
Received April 5, 2020, accepted May 19, 2020, date of publication May 22, 2020, date of current version June 3, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2996669

Extending OpenMP for the Optimization
of Parallel Component Applications
YUNFENG PENG AND HAI LIU
School of Software Engineering, Anyang Normal University, Anyang 455000, China

Corresponding author: Yunfeng Peng (peng_ayit@163.com)

This work was supported by the Key Research and Development and Promotion Projects in Henan Province, China, under Grant
192102310212.

ABSTRACT Motivated by the promotion of development efficiency and performance, we research on the
common performance optimization technology for parallel component applications. We define OpenMP
pragmas to describe the parallel component instance calls in three types of complex structure code. By data
flow analysis, we can find the parallelism potential of these codes. We extends the OpenMP pragma to
support virtual computing resources and the deployment of complex structure codes on them. We provide
three reference rules for the component instance tasks to be scheduled on certain resources to get better
performance. To better utilize resources, we provide mapping of virtual computing resources to real
resources. We extends the OpenMP programming model and execution model to accommodate the extended
pragmas. The extended Babel compiler is responsible for data flow analysis. The extended CCAFFEINE
framework is in charge of generating the task schedule policy. Experiments show that our performance
optimization platform Bomp can get better scalability and performance than other methods existed.

INDEX TERMS Parallel component, performance optimization, OpenMP, parallel software engineering.

I. INTRODUCTION
The traditional method of parallel software development is
code written by scientists in specific fields, which greatly
affects the development efficiency of parallel software. At the
same time, more and more new hardware architectures are
emerging, which makes developers focus on improving the
portability and the development efficiency of parallel soft-
ware, so as to keep up with the changes of architecture.
Scientists proposed to use software engineering to solve
the problem of parallel software development. However,
the current mainstream component specifications are not
oriented to the field of high-performance parallel computing.
Therefore, with the establishment of the CCA(common com-
ponent architecture) [1] forum in 1998 as a sign, researchers
began to study the parallel component technology applicable
to the field of scientific computing based on the tradi-
tional serial component technology. Performance predic-
tion or adaptive methods are commonly used to improve the
performance of parallel component programs [2]. After using
the common strategy of performance optimization of parallel
component program, most of the execution time of parallel
component program is spent on some complex structure
codes which can not be optimized by common means of

The associate editor coordinating the review of this manuscript and

approving it for publication was Stavros Souravlas .

performance optimization. These codes become the bottleneck
to further improve the performance of parallel component
programs. Based on the OpenMP [3] parallel computing
model, this paper extends the model. We use communication
optimization technology to support the optimal scheduling of
parallel component instance calls in complex structure codes.
Our research supports the description and mapping of hetero-
geneous hardware platforms, and improves the performance
of parallel component programs, which has great practical
significance. The parallel component performance optimiza-
tion platform developed in this paper is called Bomp. The
system consists of three parts: the extended Babel compiler
[4], the extended ccaffeine [5] framework and the runtime
library. This system has been applied to the HPC(High
Performance Computing) heterogeneous cluster in the high
performance and Data Engineering Laboratory of University
of science and technology Beijing(USTB), greatly improving
the performance of parallel component programs running on
the cluster.

II. EXTENDING OPENMP TO SUPPORT
CCA PARALLEL COMPONENTS
A. OPERATION MECHANISM OF CCA
PARALLEL COMPONENT
There are two operation modes of CCA parallel components,
SCMD(single componentmultiple data) andMCMD(multiple

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 95435

https://orcid.org/0000-0003-2687-3320
https://orcid.org/0000-0002-7512-6359
https://orcid.org/0000-0002-9602-2663

Y. Peng, H. Liu: Extending OpenMP for the Optimization of Parallel Component Applications

FIGURE 1. Weekly test of parallel component applications executed on
the heterogeneous cluster of the high-performance and data engineering
laboratory of USTB.

