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ABSTRACT Current Mode Class-D (CMCD) Power Amplifiers are of particular interest in outphasing
transmitters or Doherty configuration. This is because the output capacitance can be absorbed in the RLC
output matching network and 100% theoretical efficiency. In this paper, a 28 GHz current mode (inverse)
Class-D power amplifier was simulated, implemented, and measured in 22nm FDSOI. In order to overcome
the breakdown voltages of the devices, the amplifier employs a stacked topology, which enables higher
output powers and efficiency. The stacked transistors are also pulse injected to further increase the efficiency.
Measurement results shows a peak PAE of 46%, peak drain efficiency (DE) of 71% and a saturated output
power of 19 dBm. The implemented CMCD PA reports the best performance in literature compared to other
CMOS based CMCD PAs.

INDEX TERMS Current mode class-D, FDSOI CMOS, high efficiency, power added efficiency (PAE),
power amplifier (PA), stacking.

I. INTRODUCTION
The performance of a power amplifier (PA) is an essential fac-
tor in the performance of a transmitter as a whole specifically
when it comes to efficiency. The PA is the most power hungry
component; hence, having a high efficiency PA results in less
power consumption, cooling, and overall cost [1]. Switching
PAs, in specific, have been of particular interest due to their
ability to achieve 100% efficiency theoretically [2]–[4].

Switched-mode PAs (SMPA) are usually designed to oper-
ate at the maximum efficiency with the highest output power.
This scheme is suitable for signals with a constant envelope.
However, emerging technologies such as 5G employ signals
with high peak-to-average power ratio (PAPR) since more
complex modulation schemes are used. This means that the
input signal has varying power levels which the PA needs
to maintain its high efficiency at. With higher frequencies,
the efficiency of SMPAs is limited due to the device parasitics
and the limited switching speed [5].

SMPAs are able to achieve high efficiencies due to min-
imizing the overlap between the drain voltage and current.
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Such PAs are Class-E, Class-F, and Class-D (both voltage and
current mode) [6], [7]. Table 1 shows a comparison in the
performance of various switching amplifiers. From the table,
current mode (inverse) Class-D (CMCD), introduced in [8],
is able to achieve the largest peak power with a theoretically
100% efficiency. Inverse Class-D PA can also provide higher
bandwidth compared to other SMPAs in case a wideband
input matching is used [9]. CMCD also has the advantage of
having the output drain capacitance absorbed into the output
matching network allowing it to operate at higher frequencies
compared to other SMPAs along with a relatively simple
output matching network [10].

Some work in literature as in [4], [10]–[14] have imple-
mented CMCD PAs with various CMOS technology or III-V
technologies at lower frequencies. This work will utilize the
high power capabilities of 22nmFDSOI technologywith high
fmax of 371 GHz (NFET) at RF frequencies due to reduced
parasitic to the substrate [15] along with the capability of
CMCD to operate at high frequencies compared to other
SMPAs.

This paper presents design, simulation, and measurements
of a CMCD PA at 28 GHz utilizing Globalfoundries 22nm
FDSOI technology. In order to overcome the breakdown
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TABLE 1. Comparison of different switched mode PA classes.

voltage of the devices, increase efficiency, and deliver more
output power, the implemented PA utilizes the cascode (stack-
ing) topology [16]. In order to maximize efficiency, a new
technique, pulse injection from the input transistor to the
stacked transistor is proposed. The paper is organized as fol-
lows: Section II will discuss the principle of operation of the
classical CMCD, Section III will present the design method-
ology of the proposed CMCD and introduce the concept
of utilizing a cascode topology along with pulse injection.
Section IV will discuss measurement results and comparison
to the state-of-the-art CMCDPAs and sectionVwill conclude
the paper.

