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ABSTRACT Performance interference between QoS and best-effort applications is getting more
aggravated as data-intensive applications are rapidly and widely spreading in recently emerging com-
puting systems. While the completely fair scheduler (CFS) of the Linux kernel has been extensively
used to support performance isolation in a multitasking environment, it falls short of addressing
memory-related interference due tomemory access contention and insufficient cache coverage. Though quite
a few memory-aware performance isolation mechanisms have been proposed in the literature, many of them
rely on hardware-based solutions, inflexible resource management or ineffective execution throttling, which
makes it difficult for them to be used in widely deployed operating systems like Linux running on a COTS
SoC platform. We propose a memory-aware fair-share scheduling algorithm that can make QoS applications
less susceptible to memory-related interference from other co-running applications. Our algorithm carefully
separates the genuinememory-related stall from a running task’s CPU cycles and compensates the task for the
memory-related interference so that the task gets the desired share of CPU before it is too late. The
proposed approach is adaptive, effective and efficient in the sense that it does not rely on any static
allocation or partitioning of memory hardware resources and improves the performance of QoS applications
with only a negligible runtime overhead. Moreover, it is a software-only solution that can be easily integrated
into the kernel scheduler with only minimal modification to the kernel. We implement our algorithm into
the CFS of Linux and name the end result mCFS. We show the utility and effectiveness of the approach via
extensive experiments.

INDEX TERMS Memory-related interference, backend stall cycle, operating system, Linux, CFS.

I. INTRODUCTION
Data-intensive applications, most noticeably deep
learning-based applications, are rapidly and widely spreading
in recently emerging computing systems. Services provided
by such applications are often human-perceivable and subject
to quality-of-service (QoS) requirements. As such, system
developers are tasked with ensuring sufficient computing
performance for their applications within limited cost, size,
weight and power budgets of the underlying system [1], [2].

Between the QoS and best-effort applications, there
exists unavoidable performance interference since they share
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various computing resources in the system. Such interfer-
ence to QoS applications is malicious since it can indefi-
nitely increase their response time and thus prevent them
from meeting the imposed QoS requirements. Diverse per-
formance isolation techniques have been proposed in the
literature and then widely used as a viable weapon against
QoS applications’ performance degradation.

To address the need for performance isolation in extensive
use cases of industry, Linux has offered the completely fair
scheduler (CFS) since its 2.6.23 kernel release [3]–[6]. The
CFS has been successfully exploited as a fair-share scheduler
in numerous Linux installations ranging from huge datacenter
servers to desktops and to small handheld devices such as
smartphones. Despite such a significant contribution of CFS
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over a decade, the Linux kernel has started to show its lim-
itations in dealing with recently emerging application work-
loads that generate massive memory traffic. Our approach is
motivated by such limitations of the Linux kernel.

While the CFS is capable of fairly distributing CPU cycles
among running tasks proportionally to the tasks’ weights,
it cannot take into account interference that the running tasks
experience due to memory contention and insufficient cache
coverage. This is because CFS assumes that absolute physical
performance achieved by a task is proportional to the number
of CPU cycles allocated to the task. It thus simply attempts
to equalize the weighted performance of runnable tasks in
the system. In the presence of memory access contention and
cache misses, however, the execution of a task may stall and
waste CPU cycles for nothing. Unless the kernel scheduler
takes into account such stall cycles, the underlying runtime
system cannot provide exact performance isolation for QoS
applications.

In this paper, we propose a memory-aware fair-share
scheduling algorithm that can make QoS applications
less susceptible to memory-related interference from other
co-running applications in the system. We also seamlessly
integrate the algorithm into CFS with minimal modification
to the Linux kernel. We name the end result memory-aware
CFS (mCFS).

Memory-aware performance isolation is a difficult
problem to formulate since modern microarchitecture has
become too complex to be fully analyzed. Moreover,
it is tricky to accurately measure the amount of genuine
memory-related stall that a given application experiences.
Observe that an application’s memory-related CPU stall is
ascribed to not only memory-related interference from other
applications but also the idiosyncrasy of the application’s
code itself. For instance, an application demonstrating a
sequential data access pattern may incur many cache misses
during execution, even without cache contention. In this case,
it is fair to say that the performance isolation mechanism
should not compensate the application for such intrinsic CPU
stall. As such, a performance isolation algorithmmust be able
to distinguish between the genuine memory-related stall and
the intrinsic stall.

To compute the amount of the genuine memory-related
stall, mCFS uses a runtime formula we derive via qualitative
analysis of the underlying microarchitecture and quantitative
analysis of the execution of diverse applications. In this for-
mula, wemodel the genuinememory-related stall using easily
measurable entities such as stall cycles at the backend of the
pipeline of the underlying microarchitecture. We duly note
that the backend stall is caused by cache misses and memory
access contention as well as data dependencies and inter-
nal resource contention between micro-operations inside the
pipeline. To single out the genuine memory-related stall from
the entire backend stall, the formula subtracts the estimated
intrinsic stall from the measured backend stall.

To estimate the amount of intrinsic memory-related stall,
we introduce the average intrinsic backend stall rate (IBSR)

of a given application. The average IBSR is a rate of the
backend stall cycles of an application over a long period of
time when the application is running alone in an isolated
manner. It is a characteristic value that represents the memory
access behavior of a given application. The average IBSR can
be computed offline on a per-application basis. A backend
stall cycle count can be easily measured via a performance
monitoring unit commonly provided by modern SoCs.

For a given time interval [t1, t2], the formula for computing
the genuine memory-related stall cycle count bmi (t1, t2) is
given as follows where bi (t1, t2) is the backend stall cycle
count:

bmi (t1, t2) = bi (t1, t2)− average_IBSR · (t2 − t1)

We experimentally validate the formula in Sections IV
and VI.