components multiple data) [5]. When a parallel component
instance is generated, the first step is to create a C++ object
to represent the component instance. Then the framework
engine uses the Component Register function to register the
component instance with the framework, which is equivalent
to generating the service object representing the component
instance at the framework end. The component registers its
own provides and uses ports with the framework through
the addProvidesPort() and registerUsesPort() methods in the
object. RMI (remote message invocation) [6] mechanism is
used for component calls in different processes. At present,
ccaffeine [5] framework has added support for calling MPI
communication library, which can be directly used in pro-
gram code. Adding pthread multithreading code to com-
ponent implementation code can realize multithreading of
component internal code. We can also add OpenMP pragmas
to component implementation code to support multithreading
optimization by linking the runtime library of OpenMP at
compiling time. The existing means to optimize the run-
ning of CCAFFEINE components are mainly to dynami-
cally change the number of processes running MPI code in
the component, or the number of threads running OpenMP
code, or to place the components on the appropriate resources
through performance predictions [7].

B. COMPONENT INSTANCE INVOCATION WITHIN
COMPLEX STRUCTURE CODE
In reality a call to a parallel component instance is often con-
tained in the implementation code of another parallel com-
ponent instance. The existing optimization methods improve
the adaptability of parallel components by identifying the
parallel execution pattern of the internal codes. This identifi-
cation destroys the black-box nature of parallel components
and increases the burden on programmers. The development
of parallel component technology will be greatly promoted
by mining the parallelism of parallel component program
independent of the specific architecture and improving the
performance of parallel component program. Figure 1 shows
the performance record of parallel component programs exe-
cuted on the heterogeneous cluster of the high-performance
and data engineering laboratory of USTB in a week.

FIGURE 2. Composition of complex structures, These complex structure
codes mainly include three types, namely the for loops; irregular control
structures; calls to parallel component instances that access irregular
data structures. Among them, the irregular control structures mainly
includes three kinds of irregular control flow, namely the unbounded
while loop, recursive call and pointer tracing.

These programs include applications such as reservoir numer-
ical simulation and material molecular dynamics simulation.
It can be seen from this record that in one week, the parallel
component programs spent about 80% of their time on the
execution of complex structure codes. How to improve the
performance of this part of codes becomes the bottleneck for
the parallel component programs.

Through data analysis of the test in Figure 1, the com-
position of the complex structure codes that affects the
performance of the parallel component programs is shown
in Figure 2. These complex structure codes mainly include
three types, namely the for loops; irregular control structures;
calls to parallel component instances that access irregular
data structures. Among them, the irregular control structures
mainly includes three kinds of irregular control flow, namely
the unbounded while loop, recursive call and pointer tracing.
Given a for loop, the inner part contains the invocations of
the instances of parallel component A. Through data flow
analysis, it can be concluded that there are n-m loop iterations
of the loop, and each iteration has h times to invoke the
instances of A. If the h∗ (n-m) calls do not have any depen-
dencies including data dependency and control dependency,
the input parameters of each component instance can be
obtained through data flow analysis, and the input parameters
of each instance are roughly the same size. The maximum
parallelism of the for loop is h∗(n-m). The smallest unit of
parallel execution is an A component instance. We can then
record the results of the data flow analysis can be recorded
in an XML file. For irregular control structures and paral-
lel component instance invocations accessing irregular data
structures, the results of data flow analysis can be recorded in
an XML file in a similar manner.

The OpenMP extension pragmas are defined as follows:

#pragma bomp component A (in si, inout li) (a)

#pragma bomp component R h∗ for (n-m)

A {(s1, l1), (s2, l2). . . (sn-m, ln-m)},

. . . {(h1, j1), (h2, j2). . . (ht, jt)} (b)

#pragma bomp component R h ∗while(unkown)

A {(s1, l1), (s2, l2),. . . (st, lt) }, . . .{(h1, j1),. . . (ht, jt)} (c)

95436 VOLUME 8, 2020

Y. Peng, H. Liu: Extending OpenMP for the Optimization of Parallel Component Applications

#pragma bomp component R h∗ recursive (unkown)

A {(s1, l1), . . . (st, lt) }, . . . {(h1, j1), . . . (ht, jt)} (d)

#pragma bomp component R h∗recursive (unkown)

A {(s1, l1), . . . (st, lt) }, . . . {(h1, j1), . . . (ht, jt)} pre (e)

#pragma bomp component R h∗recursive (unkown)