II. CONVENTIONAL CMCD PA
Unlike linear PAs, the transistors in SMPAs act as a
switch. In a voltage mode class-D (VMCD) such as in Fig. 1,
a square input signal is applied, an LC resonant tank
is inserted in series with the load resistance to enable
a sinusoidal current to pass through. This results in a
non-overlapping peak drain voltage of VDD and peak drain
current of VDD/RL . This non-overlapping behavior results
in a 100% theoretical efficiency. However, the VMCD PA
results in a large power dissipation at GHz frequencies. The
CMCD PA overcomes this by utilizing an LC tank resonating
at the fundamental frequency that absorbs the parasitic drain
capacitance into the output network as shown in Fig. 2.

FIGURE 1. Schematics of VMCD PA.

The output voltage is sinusoidal where the overlap between
current and voltage is also minimized. The drain voltages of

FIGURE 2. Schematics of a conventional CMCD PA.

each transistor (VD1,VD2) are half sinusoidal. The current
waveforms (iD1, iD2) are square wave. The transistor currents
iD1 and iD2 can be described as:

iD1 =
VD1
Ron

1
2
+

2
π

inf∑
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iD2 =

VD2
Ron
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2
−

2
π

inf∑
k(odd)

sin(kφ)
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where Ron is the ON resistance of the device. The voltage on
Rload can then be expressed as:

Vout = VD1 − VD2 = Acos(φ)+ Bsin(φ) (2)

where A and B are the amplitudes of the two drain-source
voltages with phase φ. Since the RLC tank allows only the
resonance frequency current through the load, a sinusoidal
voltage at f0 is seen at Rload . The output power can then be
defined as:

Pout =
Vout
2RL
=
A2 + B2

2RL
=
A2

RL
(3)

assuming A and B are equal; and the DC current through the
transistors would be calculated as:

IDC =
VDD− A/π

2Ron
(4)

The DC power PDC can then be defined as:

PDC = VDD ∗ IDC =
VDD(VDD− A/π)

2Ron
(5)

The drain efficiency (DE) of the CMCD PA can then be
represented by:

η =
Pout
PDC
=
A2

RL

2Ron
VDD(VDD− A/π )

(6)

From the equation above, it can be deduced that in order to
increase the efficiency Ron must be increased, which means
a smaller device size. This then, is conducive to lower output
peak power. In order to distribute the voltage stress, use
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FIGURE 3. Schematic and the ideal waveforms of the drain voltages
VD1,VD2,ID1 of a cascode CMCD PA.

FIGURE 4. Simulated non-overlapping drain voltage (VD1) and
current (iD1).

a higher supply voltage and deliver higher output power,
a cascode configuration could be used with a relatively larger
transistor size.

Fig. 3 shows the topology of a cascode CMCD PA. The
two input transistors are driven by equal input signals that
are 180◦ out of phase. The cascode transistors are biased at a
constant DC input and serve the purpose of overcoming the
breakdown voltage of the devices by allowing for a higher
VDD. The circuit is symmetrical and the RLC tank results in
a a sinusoidal voltage output at the drain. Fig. 3 shows the
current and voltage waveforms of an ideal stacked CMCD
PA. So an ideal CMCD PA should see an open circuit with
no current for even harmonics and short circuit for all odd
harmonics resembling a push-pull version of inverse Class-F
PA [17].

III. PROPOSED CMCD TOPOLOGY
In order to enable the use of high output power, a higher sup-
ply voltage is needed. However, due to the limited breakdown

voltage of the devices, this is limited. Thus, a cascode config-
uration is used.

Adding a cascode transistor, however, affects the charging
and discharging time of the capacitance at the middle node
negatively. This additional capacitance can be tuned out by
adding a parallel inductor at the common node between the
input transistors and the stacked ones. This helps achieve
Zero Voltage Switching (ZVS) at high frequencies. Fixed
gate bias of stacked CMCD PA suffers from efficiency degra-
dation. The output capacitance increases by the gate-source
capacitance of the cascode transistor resulting in a resonance
frequency shift to a lower frequency.

