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ABSTRACT Two new constructions for families of optical orthogonal codes are presented. The first is a
generalization of the well-known construction of Sidon sets given by I. Z. Ruzsa. The second construction
is optimal with respect to the Johnson bound, and its parameters (n,w, λ) are respectively (ph+1 − p, p, 1),
where p is any prime, h is an integer greater than 1 and the family size is ph−1 + ph−2 + · · · + p2 + p.

INDEX TERMS Optical code-division multiple access (OCDMA), optical orthogonal code (OOC), optical
CDMA, Sidon set.

I. INTRODUCTION
An (n,w, λ) optical orthogonal code (OOC) [2] C,
n > 1, 1 ≤ w ≤ n, 1 ≤ λ ≤ w, is a family of (0, 1) sequences
of length n and constant Hamming weightwwhich satisfy the
following two properties:
• The Autocorrelation Property:

n−1∑
k=0

xkxk⊕τ ≤ λ, (1)

for any x = (x0, x1, . . . , xn−1) ∈ C and any integer
τ 6≡ 0 mod n.

• The Cross-Correlation Property:

n−1∑
k=0

xkyk⊕τ ≤ λ, (2)

for any x = (x0, x1, . . . , xn−1), y = (y0, y1, . . . , yn−1) in
C, such that x 6= y and any integer τ , where ⊕ denotes
addition modulo n. We will refer to λ as the maximum
correlation parameter.

Codes with these properties have been called optical orthog-
onal codes in [1] and [2] in connection with applications
in optical code-division multiple-access communication sys-
tems (OCDMA). OOCwas first suggested in 1989 [2], in par-
ticular, OOCs with λ = 1 have been more extensively studied
in [2]–[11].

The associate editor coordinating the review of this manuscript and

approving it for publication was Xueqin Jiang .

For a given set of values of n, w and λ, the largest possible
size of an (n,w, λ) optical orthogonal code is denoted by
8(n,w, λ). A code achieving this maximum size is called
optimal. The Johnson upper bound [2] on the cardinality of
a constant-weight binary code can be adapted to yield the
following upper bound

8(n,w, λ) ≤
⌊
1
w

⌊
n− 1
w− 1

⌊
n− 2
w− 2

⌊
· · ·

⌊
n− λ
w− λ

⌋⌋
· · ·

⌋⌋⌋
.

This correspondence is concerned only with OOCs families
having parameter λ = 1. In this case, the Johnson bound takes
on the form

8(n,w, 1) ≤
⌊

n− 1
w(w− 1)

⌋
.

Some know algebraic constructions for families of OOCs are
presented in Table 1. The new constructions introduced in this
paper are shown in Table 2.

We may also view optical orthogonal codes from a
set-theoretical perspective. An (n,w, λ)-OOC C can be alter-
natively considered as a family of w-sets of integers modulo
n, in which each w-set corresponds to a codeword and the
integers within each w-set specify the nonzero bits of the
codeword. In this setting, the correlation properties can be
reformulated as follow.

The Autocorrelation Property:

| (a+ X ) ∩ X |≤ λ, (3)
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TABLE 1. Parameters of optical orthogonal codes with λ = 1, here p denote a prime, and q is a power prime of p.

TABLE 2. New family of optical orthogonal codes from this correspondence.

for any X ∈ C and any integer a 6≡ 0 mod n.
The Correlation Property:

| (a+ X ) ∩ Y |≤ λ, (4)

for any X ,Y ∈ C, such that X 6= Y and any integer a, where
a+X = {a+x : x ∈ X}, and all integers under consideration
are taken modulo n.
Using this fact, we can derive the following interpretation

of the correlation properties.

Let C be an (n,w, λ)-OOC, then the following two condi-
tions hold:

1) for each X ∈ C, any nonzero integer a can be repre-
sented as a difference x − x ′, with x, x ′ ∈ X in at most
λ ways;

2) for each X ∈ C and Y ∈ C with X 6= Y , any integer a
can be represented as a difference x − y, with x ∈ X
and y ∈ Y in at most λ ways.