The crux of mCFS lies in ‘‘memory-aware virtual runtime
calculation’’ for the task scheduler. The virtual runtime of a
task is defined as the task’s cumulative CPU time inversely
scaled by its weight. In CFS, tasks at the runqueue of a CPU
core compete for the core and eventually the task with the
smallest virtual runtime wins it. When computing the virtual
runtime of a running task, the original CFS considers the
CPU time that the task physically used, without considering
the CPU stall time. Since such a notion of virtual runtime
cannot capture the memory-related interference that a task
receives, we propose to redefine a task’s virtual runtime in a
memory-aware manner and apply the new notion to the CFS.

As the first step in memory-aware virtual runtime
calculation, mCFS performs a computation we name CPU
time actualization. In this step, the genuine memory-related
stall time of a task is deducted from the task’s physical CPU
time. Since a task is always given actualized CPU time no
greater than the original CPU time, the task is made to run
more frequently bymCFS until it receives a sufficient amount
of actualized CPU time.

In the next step, mCFS scales the actualized CPU time
according to the relative performance of the core hosting the
task. This step is needed to take into account the dynamic
voltage and frequency scaling (DVFS) of modern SoCs [7],
[8]. Since DVFS changes the operating frequencies of cores
at runtime, a task would demonstrate performance variability
without the performance scaling of this step.

In the final step, mCFS computes virtual runtime from the
actualized scaled CPU time derived in the previous steps.
To do so, mCFS divides a task’s actualized scaled CPU time
by the task’s weight.

The benefits of mCFS are three-fold. First, mCFS is
adaptive. Since it does not rely on static memory resource
allocation or partitioning for performance isolation, it can
adaptively react to changes in resource demands with-
out wasting valuable resources. Second, mCFS is effec-
tive. Our experiment demonstrates that mCFS achieves less
slowdown or more performance improvement for the YOLO
face detection application by up to 67% than the conventional
CFS, depending on the mix of the co-running applications.

VOLUME 8, 2020 98875



J. Kim et al.: Memory-Aware Fair-Share Scheduling for Improved Performance Isolation in the Linux Kernel

It yielded a similar performance enhancement with bench-
mark programs as well. Third, mCFS is efficient since it does
not employ any costly runtime mechanisms such as CPU
idling or request throttling. It incurs only a negligible runtime
overhead of 0.091%.

We have implemented the proposed approach into Linux
kernel 4.9.108 on top of the NVIDIA Jetson AGX Xavier
platform. Since the Xavier series SoC is particularly designed
for performance-hogging, embedded deep learning-based
applications, performance isolation is one of the highly
desired features of the underlying runtime system. We show
the effectiveness of mCFS through extensive experiments and
measurements with SPEC 2017 benchmark suites. We make
the source code for the mCFS kernel patch, the workload
generators and the launcher command as well as running
scripts publicly available so that anybody can evaluate or use
mCFS freely [9].

The remainder of the paper is organized as follows.
Section II surveys existing approaches to memory-aware
performance isolation on multicore architecture and com-
pares the representative techniques with mCFS. Section III
provides the readers with the technical background of
mCFS to help them in understanding the proposed
approach. Section IV defines a measure to estimate the
genuine memory-related stall and validates its effectiveness.
Section V formally states our problem to solve and
then defines the notion of memory-aware fairness for
multicore architecture. Section VI explains the proposed
solution approach along with its kernel-level implementation.
Section VII reports on the experimental evaluation. Finally,
Section VIII concludes this paper.

II. RELATED WORK
The performance interference problem in a computing system
has been particularly pronounced for memory resources as
more and more data-intensive applications are running on
a heterogeneous multicore system possessing graphics pro-
cessing units (GPU) and neural processing units (NPUs)
[10], [11]. Many studies have been conducted to improve
the performance of latency-sensitive applications and/or to
reduce their performance variability in the presence of
memory-related interference. The existing approaches can
be classified into spatial memory resource isolation and
temporal memory resource isolation, depending on how
memory resources are isolated.
Spatial memory resource isolation is a technique to

prevent performance interference among multiple co-running
applications by physically partitioning memory hardware
resources used by the applications. Application-aware mem-
ory channel partitioning in [12] mitigates the problem of
memory access interference by mapping to different memory
channels the data of applications that are likely to severely
interfere with each other. Similarly, the approach in [13]
allocates a specific subset of DRAM banks to a core
using a bank-level partition mechanism based on page-
coloring supported by the underlying operating system.

Cache partitioning is one of the most representative tech-
niques for spatial performance isolation. Kpart in [14]
is a hybrid cache partitioning and sharing technique that
offsets the ineffectiveness of the well-known utility-based
way-partitioning.

Clearly, spatial memory resource isolation is a preventive
measure to lower memory-related interference in a predic-
tive manner but it tends to incur frequent resource over-
provisioning. Some memory resources may not be fully
utilized and even wasted if applications are not distributed
adaptively and fairly among the resource partitions. Besides,
memory resource contention cannot be completely removed
if a partition is assigned to multiple applications that have to
run concurrently.
Temporal memory resource isolation is a technique to

prevent interference by distinguishing the time when appli-
cations use cache and memory hardware resources. This
technique can be further divided into prevention-based and
compensation-based, depending on whether to avoid or allow
memory-related interference in advance.