A {(s1, l1), . . . (st, lt) }, . . . {(h1, j1), . . . (ht, jt)} suf (f)

Pragma (a) is used to identify a parallel component instance
call. Pragma (b) is used to identify a for loop containing
parallel component instance calls. Pragma (c) is used to iden-
tify an unbounded while loop containing parallel component
instance calls. Pragma (d)-(f) is used to identify the recursive
component that contains its own component instance call.
Pragma(d) represents the recursive component instance call
without dependency. Pre in pragma (e) represents the pre-
dependency between the recursive component instance calls.
Here pre-dependency means the execution of an instance call
must wait for the execution of its generated instance call to
complete. Suf in pragma (f) represents the suf-dependency
between the recursive component instance calls. Here suf-
dependency means the generation of the task of the invoked
component instance, that is, the acquisition of the input
parameters of the invoked component instance, must depend
on the completion of the calculation of the invoking compo-
nent instance. In addition, there are corresponding extended
OpenMP pragmas for pointer tracing and parallel component
instance calls accessing irregular data structures. The format
and parameters are similar to (b) - (f).

III. SUPPORT TO HETEROGENEOUS
PLATFORM AND SCHEDULING
Because parallel software often has high requirements for
performance and execution platform, regardless of the dif-
ference of running platform will bring performance loss, and
even affect the correctness of software in some cases.

This paper extends OpenMP to describe heterogeneous
resource platform. Our extended pragmas support the
description of virtual computing resources. The extended
mechanisms support the mapping of virtual resources to
real resources, and performance optimization of parallel
components on heterogeneous platforms through appropriate
component deployment strategies.

A. DEPLOYMENT ON VIRTUAL RESOURCES
To better describe the platform on which the component
runs and facilitate the scheduled execution of the component,
this paper extends the OpenMP pragma to support virtual
computing resources. Each virtual computing resource iden-
tified by the OpenMP extension pragma has a unique name.
Pragma (g) identifies a virtual isomorphic multicore server.

pragma bomp server T procs(m), cores(n) (g)

For the parallel component instance call in the complex
structure codes proposed in this paper, we provides extended
OpenMP pragmas to support the scheduling and specific
scheduling strategy of the parallel component to virtual

FIGURE 3. Task distribution in for loop. A component instance is invoked
as a task. Master server node scatters the tasks to slaves, and it gather
results from slaves.

computing resource by referring to the two task allocation
methods of master-worker and task pool.

#pragma bomp schedule R W on T (h)

Pragma (h) indicates that the structures R and W containing
parallel component invocations are scheduled to run on the
virtual computing resource T.

The specific scheduling policy mainly includes the
following three reference rules:

1) If T is a virtual isomorphic multicore server and the
number of available computing cores is r, different scheduling
policies can be generated for different code structures. If R is
a structure defined by pragmas (b), (c), or (d), then the value
of the corresponding parameter can be obtained at runtime.
A component instance is invoked as a task, and the overall
task allocation is shown in figure 3.

2) If R is a recursive invocation of the component defined
in pragma (e) and (f), then a dependency table needs to
be maintained in addition to a parameter list after all the
tasks are generated. If T is a virtual SMP cluster composed
of r virtual SMP servers, the communication between the
computing cores on different SMP is conducted through the
high-performance network communication protocol armci
[8] to input data of the task and return results. We use
SMP server multi-threading mechanism, overlapping com-
ponent instance call execution, communication, disk I/O and
other operations, to improve the performance of the program
execution.

3) If execution code of the invoked parallel component
instance is implemented by SPU [9] vector operations
on CELL BE processors and T is a virtual PS3 server,
the complex structure codes containing the parallel compo-
nent instance invocation can also be optimized for execution
on T. The optimizing schedule process is similar to that of
isomorphic multicore servers.