The following notation will be useful later.
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Notation 1: For a subset X of an additive groupG, we will
denote by 1(X ) the set of all the nonzero differences in X :

1(X ) := {a− b : a, b ∈ X , a 6= b}.

We will use the following elementary proposition about
(n,w, 1)-OOCs.
Lemma 1: Let C be an (n,w, 1)-OOC then
1) | 1(X ) |= w(w− 1) for any X ∈ C.
2) 1(X ) ∩1(Y ) = ∅ for any X ,Y ∈ C, with X 6= Y .
In Section II, we present two new families of optical

orthogonal codes with λ = 1. One of these is optimal with
respect to the Johnson bound. We will show that these have
a nice algebraic structure. Our constructions use the Sidon
set given by Ruzsa [14] and the construction of OOC by
Moreno et al. [4]. Finally, we give some concluding remarks
in Section III.

II. CONSTRUCTIONS
Definition 1: Let (G,+) be an abelian additive group with

identity e and A ⊂ G. A is called a Sidon set in G, if for any
x 6≡ e mod G, we have

| (x + A) ∩ A |≤ 1.

Lemma 2: Let (G1,+), (G2, ∗) be abelian groups and
ϕ : G1 −→ G2 an injective homomorphism. If A is a Sidon
set in G1, then ϕ(A) is a Sidon set in G2.
Example 1: Let p be a prime number, α a primitive root

modulo p, and R = {(i, αi) : 1 ≤ i ≤ p − 1} ⊂
(Zp−1×Zp,+).R is a Sidon set in (Zp−1,+)× (Zp,+) with
p− 1 elements. Define ϕ : (Zp−1,+)× (Zp,+) −→ Zp(p−1)
by ϕ(i, αi) = x, where x is a solution to the system of
congruences

x ≡ i mod (p− 1),

x ≡ αi mod p.

By the Chinese remainder theorem, ϕ is an injective homo-
morphism and so

ϕ(R) = R(p, α) = {pi− (p− 1)αi : 1 ≤ i ≤ p− 1}

is a Sidon set in Zp(p−1) with p− 1 elements.
The setR(p, α) is know as Ruzsa’s construction [14].

A. CONSTRUCTION A
Let p be a prime number, h ≥ 2 integer, Fph the finite field
with ph elements, and θ a primitive element in Fph . Let

P = {p(x) ∈ Fp[x] : 1 ≤ deg(p(x)) ≤ h− 1 and p(0) = 0},

(5)

then | P |= ph−1 − 1. We will prove that

C = {{ph logθ (p(θ )+ a)− (ph − 1)a : a ∈ Fp} : p(x) ∈ P}

is a (p(ph − 1), p, 1)-OOC with ph−1 − 1 elements.
Proof 1: We consider the family of subsets

R = {{(a, logθ (p(θ )+ a)) : a ∈ Fp} : p(x) ∈ P}, (6)

of the group (Zp,+)× (Zph−1,+).

Cross Correlation Property: we need to show that
each element (a, b) ∈ Zp × Zph−1 can be represented
as a difference (x, y) − (x ′, y′) with (x, y) ∈ X and
(x ′, y′) ∈ Y in at most one way, for any X ,Y ∈ Rwith X 6= Y .
By contradiction, suppose that there exist a1, a2, a3, a4 ∈ Zp,
with a1 6= a2, a3 6= a4, and p(x), q(x) in P , p(x) 6= q(x) with
deg p = i and deg q = j, such that

(a1, logθ (p(θ )+ a1))− (a2, logθ (p(θ )+ a2))

= (a3, logθ (q(θ )+ a3))− (a4, logθ (q(θ )+ a4)).

Then

a1 − a2 = a3 − a4 mod p, (7)

(p(θ )+ a1)(p(θ )+ a4) = (q(θ )+ a3)(q(θ )+ a2) mod ph.