In prevention-based temporal memory resource isolation,
the cores that are expected to incur an unfair amount of
memory resource contention get restricted to run tasks. The
rate-based approach in [15] throttles down the processing
rate of a core if it is running a low-priority task and its
execution is interfering with a high priority task through
memory resource contention. It considers clock modula-
tion and frequency scaling as a rate throttling mechanism.
MemGuard [16] tries to make the average memory access
latency of a task no larger than when running on a dedicated
memory system that processes memory requests at a given
service rate. To do so, it assigns a specific memory access
quota to each core in every regulation period and restrains the
core having depleted its quota from running for the rest of the
period. The approach in [17] estimates the amount of memory
access interference that the critical task group is experiencing,
by using the number of outstanding requests in the request
buffer at the memory controller. Based on such estimation,
it throttles down or up memory requests generated by the
normal task group.

Like the spatial memory resource isolation,
prevention-based temporal memory resource isolation is
a preventive technique. Unless the unfairness is mea-
sured correctly and updated adaptively, it can restrict tasks
unnecessarily. Also, it may deteriorate the overall system
performance when memory request throttling is used for the
rate control.

In compensation-based temporal memory resource
isolation, the tasks that failed to make a desired amount
of progress get compensated for their tardiness. The source
throttling technique in [18] estimates unfairness in the
shared memory system using a task’s slowdown and throttles
down cores causing interference to the most slowed down
core by limiting the number of requests they can inject
into the system and the frequency at which they do. The
fair-progress process scheduling technique in [19] forces the
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FIGURE 1. CPU complex and GPU of NVIDIA Jetson AGX Xavier platform.

equally weighted tasks to have the same amount of slowdown
when they run concurrently. It uses the same measure for
a task’s slowdown as the source throttling technique [18]
to monitor the progress of all tasks at runtime. It allocates
more CPU time to the task that experienced a slowdown. The
cache-fair algorithm in [20] increases a task’s CPU time slice
if the task executes fewer instructions per cycle than it would
under fair cache allocation. The algorithm claims that two
tasks are cache-friendly if they experience similar miss rates
when running together. It estimates a task’s fair miss rate
and derives its fair cache allocation by fitting experimental
data into a linear approximation function. Dike [21] is a
contention-aware scheduler for heterogeneous multicore sys-
tems. It divides execution time into fixed-length quanta. Dike
measures the memory access rate of every task during every
quantum and then predicts the potential effects of migrating
tasks onto different cores. Dike attempts to achieve fairness
among the tasks by moving them back and forth from the
maximum frequency core to the minimum frequency core.

Our approach belongs to compensation-based temporal
memory resource isolation. In designing mCFS, we ruled
out the other two techniques due to their drawbacks we
analyzed above. The approaches in [20] and [21] come closest
to our approach. The cache-fair scheduler [20] compensates
a tardy task by extending its time slice but the notion of
cache-fairness does not scale up for a system having
performance-asymmetric multicore architecture. Dike [21]
makes use of task migration between cores to balance
tasks’ progress whereas mCFS relies on task scheduling.
Unfortunately, task migration can be very costly when it
incurs cache line refills. Dike addresses the performance
asymmetry of a multicore system likemCFS but it works with
only two frequency levels.

III. BACKGROUND
The approach proposed in this paper is designed for and
implemented into the Linux kernel running on top of the
NVIDIA Jetson AGX Xavier platform [22]. We explain the
architectural elements and performance monitoring unit of
the Xavier series SoC and the CFS of Linux.

TABLE 1. Selected PMUv3 per-core PMU events.

A. NVIDIA JETSON AGX XAVIER PLATFORM
The NVIDIA Xavier series SoC includes a CPU complex
and a GPU as shown in Figure 1. The CPU complex and
GPU share only the main memory. The Xavier series SoC
provides performance monitoring units (PMU), which are
classified into per-core PMUs and uncore PMUs. Table 1
lists the selected per-core PMU events [22], [23]. Using them,
programmers can effectively measure valuable performance
metrics of the underlying SoC platform including the number
of instructions per cycle (IPC), the number of cache misses
and the frontend and the backend stall cycle count.

Our approach uses only the two events, CPU_CYCLES
and STALL_BACKEND among PMU events in Table 1.
Thus, it can be easily implemented on anymicro architectures
including various Arm-based SoCs and Intel processors that
provide the same or similar performance counters.

B. CLASSIFICATION OF CPU CYCLES
During the execution of a program, CPU often wastes a
nontrivial number of valuable CPU cycles without perform-
ing any useful work [24]. Such a CPU cycle is referred to
as either a frontend stall cycle or a backend stall cycle. They
are named after the frontend and backend of the pipeline in
modern superscalar, out-of-order microarchitecture such as
the Arm v8.2 Carmel CPU core [22] depicted in Figure 2.

The frontend consists of an instruction fetcher and
an instruction decoder. Obviously, the frontend fetches
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FIGURE 2. Frontend and backend of the pipeline in the Carmel core.

instructions and decodes them into a series ofmicro-operations
to issue them to the backend. The frontend utilizes the branch
predictor, instruction cache (I-cache) and instruction TLB
(I-TLB) to expedite feeding micro-operations to the backend.

The backend includes a micro-operation scheduler, various
execution units, register files, a data cache (D-cache) and a
data TLB (D-TLB). The backend schedules micro-operations
buffered at the issued micro-operation queue and executes
them in an order consistent with data and control dependen-
cies derived from the original code. It finally writes the results
back to the register files and D-cache [24].

I-cache misses, I-TLB misses and branch misprediction
can make CPU stall at the beginning of the pipeline.
This phenomenon is called frontend stall. Similarly,
lack of required resources, such as execution units and
memory resources inside the pipeline prevents issued
micro-operations from retiring. This is referred to as backend
stall.

Unlike the frontend and backend stall cycles, a running task
is spending useful cycles where micro-operations are retired
from the pipeline. Such a cycle is called a retired instruction
cycle. The frontend stall counts every CPU cycle on which no
micro-operation is issued since there are no micro-operations
available to issue from the frontend [23]. The backend
stall counts each CPU cycle on which no micro-operation
is issued since the backend is unable to retire any
micro-operations [23].