B. MAPPING OF VIRTUAL COMPUTING
RESOURCES TO REAL RESOURCES
In order to better utilize resources and properly deploy
parallel component, this paper defines two types of map-
ping from virtual computing resources to real computing
resources. Congeneric mapping is mapping a virtual server
to an actual server that has the same configuration as it.
This is the preferred mapping when resources are sufficient.
Uncongeneric mapping includes mapping virtual multicore

VOLUME 8, 2020 95437

Y. Peng, H. Liu: Extending OpenMP for the Optimization of Parallel Component Applications

servers to real SMP clusters and mapping virtual SMP
clusters to real multicore servers or server clusters.
For the virtual multicore server mapping to the actual
SMP cluster, there is also a source-to-source transla-
tion of the C + extended OpenMP pragmas to the
C + armci high-performance network communication
library. The translation process is divided into two parts. For
the calculation codes which are not component invocations,
the method is similar to the ordinary OpenMP to MPI source-
to-source translation [10]. First, through the translation from
OpenMP to MPI, the MPI version of the program is obtained,
and then in the component program armci initialization and
end statements are added. MPI statements are replaced by
the corresponding armci functions. Armci provides high per-
formance network communication by packaging and send-
ing decentralized, fine-grained communication, reducing the
number of interrupts caused by messages, and prefetching
data. Armci and MPI can be used together.

IV. EXTENDING THE OpenMP COMPILER AND RUNTIME
A. EXTENDING THE OpenMP PROGRAMMING MODEL
The traditional OpenMP programming model mainly iden-
tifies the parallelizable parts(for loops) with the pragmas
and generates the corresponding multithreaded parallel pro-
gram through the compiler. In this paper, the programming
model is extended. When compiling parallel components,
the extended Babel compiler conducts data flow analysis on
the source code of parallel components, and automatically
adds extended OpenMP pragmas to identify the parallel com-
ponent instances within the complex structure codes. The
extended Babel compiler records the results of data flow
analysis in XML files. The components are compiled into.la
library files suitable for CCAFFEINE framework. Before the
component application runs, the user defines the component
to be used and the connection mode in the rc file [5]. For
simple component, an instance of the specified component
can be generated with the instantiate command in the rc file.
However, for component invocations within complex struc-
ture codes, users should define the virtual resources to be
used and the deployment of structure codes to resources by
extended OpenMP pragmas. When the CCAFFEINE frame-
work reads a rc file, it parses the contents of the file using the
parser function.We added parsing of extendedOpenMP prag-
mas to the parser. These pragmas describe virtual resources
and the deployment of components. By searching the XML
file of the specific component, the parser obtains the codes of
the complex structures contained in that component, and the
invocation forms of the component instances within the struc-
tures. In combination with the information of the resources,
a policy generator generates the specific component deploy-
ment strategy. The component initiator then deploys the com-
ponent according to the deployment strategy and starts the
program to run.

B. EXTENDING THE OpenMP EXECUTION MODEL
The traditional OpenMP execution model is carried out in
the fork-join form. In this paper, the model is extended to

FIGURE 4. Extended OpenMP execution model. The execution mode
transition point of the parallel component program is defined as the
turning point of serial execution to parallel or from parallel execution to
serial. For different modes of communication, the operations performed
at the transition point are different.

determine the communication mode between different
component invocation tasks before program execution.
According to the different deployment platforms, it can be
divided into two types: Shared memory and armci network
communication.

As shown in Figure 4, the execution mode transition point
of the parallel component program is defined as the turning
point of serial execution to parallel or from parallel execution
to serial. For different modes of communication, the oper-
ations performed at the transition point are different. For
shared-memory communication, a fork or join operation is
performed at the transition point, changing the number of
threads in the program. For armci network communication,
MPI_Comm _Spawn and MPI_Comm_Free operations are
performed at the transition point to change the number ofMPI
processes in the program. The position of transition point also
varies with the generationmethod of component instance task
in parallel component program.

C. EXTENDING THE OpenMP COMPILER
AND RUNTIME LIBRARY
In this paper, the extended OpenMP programming model and
execution model are implemented through the parallel par-
allel component performance optimization platform Bomp.
After writing the source code of the parallel component,
the parallel component writer first compiles the source code
of the parallel component with the extended Babel compiler.
The extended Babel compiler is responsible for data flow
analysis of the source code of the parallel component and
automatically adds the extended OpenMP pragmas defined
in this article to identify the calls of the parallel component
instance within the complex structure codes defined in this
article. In addition, the results of the data flow analysis are
recorded in an XML file. The extended Babel compiler gen-
erates the.la dynamic linked library of the components. In this
way, the parallel component writer provides the user with.la
libraries representing the parallel components and XML files
that containing the results of data flow analysis. When a user
wants to start an application, the first step is to write a rc file
to define the connections between the parallel components