Therefore

(a1 − a2)q(θ )+ a1a4 = (a3 − a4)p(θ )+ a3a2 (8)

in Fph . The equation (8) can be seen as a polynomial in θ with
degree less than h, and therefore must be equal to zero.
If j > i, then a1 = a2, which is a contradiction then i = j

and since deg(p(x)), deg(q(x)) > 0 we have

(a1 − a2)q(θ ) = (a3 − a4)p(θ ), (9)

a1a4 = a3a2. (10)

By (9)

a1 − a2 = (a3 − a4)u, (11)

for some unit u ∈ Zp. By (7) and (11) we have

(a3 − a4)(u− 1) ≡ 0 mod p.

If u 6≡ 1 mod p, then a3 − a4 ≡ 0 mod p which is a
contradiction. Therefore u = 1 and then q(θ ) = p(θ ) which
contradicts the fact that deg(θ,Fp) = h.

This concludes the proof of the cross-correlation property.
Autocorrelation Property: in this case, we can set

p(x) = q(x) in the previous proof. From (9) and
(10) we have that a1, a2, a3, a4 are roots of the equation
x2 − (a1 + a4)x + a1a4 = 0 over Fp. Thus

{a1, a4} = {a2, a3}.

Since a1 6= a2 and a3 6= a4, then a1 = a3 and a2 = a4, which
corresponds to autocorrelation at the shift zero.

Finally, by the Chinese remainder theorem and Lemma 2,
the set

C = {{ph logθ (p(θ )+ a)− (ph − 1)a : a ∈ Zp} : p(x) ∈ P}

is a (p(ph − 1), p, 1)-OOC with ph−1 − 1 elements.
Theorem 1: For any prime p and any integer h ≥ 2, the set

C defined as above is a (p(ph − 1), p, 1)-OOC with ph−1 − 1
codewords.
Example 2: For p = 3 and h = 3, consider p(x) = x3 +

2x + 1 as the generator polynomial for F27 and let θ be a
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root of p(x). We can construct the following (78, 3, 1)-OOC
C1 consisting of the following codewords.

c1 = {27 logθ (p1(θ )+ a)− 26a : a ∈ Z3} = {27, 29, 61},

c2 = {27 logθ (p2(θ )+ a)− 26a : a ∈ Z3} = {16, 66, 74},

c3 = {27 logθ (p3(θ )+ a)− 26a : a ∈ Z3} = {38, 54, 73},

c4 = {27 logθ (p4(θ )+ a)− 26a : a ∈ Z3} = {71, 75, 76},

c5 = {27 logθ (p5(θ )+ a)− 26a : a ∈ Z3} = {11, 36, 58},

c6 = {27 logθ (p6(θ )+ a)− 26a : a ∈ Z3} = {8, 15, 25},

c7 = {27 logθ (p7(θ )+ a)− 26a : a ∈ Z3} = {30, 59, 70},

c8 = {27 logθ (p8(θ )+ a)− 26a : a ∈ Z3} = {5, 46, 69},

where p1(x) = x, p2(x) = 2x, p3(x) = x2, p4(x) = 2x2,
p5(x) = x2 + x, p6(x) = 2x2 + x, p7(x) = x2 + 2x, and
p8(x) = 2x2 + 2x.

B. CONSTRUCTION B
The previous construction is not optimal with respect to the
Johnson bound. However, it is possible to generate an optimal
optical orthogonal code by adding to it a suitable number of
codewords.

For this purpose, we analyze the set of nonzero elements
that can be represented as a difference x − x ′ with x, x ′ ∈ X ,
X ∈ C. We consider the sets

1(X ) = {(a− b) mod (p(ph − 1)) : a, b ∈ X , a 6= b},

D =
⋃
X∈C

1(X ).