C. CFS OF THE LINUX KERNEL
The CFS is the primary task scheduler of the Linux kernel
since its 2.6.23 release. CFS distinguishes itself from its
predecessors in that its objective is achieving fairness among
multiple runnable tasks. In Linux, the fairness of a task sched-
uler is defined by the property that the physical execution
times of tasks should be proportional to their weight values
[3], [4], [25]. As such, the weight of a task is an important task
attribute for CFS. In order to allow users to specify a weight
value for each task in a way consistent with conventional
Linux kernels, CFS makes use of nice values. In conventional
Linux, nice values were used to denote task priorities. In CFS,

a nice value is mapped to a specific weight value. Nice values
range over [−20, 19] where a smaller value corresponds to a
larger weight.

As a measure of fairness among tasks, CFS introduces a
notion of virtual runtime. The virtual runtime of a task is
defined as the task’s cumulative runtime inversely scaled by
its weight. If virtual runtimes are the same among all the tasks
at a given point in time, then the tasks are given the exactly
fair amount of CPU time at that time. Clearly, CFS tries to
schedule runnable tasks such that they have virtual runtimes
only with small differences.

Let w0 be the weight value of nice value 0 and wi be the
weight value of task τi. Suppose pi(t) denotes the amount of
the cumulative physical runtime of task τi at time t . In CFS,
the virtual runtime vi(t) of task τi at time t is defined as
bellow:

vi(t) =
w0

wi
pi(t)

The smaller a task’s virtual runtime is, themore the task needs
to be scheduled.

In order to enforce fair-share scheduling at a reasonable
run-time cost, CFS also makes use of the notion of a time
slice. A time slice is associated with a task and defined as
a time interval for which the task is allowed to run without
being preempted. In CFS, the length of a task’s time slice
is proportional to its weight. The time slice si of a task τi is
computed by

si =
w0∑
τj∈R wj

P

where R is the set of runnable tasks, wi is the weight of τi and
P is the constant for a given workload. In Linux, P is given as
below:

P =

{
sysctl_sched_latency, if n < nr_latency,
min_granularity× n, otherwise

where n is the number of tasks and sysctl_sched_latency,
nr_latency and min_granularity are system-wide constants
whose values are 6, 8 and 0.75, respectively, in the current
Linux implementation.

CFS is a symmetric multiprocessor scheduling algorithm
with a distributed runqueue structure. The Linux kernel main-
tains a dedicated runqueue for each core and lets a CFS
instance of a core make scheduling decisions independently
of each other. A runqueue for a core keeps a list of its runnable
tasks. These tasks are sorted according to the non-decreasing
order of their virtual runtimes. When the currently running
task runs out of it time slice, CFS selects the first task in the
runqueue and dispatches it for execution.

IV. DEFINING AND VALIDATING A MEASURE FOR
MEMORY-RELATED INTERFERENCE
It is a challenging mission to come up with a memory-aware
fair-share scheduling framework that is practically imple-
mentable in a kernel. In fact, it is often tricky to quan-
tify an accurate measure for memory-related interference,
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particularly in a multitasking environment on a complex mul-
ticore processor. Even if we have a well-defined measure,
it is sometimes infeasible to instrument it due to the limited
performance monitoring capabilities of an underlying SoC.

To overcome these hurdles in our approach, we define a
measure that is calculable with only existing PMU hardware
at a low runtime cost. To come up with the measure, we
qualitatively analyze backend stall cycles appearing in the
modern CPU architecture, particularly in the Xavier series
SoC. We then justify the proposed measure in a quantitative
manner via experiments.

A. CLASSIFYING BACKEND STALL CYCLES
AND DEFINING THE MEASURE
As described in the previous section, the backend of a
pipeline in the modern SoC architecture executes arithmetic
micro-operations with either the integer execute unit or the
FP execute unit. It also processes memory micro-operations
using the load/store unit that exploits the memory hierarchy
consisting of the L1, L2, L3 cache and memory. The situation
where the backend has to wait for nothing can be divided into
four cases depending on the reason:

1) The backend has to wait for the arithmetic unit required
by the current micro-operation to be released if the unit
is being occupied by another micro-operation. A long
latency divide micro-operation tends to cause such
serialization. Stall in this case usually lasts only for a
couple of CPU cycles [24].

2) It has to wait until operands stored in registers become
available in the presence of data dependency. Stall in
this case is short in time as well, only for a few CPU
cycles [24].

3) It has to wait for D-cache misses to be dealt with even
if the task is running alone in the system. Stall in this
case lasts for a nontrivial number of CPU cycles due
to a huge gap between CPU cycle time and memory
access time [24].

4) It has to wait for the handling of additional D-cache
misses that arise since the running task is sharing the
cache with other co-running tasks in the system. When
severe memory access contention among the cores is
coupled with excessive D-cache misses, stall in this
case can be significantly increased.

Backend stall belonging to the first three cases results
from intra-task attributes such as the data dependencies and
intrinsic cache behavior of the task’s code. We refer to such
backend stall as intrinsic backend stall. Backend stall belong-
ing to the last case occurs due to memory-related interference
among multiple co-running tasks in the system. We call such
backend stall genuine memory-related backend stall.

By definition, the whole backend stall is the sum of intrin-
sic and genuine memory-related backend stall. We formally
define them as follows:
Definition 1: Let b∗i (t1, t2) and b

m
i (t1, t2) be the intrinsic

and genuine memory-related backend stall cycle counts of a
task τi in a time interval [t1, t2], respectively. By definition,

TABLE 2. Specification of NVIDIA Jetson AGX Xavier.

the total backend stall cycle count of τi in [t1, t2] is as follows:

bi (t1, t2) = b∗i (t1, t2)+ b
m
i (t1, t2)

In our approach, we propose to use bmi (t1, t2) as a measure
of the memory-related interference of τi in [t1, t2]. In what
follows, we show that bmi (t1, t2) serves correctly in our
memory-aware fair-share scheduling.