In order to minimize the output parasitic capacitance, dif-
ferent gate biasing techniques can be used. A novel technique
called pulse injection is proposed that entails the injection
of signal from the input transistor to the output transistor
(see Fig. 5). This way, we prevent the input transistor to
turn on when the cascode transistor is off. Fig. 6 shows the
improvement in peak DE when using pulse injection against
having a fixed gate bias at the cascode transistor by 28%.

The input RF signal is applied to the gates of the under
transistor and cascode transistor through transmission lines
terminated on their characteristic impedance used also for
biasing the gates of the cascode and under transistor to two
different gate voltages VG2 and VG1. The lines are designed
to have 100 � so at the RF inputs we ‘‘see’’ 50 �. The
inductor L2 serves to resonate out the gate-source capaci-
tances of the transistors M2 and M4 and the parastitic drain
capacitances of the transistors M1 and M3. The capacitance
seen at the intermediate nodes can be defined as:

CP1 = (CDS1 + CDG1 ) ‖ CGS2
CP2 = (CDS3 + CDG3 ) ‖ CGS4 (7)

Since the frequency of operation is defined by:

fRF =
1

2π
√
L2CPTotal

(8)

We can define the total parasitic capacitance CPTotal as:

1
CPTotal

=
1
CP1
+

1
CP2

=
CP1 + CP2
CP1CP2

≈
2

CP1,2
(9)

Therefore, the value of L2 becomes:

L2 =
1

4π2f 2RFCPTotal

CPTotal =
CP1,2
2

(10)

The value of the inductor L2 was accordingly designed
to the maximum value without compromising on the quality
factor. The center-tap inductor L1 connects to the supply
voltage through a transmission line in order to choke the
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FIGURE 5. The proposed pulse injected cascode CMCD PA.

FIGURE 6. Simulated DE for fixed gate bias of the cascode transistor and
using pulse injection. Improvement in DE using pulse injection against
using a fixed gate bias by 28%.

fundamental current of the tank. The load is resonant with
inductor L1 and the capacitors C1-C2-C1. The purpose of
the capacitive divider is to transform the high impedance
of the tank to a differential impedance of 100 �. This can
apply to a 100 � differential antenna or a single ended 50 �
antenna if one of the outputs is terminated with a dummy
on-chip 50 � resistance. The values of the capacitive divider
C1-C2-C1 represented in Fig. 8 can be calculated

FIGURE 7. Simulated characteristics of the small signal parameters of the
proposed CMCDA (S11, S22, S21) with broadband input matching.

as follows. To resonate at frequency fRF , the equivelant
capacitance Ceq is:

Ceq =
2C1C2

C1+ 2C2
(11)

The quality factor Q can then be calculated as:

Q =
fRF
BW
= w0RinCt =

Rin
w0L1/2

(12)

Rin = π fRFL1Q (13)
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FIGURE 8. Equivalent circuit of one branch of the capacitive divider.

where Ct is the total capacitance. Setting the BW to 1 GHz,
the quality factor (Q) is 28. Since L1, Q and fRF is known,
then:

Rin
RL/2

≈ (1+
2C2
C1

)2 (14)

Replacing into the equation for fRF :

fRF =

√
1

4π2(L12
2C1C2
C1+2C2 )

(15)

C1 and C2 can the be calculated by:

C2 =

√
2Rin
RL

f 2RF4π
2L1

C1 =

√
2Rin
RL

f 2RF2π
2L1(

√
2Rin
RL
− 1)

(16)

Fig. 5 shows the schematic of the pulse injected CMCD
PA. The gate-source capacitance of the stacked transistor is
40 fF. With a 50 � input, the impedance at the gate is very
low (37 �) and the cut-off frequency is much higher than
28 GHz. This provides a broadband input bandwidth without
adding any additional capacitance at the gate of the stacked
transistors. Fig. 4 shows the simulated non-overlapping drain
voltage and current waveforms of the output transistor using
harmonic balance simulation at peak PAE. Fig. 7 shows
the small signal parameters of the PA with broadband input
matching.