By Lemma 1 we have that | D |= (p− 1)(ph − p).
Denote by Mp the set of nonzero multiples of p modulo

p(ph−1). LetM = Mp∪Mq, where q =
ph−1
p−1 . We will prove

that D ∩M = ∅.
1) Let z = pt for some 1 ≤ t ≤ ph − 2. Suppose that

z = x − y, for some x, y ∈ X and X ∈ C . Then

z = [logθ (p(θ )+ a)(p(θ )+ b)
−1] mod (ph − 1),

z = (a− b) mod p,

for some a, b ∈ Zp and p(x) ∈ P . Since z = pt , then
a = b mod p, therefore a = b. Accordingly z = 0 mod
(ph − 1) and also z = 0 mod p, implying z = 0 mod
p(ph − 1) which is a contradiction.

2) Let z = qt for some 1 ≤ t < p2 − p. Suppose that
z = x − y for some x, y ∈ X and X ∈ C . Then

z = [logθ (p(θ )+ a)(p(θ )+ b)
−1] mod (ph − 1),

z = (a− b) mod p,

for some a, b ∈ Zp and p(x) ∈ P . Therefore
θ z(p(θ )+ b) = p(θ )+ a in Fph .
We consider two cases.
Case 1. If θ z = 1, then a = b mod p and thereby z =
0 mod p. Thus t = pk for some 1 ≤ k < p− 1.
Since θ z = 1, then z = 0 mod (ph − 1) and there-
fore z = 0 mod (p − 1). By the above, we have
p = 0 mod p(p− 1) which is a contradiction.

Case 2. If θ z 6= 1, since θ z ∈ Fp then
q(x) = p(x)(θ z − 1)+ (b− a) is a polynomial in Fp[x]
of degree less than h that such q(θ ) = 0, which is a
contradiction.
Thus

D = Zp(ph−1) \ (M ∪ {0}).

Now we will use the following construction of OOC given
by Moreno et al. [4].
Lemma 3: Let h ≥ 2 be an integer, θ a primitive element

of Fph , P as in (5) and Q = {p(x) ∈ P : p is monic}. Then

C = {{logθ (p(θ )+ a) : a ∈ Fp} : p(x) ∈ Q}

is an optimal (ph − 1, p, 1)-OOC with ph−1−1
p−1 codewords.

Now, let ϕ : Zph−1 → Zp(ph−1) given by ϕ(x) = px. It is not
hard to see that ϕ is an injective homomorphism. Applying ϕ
to each element of C , by Lemma 2 we have that⋃

X∈C

ϕ(X ) = {{p logθ (p(θ )+ a) : a ∈ Zp}

is a (ph+1 − p, p, 1)-OOC with ph−1−1
p−1 codewords.

Finallly, we prove that C = C1 ∪ C2 where

C1 = {{ph logθ (p(θ )+ a)− (ph − 1)a : a ∈ Zp} : p(x) ∈ P}
C2 = {{p logθ (p(θ )+ a) : a ∈ Zp} : p(x) ∈ Q}}

is a (p(ph − 1), p, 1)-OOC.
It is sufficient to prove the cross-correlation property for

any X ∈ C1 and any Y ∈ C2. We will prove that

| (a+ X ) ∩ Y |≤ 1

for any integer a.
Suppose that there exists an integer a such that

a = x − y = x ′ − y′,

for some x, x ′ ∈ X , y, y′ ∈ Y with x 6= x ′ and y 6= y′.
Then x − x ′ = y′ − y, which is a contradiction because
x− x ′ 6∈ Mp, while that y′− y ∈ Mp. Also, since C1∩C2 = ∅,
we have | C |= ph−1 + ph−2 + · · · + p2 + p.
Theorem 2: For any prime p and any integer h ≥ 2,

the set C defined as above is a (p(ph − 1), p, 1)-OOC with
ph−1 + ph−2 + · · · + p2 + p codewords.
Corollary 1: The construction of Theorem 2 is optimal

with respect to the Johnson bound.
Proof 2:

8(ph+1 − p, p, 1) =
⌊
ph+1 − p2

p2 − p
+
p2 − p− 1
p2 − p

⌋
= | C | .