B. EXPERIMENTAL VALIDATION OF THE MEASURE
We validate the effectiveness of the proposed mea-
sure through experiments with highly memory-intensive
benchmark programs selected from the 43 benchmarks
of SPEC CPU2017 [26], [27]. They are 619.lbm_s,
620.omnetpp_s and 623.xalancbmk_s. We ran
the benchmarks on theNVIDIA JetsonAGXXavier platform.
Table 2 gives the detailed specification of the hardware
and the system software that constitute the experimental
platform. During the experiments, we cautiously controlled
factors that might affect the memory access patterns. For
instance, we fixed the operating frequencies of the CPU,
GPU and EMC (external memory controller) throughout the
experiments.

The test variable of the experiments was the amount of
memory-related interference and the evaluation metric was
the genuine memory-related backend stall cycle count dur-
ing the entire execution of each benchmark. The amount of
memory-related interference is affected by the number of
cache misses and the memory access time in handling each
cache miss. As such, the memory-related interference was
generated by the workload consisting of a cache contention
generator and a memory access contention generator.

The cache contention generator is a simple C program
that is designed to incur cache line refill for each load/store
instruction. We controlled the amount of cache contention
by stuffing the different number of arithmetic instructions
between two consecutive bundles of load/store instructions.
We made five test instances: no cache contention generator
running and four cache contention generator instances with
ratios of load/store instructions and arithmetic instructions
being 1:15, 1:10, 1:5 and 1:1, respectively.

Thememory access contention generator is amultithreaded
CUDA program. Each CUDA thread repeatedly performed
memory reads of 8MB and memory writes of 4MB in turn.
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FIGURE 3. Relationship between memory-related interference and backend stall cycle count.

We varied the number of memory requests by changing the
number of CUDA threads.

To create a discrete value space for the test variable that
ranges over various amounts of memory-related interference,
we made two memory access contention cases for each cache
contention instance: no memory access contention via zero
CUDA thread and the maximum memory access contention
via 64 CUDA threads. More than 64 CUDA threads did not
make a noticeable increase in memory access contention due
to memory bandwidth saturation. As a result, our test variable
has ten unique combinations.

For each experimental run, we pinned a benchmark
program on core 7 and allocated an instance of the cache
contention generator onto each core so that they could cover
L1, L2 and L3 cache contention altogether. We ran the
memory access contention generator on the GPU. Among
per-core PMU events shown in Table 1, we counted the
STALL_BACKEND event in each experimental run.

Our experiments were conducted in two steps. We first
measured the intrinsic backend stall of each benchmark
program by running it alone until termination and then count-
ing the backend stall cycles. By definition, this count was
the amount of the intrinsic backend stall of the benchmark.
Next, we ran each benchmark to completion while impos-
ing different amounts of memory-related interference as
stated above. We then counted backend stall cycles in each
experimental run.

Figure 3 shows the experimental results. The horizontal
axis denotes the amount of memory interference expressed
by the test variable space. The vertical axis is the num-
ber of backend stall cycles, which is decomposed into an
intrinsic backend stall cycle count below and a genuine

memory-related backend stall cycle count above. The experi-
mental results clearly show that the genuine memory-related
backend stall cycle count increases with memory-related
interference. Also, it is observed that cache contention has a
greater impact on memory-related interference than memory
access contention, which is consistent with our intuition.

V. PROBLM FORMULATION
In this section, we model our target system and define the
notion of memory-aware fairness. We then formulate the
problem at hand. We summarize frequently used notations
in Table 3.

A. TARGET SYSTEM AND TASK MODEL
Our target system is a symmetric multicore processor that
consists of a set P of identical cores. The target system
employs dynamic voltage and frequency scaling (DVFS) for
reducing power consumption. To work under DVFS, mCFS
must take into account the changing performance of each core
when computing the virtual runtime of a task running on that
core. To aid in this process, we use a frequency-to-relative
performance mapping r : F → R where F is a set of allow-
able frequencies of the target system and R is a set of relative
performance values. The relative performance r (f ) is simply
the speedup factor against the base performance r(fmin) where
fmin is the minimum frequency in F . We statically build the
mapping table containing an entry r (f ) for each f ∈ F ,
as explained in [5], [6]. Figure 4 shows such a mapping table
in graph form.

We present the application model. An application is a
multithreaded Linux process. In Linux, a user-level thread
becomes a task that is a kernel-level entity scheduled by
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TABLE 3. Notations.

FIGURE 4. Relative performance for each available frequency.

the kernel. An application can be either a QoS application or a
best-effort application, based on the programmer’s decision.
By definition, all threads belonging to a QoS application
become QoS tasks. A dedicated launcher process is used to
fork a process from a QoS application’s executable code,
which will be explained in the next section. A best-effort
application is an ordinary Linux application and does not
require any special treatment in mCFS.

We define the task model. The target system runs a set of
n tasks Q ∪ B = {τ1, τ2, . . . , τn} where Q is a set of QoS
tasks and B is a set of best-effort tasks. The system developer
classifies a task as stated above. QoS tasks are processed by
mCFS while best-effort tasks are handled by the conventional
CFS. The rationale behind this decision is that QoS tasksmust
be compensated for genuine memory-related interference at
the cost of the degraded performance of best-effort tasks.
CPU bandwidth allocation among tasks is a zero-sum game
anyway and it is semantically correct that best-effort tasks
become victims.