95438 VOLUME 8, 2020

Y. Peng, H. Liu: Extending OpenMP for the Optimization of Parallel Component Applications

FIGURE 5. Bomp platform for parallel component. The extended Babel
compiler is responsible for data flow analysis of the source code
of the parallel component. The extended CCAFFEINE Framework analyzes
the extended rc file. It can get the information of virtual resources and
the deployment of component instances to virtual resources from the
extended OpenMP pragmas.

in the whole parallel component program. At this point,
users can add the extended OpenMP pragmas defined in this
article to the rc file to identify the platform’s virtual com-
puting resources and the deployment of component instances
to virtual resources. The user then runs the entire parallel
component program by running the extended CCAFFEINE
framework with a rc file.

The extended CCAFFEINE framework analyzes the
extended rc file. It can get the information of virtual
resources and the deployment of component instances to
virtual resources from the extended OpenMP pragmas. The
CCAFFEINE framework, based on the results of data flow
analysis in the XML file and the definition of the component
in the.la component library, generates the optimal scheduling
policy of the component instances on the virtual resources,
and then executes the policy to run the entire parallel com-
ponent program. The Bomp runtime library defines a set of
functions for process and thread management, component
instance task generation, partitioning, scheduling, and com-
munication. Depending on the virtual deployment resources,
these functions are translated into calls to the armci library,
the MPI runtime library [11], and the pthread multithreaded
library [12]. Figure 5 illustrates the operation of the parallel
component performance optimization platform.

In order to make better use of the resources of
heterogeneous cluster platform and reasonably conduct the
deployment and scheduling of parallel components, this
paper implements a resource manager to uniformly man-
age the software and hardware resources of heterogeneous
platform. Our resource manager takes a similar approach to
Concerto [13] inmodeling resources by asking the local agent
for the availability of individual servers.

V. EXPERIMENTS AND RESULTS
With the improvement of model accuracy and the increase
of computation load, parallel computing becomes the

FIGURE 6. Speed-up ratio of MM5 and Post. The optimal speed-up ratio
of Bomp system on MM5 components is almost linear. The acceleration
ratio on MM5 is better than on many other parts as it varies with parallel
threads. Post component gets a lower acceleration ratio.

first choice for numerical meteorological prediction.
The implementation of numerical prediction software by
means of component is beneficial to the software reuse.
MM5(fifth generation mesoscale model) [14] is a mesoscale
weather prediction model jointly developed by the Univer-
sity of Pennsylvania and National Center for Atmospheric
Research(NCAR). In this paper, the typical functions in
this pattern are extracted, and a component-based test case
is made by using C language and component tools of
Bomp performance optimization platform. The test mainly
includes two components, MM5 and Post. For comparison,
a MM5 testing system with Concerto’s adaptive function
and a MM5 system with ICENI’s performance prediction
and adaptive function [15] are also implemented manually.
The experiment was deployed on a heterogeneous platform
consisting of three clusters, including a multicore server clus-
ter, an SMP cluster, and a PS3 cluster. High-speed Ethernet
connections are used between the servers. The input data
is the height, temperature and other weather information
of Pennsylvania every 2 hours in two days. The output is
the precipitation in the next 48 hours. Meanwhile, in the
performance test section, this paper tests the performance of
an original MM5 system without any optimization added as
a comparison.

A. SCALABILITY TEST
Figure 6 shows a comparison of the speed-up ratios of
different application versions deployed on a 16-core mul-
ticore server. The Bomp version has a resource detection
mechanism similar to Concerto, but avoids the performance
prediction overhead of going through the performance predic-
tion phase of ICENI. In addition, the optimization of complex
structure codes is added. As the core component of the pro-
gram, MM5 component contains the most complex structure
codes with parallel instance invocation, and it invokes the
instances of these optimized components more frequently
than other parts of the application. As a result, the optimal
speed-up ratio of Bomp system on MM5 components is
almost linear. For Concerto version, the calculation amount of
MM5 part is the largest, and the calculation-communication

VOLUME 8, 2020 95439

Y. Peng, H. Liu: Extending OpenMP for the Optimization of Parallel Component Applications

FIGURE 7. Performance of MM5. Performance of Bomp version of MM5
component is better than that of other versions. ICENI version is better
than the Concerto version. Concerto version performs better than the
original version.