Remark 1: For h = 1 the set given in (6) can be expressed
in the form

R = {(a, logθ (θ + a) : θ + a 6= 0} ⊂ Zp × Zp−1,

which coincides with the Sidon set shown in Example 2.
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Example 3: Continuing with Example 2, by Lemma 3 we
can construct the following (26, 3, 1)-OOC C′ consisting of
the following codewords.

c9 = {logθ (p1(θ )+ a) : a ∈ F3} = {1, 3, 9},

c10 = {logθ (p3(θ )+ a) : a ∈ F3} = {2, 12, 21},

c11 = {logθ (p5(θ )+ a) : a ∈ F3} = {6, 10, 11},

c12 = {logθ (p7(θ )+ a) : a ∈ F3} = {4, 7, 18}.

Then C2 = {{3, 9, 27}, {6, 36, 63}, {18, 30, 33}, {12, 21, 54}}
is a (78, 3, 1)-OOC, and so C1 ∪ C2 is an optimal
(78, 3, 1)−OOC.
Remark 2: Constructions A and B in this paper have the

same length of the Family B in [9] for t = 1 (see the
MZKZ Family B in Table 1). However, our constructions
have weight one unit more. Our approach seems to be more
natural and as a consequence, our second code has optimal
cardinality, which is an advantage if it is applied to OCDMA
systems. In this scenario, construction B is better thanMZKZ
Family B.

III. CONCLUSION
We presented two new constructions of optical orthogonal
codes with λ = 1. One of these is optimal with respect to
the Johnson bound and its parameters are (p(ph − 1), p, 1),
where p is a prime number and h is an integer greater than 1.
The code size is ph−1 + · · · + p2 + p.

For λ > 1 the combinatorial problem involving the concept
of OOC is more difficult. We can apply a procedure similar to
that seen in this document, however, the size of the obtained
code is far from reaching the Johnson bound. The current
method under certain circumstances can be applied to opti-
mize the families of asymptotically optimal OOCs presented
in [11] and [12]. This is a subject for future work.

ACKNOWLEDGMENT
The authors would like to thank theUniversidad del Cauca. H.
M. Ruiz and L. M. Delgado would like to thank COLCIEN-
CIAS for supporting their doctoral studies.

REFERENCES
[1] E. F. Brickell and V. K. Wei, ‘‘Optical orthogonal codes and cyclic block

designs,’’ Congr. Numer, vol. 58, pp. 175–192, Jan. 1987.
[2] F. R. K. Chung, J. A. Salehi, and V. K. Wei, ‘‘Optical orthogonal codes:

Design, analysis and applications,’’ IEEE Trans. Inf. Theory, vol. 35, no. 3,
pp. 595–604, May 1989.

[3] H. Chung and P. V. Kumar, ‘‘Optical orthogonal codes-new bounds
and an optimal construction,’’ IEEE Trans. Inf. Theory, vol. 36, no. 4,
pp. 866–873, Jul. 1990.

[4] O. Moreno, R. Omrani, P. V. Kumar, and H.-F. Lu, ‘‘A generalized
Bose–Chowla family of optical orthogonal codes and distinct difference
sets,’’ IEEE Trans. Inf. Theory, vol. 53, no. 5, pp. 1907–1910, May 2007.

[5] G.-C. Yang, ‘‘Some new families of optical orthogonal codes for
code-division multiple-access fibre-optic networks,’’ IEE Proc.-Commun.,
vol. 142, no. 6, pp. 363–368, Dec. 1995.

[6] J. Yin, ‘‘Some combinatorial constructions for optical orthogonal codes,’’
Discrete Math., vol. 185, nos. 1–3, pp. 201–219, Apr. 1998.

[7] Y. Miao and R. Fuji-Hara, ‘‘Optical orthogonal codes: Their bounds and
new optimal constructions,’’ IEEE Trans. Inf. Theory, vol. 46, no. 7,
pp. 2396–2406, Nov. 2000.

[8] W. Chu and S. W. Golomb, ‘‘A new recursive construction for opti-
cal orthogonal codes,’’ IEEE Trans. Inf. Theory, vol. 49, no. 11,
pp. 3072–3076, Nov. 2003.