A task τi in Q ∪ B is associated with a fixed weight value
denoted by wi. Recall that the virtual runtime of a task is
defined as the task’s cumulative runtime inversely scaled by
its weight in CFS. CFS uses virtual runtime as a measure of
fairness.

In order to incorporate memory-aware fairness into CFS,
we extend our previous work on scaled virtual runtime in [5],
[6]. Specifically, we define actualized scaled virtual runtime
(ASVR). To do so, we first introduce the notion of actualized
CPU time of a task τi for a given time interval [t1, t2]. We then
scale the actualized CPU time according to the operating
frequency in that time interval. Finally, we compute the vir-
tual runtime by dividing the actualized scaled CPU time by
its weight. Using the virtual runtime, we finally define the
memory-aware fairness and formulate the problem at hand.

We let ci (t1, t2) and ni (t1, t2) denote the CPU time and the
CPU cycle count of τi in [t1, t2], respectively.
Definition 2: Actualized CPU time of a task τi at the end

of a time interval [t1, t2] is

cai (t1, t2) =

 ci (t1, t2) ·
(
1−

bmi (t1, t2)

ni (t1, t2)

)
, if τi ∈ Q

ci (t1, t2) , if τi ∈ B

The actualized CPU time of a best-effort task is the same as
the CPU time since best-effort tasks are not compensated for
anymemory-related interference. The actualized CPU time of
a QoS task is defined as the CPU time deducted by the stall
time due to genuine memory-related interference. Recall that
bmi (t1, t2) is the genuine memory-related backend stall cycle
count in [t1, t2].
We now scale the actualized CPU time according to the

operating frequency as follows:
Definition 3: Actualized scaled CPU time of τi with an

operating frequency f is

casi (t1, t2) = cai (t1, t2) · r(f )

We in turn define the actualized scaled virtual runtime as
follows:
Definition 4: Actualized scaled virtual runtime (ASVR) of

τi is

vi (t1, t2) =
1
wi
· casi (t1, t2)

It is trivial that equalizing the ASVRs of tasks in the
system achieves perfect memory-aware fairness for the target
multicore system.
Definition 5: A memory-aware perfectly fair scheduler for

a multicore system is one for which

casi (0, t)
casj (0, t)

=
wi
wj

holds for any tasks τi and τj for time interval [0, t].

B. PROBLEM STATEMENT
The problem we address in this paper is to minimize ASVR
difference between any pair of tasks from Q ∪ B. Let vi,j (t)
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FIGURE 5. The mCFS architecture.

be the ASVR difference between two tasks τi and τj for time
interval [0, t]. We define the maximum ASVR difference
vmax(t) as below.

vmax (t) = max
τiτj∈Q∪B

∣∣vi,j (t)∣∣
Obviously, the objective of our problem is to reduce

vmax (t).

VI. MEMORY-AWARE COMPLETELY FAIR SCHEDULING
We propose to incorporate the memory-aware fairness
into the Linux kernel to protect QoS tasks from the
memory-related interference of other co-running tasks.
We aim to extend the CFS with minimal modifications pos-
sible and with only existing hardware support from the target
processor.

A. THE mCFS ARCHITECTURE
We present the kernel-level architecture of mCFS. It consists
of the CFS task scheduler, the ASVR updater and two sup-
porting kernel components as depicted in Figure 5. We engi-
neer the CFS task scheduler very carefully so that it remains
untouched except the virtual runtime updater. The ASVR
updater replaces the original virtual runtime updater. It is
invoked at every scheduling tick of the Linux kernel. On each
invocation, the five components inside it get executed in tan-
dem and calculate the actualized scaled virtual runtime of the
currently running task. In doing so, the ASVR updater refers

to the CPUFreq governor to obtain the current operating
frequency of the core and reads in some PMU counters via
the PMU driver.

Among the five components of the ASVR updater,
the memory-related interference estimator deserves an
in-depth explanation while others do not due to their
self-explanatory definitions in the previous section.

B. ESTIMATING MEMORY-RELATED INTERFERENCE
Let Ts be the scheduling tick interval size. On the occurrence
of a scheduling tick at a time point t , the memory-related
interference estimator calculates bmi (t − Ts, t) according to
Definition 1 re-written below.

bmi (t − Ts, t) = bi (t − Ts, t)− b∗i (t − Ts, t) (1)

To be practically feasible, the memory-related interference
estimator must be able to obtain the values of bi (t − Ts, t)
and b∗i (t − Ts, t)with only existing PMU support. It can eas-
ily get bi (t − Ts, t) by monitoring the STALL_BACKEND
event of the PMUbut cannot immediately obtain b∗i (t − Ts, t).
Thus, we convert b∗i into a combination of measurable
entities.

We start by defining the intrinsic backend stall rate (IBSR)
of τi in [t1, t2] under a given operating frequency f ∈ F .
A formal definition is given as follows.
Definition 6: Under an operating frequency f ∈ F ,

the intrinsic backend stall rate for a running task τi in [t1, t2]
is

γi(f , t1, t2) =
b∗i (t1, t2)

t2 − t1
(2)

Eq. (2) implies that we can compute b∗i (t1, t2) simply
by knowing γi(f , t1, t2). However, it is not feasible to pre-
calculate all the values of γi(f , t1, t2) for any arbitrary time
intervals [t1, t2]. We thus propose to use the average IBSR as
an approximation. We define the average IBSR as follows.
Definition 7: The average IBSR of τi is defined with

sufficiently large T as follows:

γ̄i(f ) = γi(f , 0,T ) (3)

If we rewrite Eq. (2) for b∗i (t1, t2) and substitute γi(f , t1, t2)
with its approximation γ̄i(f ), we have

b∗i (t1, t2) ≈ γ̄i(f ) · (t2 − t1) (4)

Therefore, the memory-related interference estimator
ends up with calculating bmi (t − Ts, t) using the following
equation at each scheduling tick occurring at time t .

bmi (t − Ts, t) = bi (t − Ts, t)− γ̄i(f ) · Ts (5)

As a task runs for tens of thousands of scheduling tick
intervals, the memory-related interference estimator adds up
the intrinsic backend stall cycle count b∗i (t − Ts, t) of each
scheduling tick interval asmany times. For k scheduling ticks,
the approximate value for the accumulated intrinsic backend
stall cycle count simply becomes k · γ̄i(f ) · Ts. We argue
that k · γ̄i(f ) · Ts gets sufficiently close to the actual intrinsic
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FIGURE 6. Relationship between T and accuracy of average IBSR.

backend stall cycle count if k is sufficiently large. We justify
this argument.