FIGURE 8. Performance of Post. Bomp version does not have a significant
advantage over other versions. Bomp version does not perform as well as
the Concerto version even at 2 and 4 nodes. As the number of nodes
increases, the gap between versions narrows. At 16 nodes,
the performance of the Bomp version is optimal.

ratio is also the largest. The acceleration ratio on MM5 is
also better than on many other parts as it varies with parallel
threads. In comparison, the ICENI version has a slightly
lower speed-up ratio due to fewer implementation options
for MM5 and little difference between implementations. Post
component contains fewer optimizable structures and gets
a lower acceleration ratio, but the Bomp version is still
the best.

From the above analysis, it can be seen that since the
Bomp performance optimization platform has adopted a lot
of optimization for component instance invocations in for
loops and while loops, and added the unique optimization
for pointer tracing, recursive invocations and component
instance invocations accessing irregular data structure, its
scalability is better than the traditional methods of chang-
ing the parallelism of components, such as Concerto and
ASSIST [16].

B. PERFORMANCE TEST
For performance test, we deployed four versions of the
component on a SMP cluster, using 2, 4, 8, 16 SMP
servers as the deployment nodes. The result is shown in
Figure 7 and Figure 8. As can be seen from Figure 7,

the performance of Bomp version of MM5 component is
better than that of other versions due to more structures that
can be optimized by Bomp. While MM5 has more imple-
mentations to choose from, after selecting the appropriate
implementation through performance prediction, the ICENI
version is better than the Concerto version, which relies solely
on a fixed implementation. The Concerto version still per-
forms better than the original because it dynamically changes
the parallelism of components.

In Figure 8, since Post component contain fewer structures
that can be optimized with Bomp, the Bomp version does
not have a significant advantage over other versions. Due
to the overhead of component instance task generation and
result gather, the Bomp version does not perform as well as
the Concerto version even at 2 and 4 nodes. As the num-
ber of nodes increases, the gap between versions narrows.
At 16 nodes, the performance of the Bomp version is still
optimal. It can be seen that the method presented in this
paper can achieve better performance in the general high
performance computing environment.

VI. CONCLUSION
By analyzing the execution performance of common
parallel component programs, optimizational scheduling
strategies are proposed in this paper. These strategies can
be used for parallel component instances in three types of
complex structures on heterogeneous platforms. We pro-
pose to extend the OpenMP pragmas to support the descrip-
tion of parallel component instance calls in these complex
structured codes. Our extended pragmas can also describe
computing resources of a heterogeneous platform and the
deployment of parallel components on computing resources.
We support the generation and execution of specific opti-
mized scheduling policies by extending the Babel com-
piler and the CCAFFEINE running framework. Experiments
show that the proposed parallel component program opti-
mization method has better scalability and performance
than the existing methods, and there is no additional bur-
den on users. Our future work will include more perfor-
mance experiments on different kinds of parallel applications.
These experiments will give us more information about the
optimization opportunities for the code structures in these
applications.

REFERENCES

[1] CCA Forum. The Common Component Architecture Forum. Accessed:
Apr. 3, 2020. [Online]. Available: http://www.cca-forum.org

[2] D. Bán, R. Ferenc, I. Siket, Á. Kiss, and T. Gyimóthy ‘‘Prediction models
for performance, power, and energy efficiency of software executed on
heterogeneous hardware,’’ J. Supercomput., vol. 75, no. 1, pp. 4001–4025,
Feb. 2018.

[3] OpenMP. OpenMP Architecture Review Board. Accessed: Apr. 3, 2020.
[Online]. Available: http://openmp.org/

[4] Lawrence Livermore National Laboratory (LLNL). Babel. Accessed:
Apr. 3, 2020. [Online]. Available: https://computing.llnl.gov/projects/
babel-high-performance-language-interoperability/#page=home

[5] Y. Peng, L. Yao, C. Zhao, and C. Hu, ‘‘Overview of technologies for
parallel component,’’ Comput. Sci., vol. 38, no. 2, pp. 18–27, Feb. 2011.