[9] O.Moreno, Z. Zhang, P. V. Kumar, andV. A. Zinoviev, ‘‘New constructions
of optimal cyclically permutable constant weight codes,’’ IEEE Trans. Inf.
Theory, vol. 41, no. 2, pp. 448–455, Mar. 1995.

[10] R. M. Wilson, ‘‘Cyclotomy and difference families in elementary abelian
groups,’’ J. Number Theory, vol. 4, no. 1, pp. 17–47, Feb. 1972.

[11] J.-H. Chung and K. Yang, ‘‘Asymptotically optimal optical orthogonal
codes with new parameters,’’ IEEE Trans. Inf. Theory, vol. 59, no. 6,
pp. 3999–4005, Jun. 2013.

[12] J.-H. Chung and K. Yang, ‘‘New construction of asymptotically optimal
optical orthogonal codes,’’ in Proc. IEEE Inf. Theory Workshop Fall (ITW),
Oct. 2015, vol. 59, no. 6, pp. 129–132.

[13] C. Gomez and C. Trujillo, ‘‘Una nueva construccion de conjuntos
Bh modulares,’’ Matematicas, Ensenanza Universitaria, vol. 19, no. 1,
pp. 53–62, 2011.

[14] I. Ruzsa, ‘‘Solving a linear equation in a set of integers i,’’Acta Arithmetica,
vol. 65, no. 3, pp. 259–282, 1993.

[15] T. L. Alderson and K. E. Mellinger, ‘‘Geometric constructions of optimal
optical orthogonal codes,’’Adv.Math. Commun., vol. 2, no. 4, pp. 451–467,
2008.

[16] J. Singer, ‘‘A theorem in finite projective geometry and some applications
to number theory,’’ Trans. Amer. Math. Soc., vol. 43, no. 3, pp. 377–385,
1938.

[17] N. Miyamoto, H. Mizuno, and S. Shinohara, ‘‘Optical orthogonal codes
obtained from conics on finite projective planes,’’ Finite Fields Appl.,
vol. 10, no. 3, pp. 405–411, Jul. 2004.

HAMILTON M. RUIZ received the B.S. degree
in mathematics from the Universidad de Nariño,
Colombia, in 2013, and the M.S. degree in mathe-
matical sciences from the Universidad del Cauca,
Colombia, in 2018, where he is currently pursuing
the Ph.D. degree. He is a member of the research
group ALTENUA (Algebra, Teoria de Números y
Aplicaciones). His research interests include cod-
ing theory, design theory, and Sidon sets.

LUIS M. DELGADO received the B.S. degree
in mathematics from the Universidad de Nariño,
Colombia, in 2009, and the M.S. degree in mathe-
matical sciences from the Universidad del Cauca,
Colombia, in 2018, where he is currently pursuing
the Ph.D. degree. He is a member of the research
group ALTENUA (Algebra, Teoria de Números
y Aplicaciones). His research interests include
Golomb rulers and Sonar sequences.

CARLOS A. TRUJILLO received the B.S. degree
in mathematics from the Universidad del Cauca,
in 1978, the M.S. degree in mathematical sciences
from the Universidad del Valle, in 1986, and the
Ph.D. degree in mathematics from the Universidad
Politécnica de Madrid, in 1998. He is currently
the Director of the Ph.D. program in mathemati-
cal sciences with the Universidad del Cauca, and
the Director of the research group ALTENUA
(Algebra, Teoria de Números y Aplicaciones). His

research interests include coding theory, Golomb rulers, Sonar sequences,
and Sidon sets.

VOLUME 8, 2020 100753


	INTRODUCTION
	CONSTRUCTIONS
	CONSTRUCTION A
	CONSTRUCTION B

	CONCLUSION
	REFERENCES
	Biographies
	HAMILTON M. RUIZ
	LUIS M. DELGADO
	CARLOS A. TRUJILLO


