinforcement learning is proposed. The proposed
algorithm can continuously learn from the dynamic interac-
tion with the jamming environment, and gradually approach
the optimal time-domain anti-jamming strategy that can max-
imize the system throughput. This strategy enables the trans-
mitter to keep silent in timeslots with high probability of
pulse jamming and keep active in other timeslots. In addition,
a state estimation and adjustment method for random pulse
jamming environment is introduced to improve the robustness
of the proposed TDAA. Simulation results show that the pro-
posed TDAA can significantly reduce the jamming collision
ratio and improve the normalized throughput compared with
the continuous transmission. Compared with TTQA, the pro-
posed TDAA has higher time utilization ratio and normalized
throughput.
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