IV. MEASUREMENTS RESULTS
The chip in Fig. 9 was implemented in the Global Foundries
CMOS 22nm FDSOI technology. The testing was done
on-chip using the Elite 300 semi-automatic probe station. The
input and output signals are measured using ground-signal-
ground-signal-ground (GSGSG) probes while the DC signals
are applied through a multi-wedge probe.

The applied out-of-phase input signals were supplied from
two signal generators frequency locked to the same reference
and adjusted in anti-phase (180◦) from their phase control
knob. The measurements took into account the losses of the
connected wires. Fig. 11 shows the simulated and measured

FIGURE 9. CMCD PA chip microphotograph (0.62 mm × 0.67 mm) with
GSGSG probes.

FIGURE 10. Measured and simulated Pout Vs Pin. The CMCD PA shows a
maximum output power of 19 dBm.

PAE and DE. The PAE is measured as:

PAE =
Pout − Pin
PDC

(17)

The measured Peak PAE and DE shows 46%/72% respec-
tively (see Fig. 11) with peak PAE at 0 dBm input power.
Fig. 10 shows a maximum output power of 19 dBm with
a power gain of 17 dB to a 50 � load. The frequency
was swept from 26 GHz to 30 GHz and output power was
recorded. The CMCD PA shows a narrow-band response as
shown in Fig. 13 with output power greater then 15 dBm
for a 1 GHz bandwidth. In order to measure power deliv-
ering capabilities, the supply voltage was increased and
output power was recorded (see Fig. 12). The CMCD
PA is able to deliver higher power with a higher VDD;
however, it is limited to the breakdown voltage of the
device.
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TABLE 2. Comparison between the proposed 22nm FDSOI CMCD PA and related work in literature.

FIGURE 11. Measured and simulated PAE and DE. The CMCD PA shows a
peak PAE of 46% and peak DE of 72%.

FIGURE 12. Measured output power (Pout ) Vs. supply voltage (VDD).
Output power increases with supply voltage but limited to the breakdown
voltage of the device.

A. COMPARISON WITH STATE-OF-THE-ART CMCD PAS
Table 2 shows a comparison between the performance of the
proposed pulse injected CMCD PA and other switching PAs
reported in literature in various technologies. When compar-
ing the performance of PAs, it is important to keep inmind the

FIGURE 13. Output power (Pout ) Vs. frequency shows a narrow-band
behavior maintaining Pout > 15 for a BW of 1 GHz.

operating frequency compared to the fmax of the devices used.
We are able to report the best measured peak PAE in literature
compared to other CMCDPAs in CMOS. Our design also uti-
lizes much less area due to a less number of passive elements;
by only using 2 inductors compared to other designs using 5
such as in [12]. Other technologies such as GaAs HBT and
GaN are able to report higher efficiencies and output power
on the expense of cost and integration capabilities such as
in [4], [13] at lower frequency bands. Overall, we are able
to report the best performance at RF frequencies as high
as 28 GHz compared to similar work reporting compatible
efficiencies at 2.25 GHz in [10], [11] and better efficiency
compared to other switching PAs near 28 GHz in [18]–[20].
To the best of our knowledge, no other work in literature
reports similar performance at similar frequency bands.

V. CONCLUSION
In this paper, a novel 28 GHz Current mode class-D was
implemented and measured in 22nm FDSOI. In order to
overcome the limited breakdown voltage of the devices,
use a higher supply voltage and deliver high output power,
the architecture relies on stacked topology. A novel tech-
nique, pulse injection, was implemented to the cascode
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transistors to improve efficiency. The measured CMCD PA
reports a peak PAE of 46% and a peak DE of 71% with
output power of 19 dBm. It represents the highest perfor-
mance reported for a CMCD PA in CMOS at 28 GHz. This
amplifier is suitable for outphasing transmitters or a Doherty
configuration to improve efficiency and handle large PAPR
signals.
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