We first show via an experiment that for a sufficiently
large time interval [t1, t2], γ̄i(f ) gets closer to γi(f , t1, t2) with
sufficiently large T ≤ t2 − t1 as stated below:

γi(f , t1, t2) ≈ γ̄i(f ) (6)

In our experiment for supporting Eq. (6), we pinned
one of our benchmarks, 619.lbm_s on core 7 and ran
it alone without any memory-related interference. In this
case, the backend stall becomes the intrinsic backend stall,
i.e., bi (t1, t2) = b∗i (t1,t2). We ran the benchmark pro-
gram for 1,300s. We iteratively measured the backend stall
cycle count for every 1ms while it was running. We then
repeatedly calculated numerous IBSR values γi(f , t3, t3+ T )
by changing t3 and T . We also computed the IBSR for the
entire running time, γi(f , 0, 1300). To analyze how close
γi (f , t3, t3 + T ) is to γi(f , 0, 1300), we compute the mean
absolute percentage error between them. Figure 6 shows
the result. As T gets closer to the benchmark’s entire run-
ning time, the mean absolute percentage error gets reduced.
When T is above 128s, the mean absolute percentage error
becomes sufficiently small, below 0.1%. We observed the
same behavior with the other eight benchmarks.

In CFS, a task runs non-preemptively for every scheduling
tick interval given to the task. We consider k scheduling tick
intervals [tj, tj+Ts] for 1 ≤ j ≤ k for which a task τi has been
running. If k is sufficiently large such that k·Ts ≥ T , then the
following holds true according to Eq. (4).

k∑
j=1

b∗i
(
tj, tj + Ts

)
= γi(f , 0, k · Ts) · k · Ts

≈ γ̄i(f ) · k · Ts (7)

Thus, Eq. (7) proves our argument.
We suggest a guideline for selecting T for γ̄i(f ) using

the mean absolute percentage error. Users are first asked to
choose a threshold for the mean absolute percentage error.
Then they can choose any T that satisfies the threshold. In our
experiment, we chose 1% as the threshold and we selected
128s for T . As a rule of thumb, any value greater than 100s
suffices.

C. INTERFACING WITH USERS
Since only QoS tasks are protected from memory-related
interference via memory-aware fair-share scheduling, mCFS

FIGURE 7. Pseudo code for the launcher process.

needs to differentiate QoS applications from best-effort appli-
cations. In our approach, we offer a dedicated launcher pro-
cess that programmers use to let mCFS know about their
QoS applications. The pseudo code for the launcher process
is given in Figure 7. The launcher enabled us to incorporate
mCFS into the Linux kernel without modifying any existing
system call interfaces.

The launcher accepts three arguments: the path name of
a QoS application’s executable file, its parameters and a
list of its average IBSR values. The launcher works in two
steps. First, it stores the average IBSR values into the file
named /proc/pid/ibsr via the write() system
call where ‘‘pid’’ is the launcher’s process id. We associate
with the write() system call a callback function that copies
the average IBSR values into the task_struct instance of
the launcher process.

Second, the launcher forks and executes the QoS
application. We slightly modified the fork() system call
code so that the average IBSR values stored in the parent
process are copied into the task_struct instance of the
child process. Since a best-effort task has the default value
of zero for the average IBSRs, mCFS can easily distinguish
between a QoS task and a best-effort task.

D. INTERACTING WITH KERNEL COMPONENTS
As shown in Figure 5, mCFS closely interacts with two kernel
components: the PMU driver and the CPUFreq governor.
We explain such interactions in detail.

mCFS accesses the core’s operating frequency that
is independently maintained by the CPUFreq governor.
Among the various governor types supported in Linux,
we consider the schedutil governor for mCFS since it
is the default CPUFreq governor that was newly added to
Linux v4.7 [8]. Other governor types can be easily integrated
into mCFS in a similar manner.

The schedutil governor collects a core’s utilization
statistics periodically at each scheduling tick. Additionally,
it gathers the same information upon the occurrences of the
sporadic events that can affect CPU utilization, such as task
creation and termination.

According to Definition 3, the actualized scaled virtual
runtime of a task τi is defined over a time interval [t1, t2] and
computed at the end of that interval. This requires that the fre-
quency of the core hosting τi be constant throughout the inter-
val. In the mCFS implementation, [t1, t2] exactly corresponds
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TABLE 4. Memory intensiveness of benchmarks.

to a scheduling tick interval. The schedutil governor assures
this requirement since the governor adjusts a core’s frequency
mostly at tick boundaries. The effect of sporadic adjustments
is negligible since they occur very rarely compared to the
periodic adjustments.

VII. EXPERIMENTAL EVALUATION
In this section, we report on the experiments that we
performed to demonstrate the effectiveness of mCFS.
We first describe the experimental setup and then show the
experimental results along with our analysis.