95440 VOLUME 8, 2020

Y. Peng, H. Liu: Extending OpenMP for the Optimization of Parallel Component Applications

[6] Oracle. Remote Method Invocation Home. Accessed: Apr. 3, 2020.
[Online]. Available: http://www.oracle.com/technetwork/java/javase/tech/
index-jsp-136424.html

[7] Y. Peng, ‘‘Design and implementation of medical information system
based on parallel component technology,’’ Practical Electron., vol. 27,
no. 22, pp. 43–44, Nov. 2018.

[8] The Pacific Northwest National Laboratory. ARMCI-Aggregate Remote
Memory Copy Interface, Accessed: Apr. 3, 2020. [Online]. Available:
http://www.emsl.pnl.gov/docs/parsoft/armci/

[9] Y. Chai, W. Shen, Z. Zhang, and Z. Tang, ‘‘Design and implementation of
cell BE high performance computing experimental platform,’’ Res. Explor.
Lab., vol. 30, no. 5, pp. 68–71, May 2011.

[10] Sourceforge.OpenMPPackage for ORC, Accessed: Apr. 3, 2020. [Online].
Available: https://sourceforge.net/projects/orc-openmp/

[11] J. Klinkenberg, P. Samfass, M. Bader, C. Terboven, and M. S. Müller,
‘‘CHAMELEON: Reactive load balancing for hybridMPI+OpenMP task-
parallel applications,’’ J. Parallel Distrib. Comput., vol. 138, pp. 55–64,
Apr. 2020.

[12] Lawrence Livermore National Laboratory(LLNL). POSIX Threads Pro-
gramming. Accessed: Apr. 3, 2020. [Online]. Available: https://computing.
llnl.gov/tutorials/pthreads/

[13] P. Temple, M. Acher, J. M. Jézéquel, L. Noel-Baron, and J. Galindo,
‘‘Learning-based performance specialization of configurable systems,’’
Dept. IRISA, Univ. Rennes, Rennes, France, Tech. Rep. hal-01467299v1,
2017.

[14] MM5. UCAR-Understanding Atmosphere, Earth, and Sun Home.
Accessed: Apr. 3, 2020. [Online]. Available: http://www.mmm.ucar.
edu/mm5/

[15] ICENI Project. Imperial College London, London e-Science Centre.
Accessed: Apr. 3, 2020. [Online]. Available: https://wp.doc.ic.ac.uk/
lesc/projects/iceni/

[16] M. Vanneschi. Marco Vanneschi’s Projects. Accessed:
Apr. 3, 2020. [Online]. Available: http://www.di.unipi.it/~vannesch/
projects/FIRBGRID.IT/

YUNFENG PENG was born in Anyang, Henan,
China, in 1982. He received the B.S. degree in
computer science and technology and the Ph.D.
degree in computer architecture from the Univer-
sity of Science and Technology Beijing, Beijing,
China, in 2005 and 2012, respectively.

From 2012 to 2017, he was a Lecturer with
the School of Computer Science and Informa-
tion Engineering, Anyang Institute of Technology.
Since 2018, he has been a Lecturer with the School

of Software Engineering, Anyang Normal University, Anyang. He is the
author of four books and more than 20 articles. His research interests include
parallel computing, software engineering, and component technology.

HAI LIU was born in Anyang, Henan, China,
in 1990. He received the B.E. degree in net-
work engineering from Henan Normal University,
Henan, China, in 2014, and the master’s degree in
computer technology from the Yunnan Key Lab-
oratory of Computer Technology Applications,
Kunming University of Science and Technology,
Yunnan, China, in 2017.

From 2017 to 2018, he was a Lecturer with
the School of Computer Science and Information

Engineering, Anyang Institute of Technology. Since 2019, he has been a
Lecturer with the School of Software Engineering, Anyang Normal Uni-
versity, Anyang. He is the author of more than five articles. His research
interests include wireless sensor networks, software engineering, and big
data framework.

VOLUME 8, 2020 95441