A. EXPERIMENTAL SETUP
We used the same experimental setup as in Section IV.
As QoS applications, we used five benchmark pro-
grams from SPEC CPU2017 as well as the YOLO face
detection program [28]. The five benchmark programs
are 619.lbm_s, 623.xalancbmk_s, 602.gcc_s,
600.perlbench_s and 648.exchange2_s. Table 4
shows one of the important characteristics of the bench-
mark programs: the degree of memory intensiveness of each
benchmark, with the most memory intensive at the top.

Each benchmark program ran to completion three times
with three different configurations, respectively: (1) running
with no memory-related interference, (2) running under
the conventional CFS with memory-related interference and
(3) running under mCFS with memory-related interference.
We measured their response times.

We used two test variables for these experiments.
First, we varied the ratio of the QoS applications and the
best-effort applications in the workloads, from 1:1 to 1:5.
Second, we varied the QoS applications while running the
same best-effort application.

We used two performance metrics to analyze the gain and
the cost incurred by mCFS. We measured the percentile per-
formance improvement of a QoS application on mCFS over
on CFS. Similarly, we measured the percentile performance
degradation of a best-effort application on mCFS over on
CFS.

In our experiments, we pinned the QoS applications
and best-effort applications on core 7 so that all of them
became subject to per-core fair-share scheduling. To generate
memory-related interference, we ran the cache contention
generators on the remaining cores and thememory contention
generator on the GPU.

B. EXPERIMENTAL RESULTS
We conducted three experiments to observe and analyze
the performance improvement of the QoS applications

FIGURE 8. Performance improvement of QoS applications on mCFS
according to memory intensiveness of QoS applications.

under mCFS. We first ran the five benchmark programs one
by one as a QoS application with the best-effort application
commonly being 648.exchange2_s. The experimental
result is given in Figure 8. The performance improvement
of mCFS over CFS ranges from 10% to 43% and increases
with the memory intensiveness of the QoS applications.
This result states that mCFS adaptively improves perfor-
mance as needed. The more memory traffic, the greater the
performance improvement.

In the second experiment, we varied the ratio of the QoS
applications and the best-effort applications from 1:1 to 1:5.
We used 623.xalancbmk_s and 648.exchange2_s
as the QoS application and best-effort application, respec-
tively. We ran multiple instances of 648.exchange2_s
to increase the proportion of the best-effort application.
Figure 9 (a) shows the result. As the amount of the best-effort
workload increases, mCFS yields greater performance
improvement for the QoS application. It shows the resilience
of mCFS in the sense that mCFS works more aggres-
sively as the best-effort workload increases. We repeated
the same experiment with the YOLO face detection pro-
gram. The result given in Figure 9 (b) is consistent with that
in Figure 9 (a).

We performed two additional experiments to assess the
performance degradation that mCFS caused to the best-effort
applications. The first experiment is dual to the experiment
of Figure 8. We ran the five benchmark programs one by one
as a QoS application while running 648.exchange2_s
as a best-effort application. We measured the performance
degradation of the best-effort application. Figure 10 shows
that the performance degradation ranges from 5% to
38% and increases with the memory intensiveness of
the QoS applications. This result is consistent with that
of Figure 8.

The next experiment is dual to the experiment of
Figure 9 (a). We varied the ratio of the QoS applications
and the best-effort applications from 1:1 to 1:5. We measured
the performance degradation of the best-effort application.
The result is given in Figure 11. As the amount of the
best-effort workload increases, the performance degradation
of each application decreases. This is because multiple
best-effort applications share the burden.
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FIGURE 9. Performance improvement of QoS applications on mCFS according to the ratio of QoS applications and best-effort applications.

FIGURE 10. Performance degradation of best-effort applications on mCFS
according to memory intensiveness of QoS applications.

FIGURE 11. Performance degradation of best-effort applications on mCFS
according to the ratio of QoS applications and best-effort applications.

C. EVALUATING RUN-TIME OVERHEAD
From the architecture of mCFS, it is obvious that only the
ASVR updater incurs an extra runtime overhead to the kernel
scheduler. We thus measured the execution time of the ASVR
updater while running the benchmark 619.lbm_s. As a result
of the measurement, we obtained 3,624ns. Since the ASVR
updater is invoked every 4ms by the scheduling tick handler,
the extra runtime overhead is only 0.091%.

VIII. CONCLUSION
We presented a memory-aware fair-share scheduling
algorithm that makes QoS applications less susceptible to
memory-related interference from other co-running appli-
cations. Our algorithm dynamically separates the genuine
memory-related stall from a running task’s backend stall

cycles and compensates the task for the memory-related
interference so that the task gets the desired share of CPU
before it is too late.

To compute the genuine memory-related stall amount of a
task, our algorithm first defines the average intrinsic backend
stall rate of a task. It estimates the amount of the task’s
intrinsic backend stall using the IBSR and deducts it from the
task’s entire backend stall amount. Our algorithm actualizes
the CPU time of a task by decreasing the task’s physical CPU
time according to the estimated memory-related interference.
To take into account performance asymmetry among cores
caused by inevitable DVFS, our algorithm scales the actu-
alized CPU time according to the relative performance of
the core hosting the task. The algorithm finally computes the
virtual runtime so that the task becomes schedulable by CFS.

Our algorithm is a compensation-based temporal memory
resource isolation technique. As a result, it does not rely
on either inflexible resource management, ineffective execu-
tion throttling or potentially wasteful execution restriction.
Moreover, it seamlessly supports the performance asymmetry
of multicore architecture.

Since our algorithm is a software-only solution, we could
implement it into the CFS of the Linux kernel, with minimal
modifications to the kernel. We named the end result mCFS.
We have also conducted extensive experiments to validate
the effectiveness of mCFS. The experimental results assert
that mCFS is effective in protecting QoS applications from
memory-related interference as well as it is adaptive, resilient
and efficient. We make the source code for mCFS freely
available through the github [9].
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